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Landau damping effects in the 
synchronization of conformist and 
contrarian oscillators
Tian Qiu1,*, Yue Zhang1,*, Jie Liu1,*, Hongjie Bi1, S. Boccaletti2,3, Zonghua Liu1,4 & 
Shuguang Guan1,4

Two decades ago, a phenomenon resembling Landau damping was described in the synchronization 
of globally coupled oscillators: the evidence of a regime where the order parameter decays when linear 
theory predicts neutral stability for the incoherent state. We here show that such an effect is far more 
generic, as soon as phase oscillators couple to their mean field according to their natural frequencies, 
being then grouped into two distinct populations of conformists and contrarians. We report the 
analytical solution of this latter situation, which allows determining the critical coupling strength and 
the stability of the incoherent state, together with extensive numerical simulations that fully support all 
theoretical predictions. The relevance of our results is discussed in relationship to collective phenomena 
occurring in social and economical systems.

In the forties, the Soviet physicist Lev Davidovich Landau (the 1962 Nobel Laureate for his theory on superflu-
idity) predicted the damping (the exponential decrease as a function of time) of electrostatic charge waves in a 
collision-less plasma1,2. After almost two decades of controversy, the “Landau damping” (LD) was eventually 
verified experimentally3, and it was even argued that similar phenomena could take place in galactic dynamics4. 
Mathematically, LD is entirely due to the occurrence of fake eigenvalues caused by analytic continuation, which 
lead to an exponential decay of the electric field even when the density perturbation does not.

More recently, Strogatz et al. investigated the synchronization transition in ensembles of coupled oscillators5, 
and found a regime (below the synchronization threshold, and for which linear theory foretells neutral stability) 
where the relaxation to the incoherent state is indeed exponential, with a decaying mechanism remarkably similar 
to LD.

In this paper, we report on theoretical analysis and numerical simulations that demonstrate how the presence 
of LD is, actually, far more general in the synchronization route of globally coupled oscillators. Without lack of 
generality, we start by considering a frequency-weighted Kuramoto6 model of N phase oscillators, in which units 
are coupled to the mean field according to their natural frequencies:
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Here θj (ωj) is the instantaneous phase (the natural frequency) of the jth oscillator, dot denotes a temporal deriv-
ative, and κ >  0 is a global coupling strength parameter. The set {ωj} of natural frequencies is drawn from a given 
frequency distribution (FD) g(ω) with, in general, both a positive and a negative domain. Eq. (1) belongs to the 
class of the so-called generalized Kuramoto models6–11. At variance with refs 12,13, the effective coupling κωj can 
be here either positive or negative (depending on the sign of the natural frequency ωj), reflecting the fact that the 
interactions among individuals can inherently be repulsive in real systems14–17. For instance, it is well known that 
both excitatory and inhibitory couplings characterize the interaction structure of neural ensembles18,19, as well as 
similar kinds of coupling can also be found in social interactions.
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Eq. (1) is fully analytically solvable, and we here focus on unveiling the details of several novel phenomena of 
LD, which characterize the transition to synchronization in such systems. In its mean-field form, Eq. (1) can be 
written as

θ ω κω φ θ= + ( − ), = , ..., , ( ) r j Nsin 1 2j j j j

where r and φ are order parameters defined by
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Here oscillators can be, in general, grouped into two populations, according to their effective coupling: those with 
positive ωj will behave like conformists attempting to follow the global rhythm of the system, whereas those with 
negative ωj will tend to act as contrarians, i.e. they will always try opposing the system’s global beat15–17. Let us then 
analyze the synchronization transition in Eq. (1) in the presence of a Lorentzian FD

ω γ π ω γ( ) = ( / )/ ( − ∆) + , ( )g [ ] 42 2

where Δ  and 2γ are the central frequency and the width at half maximum, respectively, with Δ  actually controlling 
the proportion of conformists to contrarians in the ensemble.

In this work, numerical integrations of coupled ordinary differential equations are performed by the 
fourth-order Runge-Kutta method with time step 0.01. The initial conditions for the phase variables are random. 
Typically, the total number of oscillators is N =  10000. For simplicity, the network is supposed to be globally cou-
pled. To test if hysteresis exists in the synchronization transitions, we study both the forward and the backward 
transitions in an adiabatic way. For each control parameter, the order parameter is averaged in a time window after 
the transient stage. Such numerical schemes are adopted throughout this paper.

Results
Linear stability analysis. In the thermodynamic limit, i.e., N →  ∞, a density function ρ(θ, ω, t) can be defined, 
where ρ dθ denotes the fraction of oscillators with frequency ω whose phases have values between θ and θ +  dθ at 
time t. ρ satisfies the normalization condition ∫ ρ θ ω θ( , , ) =

π t d 1
0

2  for all ω, and all t. The evolution of ρ is gov-
erned by the continuity equation
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where the velocity υ is given by Eq. (2) as υ =  ω +  κωrsin(φ −  θ). On its turn, the order parameter can be expressed 
as
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and therefore Eq. (5) can be rewritten as
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For the incoherent state, ρ0(θ, ω, t) =  1/(2π). A small perturbation from that state, i.e.
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can be considered, where  ≪  1, and η⊥(θ, ω, t) represents the higher Fourier harmonics. Substituting Eq. (8) into 
Eq. (7), one gets the linearized characteristic equation
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Equation (9) has both a continuous and a discrete spectrum. Following the analysis of ref. 7, the continuous 
spectrum is the set {− iω : ω ∈  Support(g)}, which is the whole imaginary axis for the Lorentzian FD. As for the 
discrete spectrum that determines the stability of c(ω, t), one has to seek solutions of the form c(ω, t) =  b(ω)eλt, 
where λ is independent of ω. Then, Eq. (9) becomes
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b i b b g d
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Equation (10) can be solved in a self-consistent way. Precisely, let ∫ ω ω ω= ( ′) ( ′) ′κ
−∞

+∞A b g d
2

. Then, b(ω) can be 
solved from Eq. (10) as: b(ω) =  ωA/(λ +  iω). By substituting this back into the expression of A, we ultimately obtains 
the critical equation
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which relates κ with the eigenvalue λ. Substituting Eq. (4) into Eq. (11), one gets: 
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Equivalently,
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From Eq. (13), one sees that if λ is real, the result of the first integral is real, while the second integral contributes 
a pure number (its integrand is non-negative except at the point ω =  0). Then, Eq. (13) cannot be satisfied because 
the left-hand side is real. The consequence is that the eigenvalue λ must be complex, and this is essentially different 
from the case of the classical Kuramoto model, where the discrete eigenvalues are proven to be real and positive7.

The direct integration of Eq. (12) turns out to be tedious. The alternative is looking for a contour integration 
in the complex plane. For this purpose, one can set λ =  a +  ib (a, b ∈  R, and b ≠ 0) and discuss three distinct cases, 
corresponding to a >  0, a =  0, and a <  0, respectively. The detailed processes are as follows.

1. a >  0. In this case, f(ω) has two poles ω1 =    −  b +  ia and ω2 =  Δ  +  iγ in the upper half complex plane; and 
one pole ω3 =  Δ  −  iγ in the lower half complex plane. So the integral in Eq. (12) can be conveniently done 
by choosing a contour in the lower half complex plane. Accordingly, Eq. (12) becomes:
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where Res means the residue. From this equation we explicitly get the closed form of the eigenvalue as
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The real part of λ1 determines the stability of the incoherent state, i.e., when Re[λ1] changes from negative 
to positive, the incoherent state loses its stability. Notice that a >  0 is assumed from the start, and we can 
use the condition Re[λ1] →  0+ to determine the critical coupling strength for the synchronization transi-
tion, which leads to

κ γ= /∆. ( )2 16c
1

This concise result is significant: the critical coupling strength is explicitly determined by the properties of 
the Lorentzian frequency distribution: namely, it is proportional to the width, but inversely proportional to 
the central frequency. From Eq. (15), we can also infer that such a solution is valid only for the case Δ  >  0. 
For Δ  ≤  0, indeed, Re[λ1] <  0, which contradicts the assumption a >  0.

2. a =  0. In this case, λ =  ib. f(ω) has one pole ω1 =  − b on the real axis, and two poles ω2 =  Δ  +  iγ and 
ω3 =  Δ  −  iγ in the upper and lower complex plane, respectively. We can choose a contour in the upper half 
complex plane, but bypassing the pole on the real axis. Accordingly, Eq. (12) becomes:
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Apparently, the solution for this equation is κ = ∞c
2  regardless of Δ . So this solution is physically 

unrealizable and should be neglected. By the way, from the above equation the eigenvalue can also be 
explicitly solved as

λ γ= − (∆ + )/∆. ( )i0 182
2 2

λ2 is then on the imaginary axis, consistently with the assumption a =  0.
3. a <  0. In this case, f(ω) has one pole ω1 =  Δ  +  iγ in the upper complex plane; and two poles ω2 =  Δ  −  iγ 

and ω3 =  − b +  ia in the lower complex plane. The integral in Eq. (12) can be conveniently done by choos-
ing an integral contour in the upper complex plane. Accordingly, Eq. (12) becomes:
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From this equation, one can obtain the eigenvalue as
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Notice that, as a <  0 has been assumed, one can determine the critical coupling strength by setting Re[λ3] →  0−, i.e.,

κ γ= − /∆. ( )2 21c
3

For Δ  ≥  0, the solution of transition point is physically unreasonable. Nevertheless, for Δ  <  0, κ γ= − /∆ >2 0c
3  

is significant.
Based on the above analysis, one can extract the critical coupling strength κc as well as determine the stability 

properties of the incoherent state, which are schematically reported in Fig. 1. Specifically:
(Case 1) Δ  >  0: the conformists prevail over the contrarians. κ γ= /∆2c

1  and the spectra are schematically 
plotted in Fig. 1(a,b). When κ κ> c

1 , Eq. (9) has a continuous spectrum on the imaginary axis and a discrete 
eigenvalue in the right half complex plane. Accordingly, the incoherent state is unstable. When κ κ< <0 c

1 , there 
is no discrete eigenvalue, and the incoherent state is neutrally stable.

(Case 2) Δ  =  0: conformists and contrarians are equal in number. In this case, κ = ∞c
2 , implying that synchro-

nization can never be achieved. As shown in Fig. 1(c), here no discrete eigenvalues exist outside the imaginary 
axis, and therefore the incoherent solution is always (i.e. for any arbitrary coupling strength) neutrally stable.

(Case 3) Δ  <  0: the contrarians prevail over the conformists. κ γ= − /∆2c
3 , and the spectra are shown in 

Fig. 1(d,e). Besides the continuous spectrum on the imaginary axis, there is no discrete eigenvalue when 
κ κ< <0 c

3, while there is an eigenvalue in the left half complex plane when κ κ> c
3 . So in this case, the incoherent 

solution is also always neutrally stable.
The current situation shares connections and differences with the classical Kuramoto model7,8. For Δ  >  0, the 

stability of the incoherent state is the same as that of refs 7,8, though the equations of the two models are essentially 
different. Nevertheless, for Δ  =  0 and Δ  <  0, the incoherent state is always neutrally stable, regardless of κ. The 
two latter phenomena are novel, and inherent in our frequency-weighted Kuramoto model, which allows the two 
populations of conformist and contrarian oscillators to coexist.

The Landau damping. In order to unveil LD in the model, we analytically extract the equation ruling the 
relaxation behavior of r(t) in all four neutrally stable regimes predicted by the linear theory, i.e., the cases corre-
sponding to Fig. 1(a,c–e). As it will appear momentarily, it is found that r(t) decays, indeed, exponentially in all 
cases in which the incoherent state is neutrally stable. Remarkably, the decaying rate can be analytically predicted, 
as follows. Combining Eq. (6) and Eq. (8) leads to r(t) =  2πε|R(t)|, where

∫ ω ω ω( ) = ( , ) ( ) . ( )−∞

+∞
R t c t g d 22

Then, Eq. (9) becomes
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For any given initial condition c0(ω) =  c(0, ω), the solution of Eq. (23) is:

Figure 1. The spectra for the characteristic equation (9). For a Lorentzian frequency distribution, the 
continuous spectrum is the whole imaginary axis. The solid squares denote, instead, the discrete eigenvalues. 
The purple ovals in (a,c–e) mark the ghost (fake) eigenvalues predicted by the linear theory, which are actually 
valid only on the right half complex plane. As discussed in the text, such ghost eigenvalues remarkably control 
the decaying rate of order parameter r(t) in the neutrally stable regimes, exactly as in the Landau damping 
context. It should be pointed out that the ghost eigenvalue in (d,e) could also be above the real axis, depending 
on parameters. For better visualization, we do not plot the other irrelevant (fake) eigenvalues.
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In a self-consistency way, substitution of Eq. (24) into Eq. (22) leads to
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where the hat denotes the Fourier transform, i.e., ∫ ω ω ω( )( ) = ( ) ( )ω
−∞

∞ −
c g t e c g di t

0 0    and ∫ ω ω ω( ) = ( )ω
−∞
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Note that for Laplace transform, Re[s] >  0 can always be satisfied. So the integrand in the above equation has only 
one pole in the lower half complex plane. A contour integral in the lower half complex plane conveniently gives
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Substitution of the above two equations into Eq. (29) and application of the inverse Laplace transform lead to
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Now, the only pole ws =  (κΔ /2 −  γ) −  i(κγ/2 +  Δ ) is on the left of line Re[s] =  σ for sufficiently large σ (that is 
guaranteed in the Laplace transform), and therefore one can apply residue theorem along the contour on the left 
of the line Re[s] =  σ in the complex plane. This finally gives

ω( ) = ( ), = , ( )µR t F s eRes[ ] 31s
t

where the decaying exponent is
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Interestingly, we find that μ =  λ1 by comparing Eq. (32) with Eq. (15). Notice that λ1 is valid only on the right half 
complex plane, i.e., when a >  0. In the neutrally stable regimes (as shown in Fig. 1, λ1 is not supposed to hold. In 
such a sense, we say that λ1 is the ghost (fake) eigenvalue that actually controls the decaying of r(t). Mathematically, 
Eq. (31) can be obtained from Eq. (30) by application of analytic continuation for the integrand, which can lead 
to a pole s =  μ in the left half complex plane. Such a latter pole is the fake eigenvalue that is responsible for the 
exponential decay of the order parameter. Notice that, in the derivation of Eq. (32), we do not yet imposed specific 
constraints to the functional form of μ, therefore [based on the closed form of R(t)], we here below summarize 
what happens to the relaxation behavior of r(t) in the three different cases of Δ .

(Case 1) Δ  >  0. One obtains that the critical coupling strength is κ γ= /∆2c
1 , by setting Re[μ] =  0. When 

κ κ< c
1  [where the linear theory predicts neutral stability, Fig. 1(a)], r(t) decays exponentially with 

Re[μ] =  Δ κ/2 −  γ =  Re[λ1]. Therefore, it is remarkable that the damping rate is actually determined by the value 
of the ghost eigenvalue λ1 in Fig. 1(a), exactly like what happens in the LD mechanism.

(Case 2) Δ  =  0. The incoherent state is neutrally stable regardless of κ [Fig. 1(c)]. According to Eq. (32), r(t) 
always decays exponentially with Re[μ] =  − γ =  Re[λ1], once again like if the ghost eigenvalue λ1 in Fig. 1(c) would 
still be present.

(Case 3) Δ  <  0. From Eq. (32), Re[μ] =  Δ κ/2 −  γ, which is always negative. Therefore, r(t) does decay expo-
nentially for any value of κ, corresponding to the neutrally stable regimes predicted by linear theory [Fig. 1(d,e)]. 
Remarkably, once again the decaying rate Re[μ] =  Δ κ/2 −  γ =  Re[λ1] rather than Re[λ3] even when it is negative 
[Fig. 1(e)]! To summarize, in all the regimes of neutral stability, as shown in Fig. 1, it is the ghost eigenvalue λ1 
actually controls the decaying of r(t).
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In the above, focusing on the typical Lorentzian FD, we are able to analytically illuminate the LD effects in model 
(1). How about other FDs? This is an important issue regarding the general validity of LD in our model. Actually, we 
have considered several other FDs, such as uniform, Gaussian, and triangle, etc. Although the complete analytical 
treatment turns out to be difficult, we still can get some general qualitative results based on our above study on the 
Lorentzian FD. In fact, the linearized characteristic equation, i.e., Eq. (9), is generally valid regardless of FD. Due 
to the continuous spectra on the imaginary axis, as long as the discrete spectra are on the left complex plane, i.e., 
below the synchronization threshold, the incoherent state of the system must be neutrally stable. In other words, 
the incoherent state is generally excluded to be linearly stable in our model for any FDs. Then how does the order 
parameter behave in such regime? To this end, we turn to numerical simulations and the results will be reported 
in the following section.

The numerical simulations. Finally, we compare our analytical predictions with direct numerical simulations 
of Eq. (1). We first verify that the numerics match all theoretical predictions, as shown in Fig. 2, and confirm an 
exponential relaxation of R(t) in the regimes of neutral stability, for all the three cases of Δ  when the FD is chosen 
as Lorentzian. Then we have conducted direct numerical simulations for other typical FDs. The results are shown in 
Fig. 3. It is found that the order parameters typically decay in the neutrally stable regimes with uniform, Gaussian, 
and triangle FD. In the short term, the decay is exponential. In the long term, the decay could be power-law. This 
is similar to the situation reported in ref. 5. The above numerical results suggests that the LD effects might be a 
generic phenomenon in model (1). It is a challenging task for us to theoretically predict the decay rates for these 
FDs in the future.

Next, starting from random initial conditions for the phases, we gradually step up (forward transition) and down 
(backward transition) Δ  from (and to) a negative initial value (Δ  =  − 0.2), while keeping γ =  0.5 and κ =  4.5 con-
stant, this way piecemeal modulating the proportion of conformist oscillators in the ensemble. Results are shown 
in Fig. 4(a), where it is seen that a continuous (fully reversible) synchronization transition occurs at the critical 
point Δ c =  2γ/κ. In Fig. 4(b), Δ c vs κ is plotted, and numerical results perfectly verify the prediction of an inverse 
proportion in the critical point. On its turn, this means that, as long as the number of the conformists prevails over 
that of the contrarians, synchronization will always occur for a large enough coupling strength.

Going further, one can even unveil the mechanisms and processes taking place during the path to synchro-
nization. Namely, Fig. 5 reports the instantaneous distributions of phases and frequencies that characterize the 
coherent states. As Δ  is below the critical value, synchronization cannot be achieved. When Δ  exceeds Δ c, a 
phase-locking cluster of conformists (ωi >  0) first appears [as shown in Fig. 5(a)], without an associated cluster 
of synchronized contrarians. As Δ  increases, more and more conformists join the synchronized cluster. Only at 
an intermediate moment, the contrarians start forming a synchronized cluster, as shown in Fig. 5(b). This latter 
fact is actually striking, as it demonstrates that in such ensembles the synchronization of contrarians can only be 
achieved after the synchronized cluster of conformists is large enough, as if the former process would be actually 
induced by the latter. By further increasing Δ , the cluster of conformists becomes larger and larger by recruiting 
more and more drifting oscillators, which leads to larger order parameter, as shown in Fig. 5(c). The two clusters 
(that of conformist and that of contrarians) rotate with the same frequency along the unit circle. During the rota-
tion, they are relatively static with each other, as shown in the inset of Fig. 5(c2), i.e. the two peaks in the phase 
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Figure 2. Landau damping effects in the order parameter R(t) with Lorentzian FD. Horizontal lines are 
time, solid lines refer to the numerical solutions of Eq. (1), and dashed lines are the analytical predictions of 
Eq. (32). The three log-linear plots refer to the cases Δ  >  0 (a), Δ  =  0 (b), and Δ  <  0 (c). All curves belong to 
the neutrally stable regime of the incoherent state predicted by linear theory. In the numerical simulations, the 
initial states of the system are set in the fully coherent states.
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distribution keep a constant difference 1.2π (or 0.8π). As a consequence, the system enters (after synchronization) 
into a traveling wave state, which however (and generally) is not the π state, i.e. that state where the phase difference 
between the two clusters is always π15.

Finally, we study how the coupling strength affects the synchronization in Eq. (1) when the ratio between con-
formists and contrarians is fixed. To this end, we keep Δ  =  0.5 and γ =  0.5, and compute the order parameter with 
respect to the coupling strength. As shown in Fig. 6(a), the system also exhibits a second-order transition to syn-
chronization as the coupling strength increases. The theoretical critical point has been analytically given in Eq. (16). 

Figure 3. Landau damping effects in the order parameter R(t) with uniform, Gaussian, and triangle FDs. 
Horizontal lines are time, solid lines refer to the direct numerical solutions of Eq. (1) with κ =  1.0, and dashed 
lines are the fitted straight lines with slope k. Note that (a–c) are semi-log plots, while (d) is double-log. To 
effectively suppress the fluctuation of the order parameter, the number of oscillator N =  25600000. The formulae 
and parameters for the three FDs are as follows. Uniform: g(ω) =  1 for |ω −  Δ | <  0.5, and 0 otherwise. Δ  =  0.1. 
Gaussian: ω( ) =

π γ

ω

γ

−( −∆)g exp[ ]1
2 2

2

2  with Δ  =  0.1 and γ =  0.5. Triangle: g(ω) =  (γ −  |ω −  Δ |)/γ2 for 
|ω −  Δ | <  γ, and 0 otherwise. Δ  =  0.1 and γ =  0.5.
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Figure 4. Synchronization transition in Eq. (1) in the presence of conformist and contrarian oscillators. 
(a) r vs Δ  (see text for definitions). Letters A, B, C denotes the three conditions that will be analyzed in the next 
Figure. The inset reports r vs p, i.e., the proportion of conformist oscillators in the ensemble, which (for any 
given γ) is entirely controlled by Δ . (b) Given γ, Δ c comes out to be inversely proportional to κ.



www.nature.com/scientificreports/

8Scientific RepoRts | 5:18235 | DOI: 10.1038/srep18235

To verify this, we numerically computed the critical point κ c
1  with different γ while keeping Δ  =  0.5 as a constant. 

As shown in Fig. 6(b), as the width of the FD increases, the critical point κ c
1  increases linearly. Once again, the 

numerical data perfectly coincide with the theoretical predictions. Physically, Fig. 6(b) suggests that, given the 
central frequency of FD, the system becomes more and more difficult to be synchronized as the width of the FD 
increases. The result can be heuristically understood as follows. For our model, the ratio between the conformists 
and the contrarians plays a crucial role in determining whether synchronization can be achieved or not. Both Δ  
and γ can affect this ratio. According to Eq. (4), the proportion of conformists in the system can be analytically given 
as γ= + (∆/ )

π
p arctan1

2
1 . Therefore, given Δ , p will decrease as γ increases. This explains why larger coupling 

strength is required to achieve synchronization when γ increases.
Similarly, we can characterize the microscopic properties of the coherent states after achieving synchronization 

in Fig. 6(a). The results are shown in Fig. 7. It is shown that when the FD is fixed, i.e., Δ  >  0 and γ are given, the 
system first forms a cluster of conformists as the coupling strength exceeds the critical point, as shown in Fig. 7(a). 
Then as the coupling strength increases further, this cluster grows larger and simultaneously a cluster of contrarians 
begins to form, as shown in Fig. 7(b,c). Through extensive simulations, we have verified that the coherent states in 
this situation are always traveling wave states. As shown in Fig. 7(c2), generally they are not the π state15.

It has been shown that the traveling wave states usually occur when the symmetry in either the natural fre-
quencies or the coupling strength itself is broken20. In our study, the FD is generally asymmetric as long as Δ  ≠ 0. 
As a consequence, the traveling wave solutions should be typical. Furthermore, the occurrence of traveling wave 

Figure 5. Characterization of the coherent states. κ =  4.5 and γ =  0.5. Rows (a–c) correspond to Δ  =  0.226, 
0.26, and 0.5, respectively, i.e., to the points A, B, and C of Fig. 4(a). Column 1 plots the order parameter in 
the complex plane after a transient stage, while columns 2–3 correspond to the snapshots of the distributions 
of the instantaneous phases and the frequencies at t =  2,500. In (a), the conformists slightly prevail over the 
contrarians, and only a small part of conformists form a coherent cluster, rotating at a certain frequency along 
the unit circle. In (b), the coherent cluster of conformists continuously expands, while the contrarians begin 
forming a coherent cluster. Both clusters rotate at the same frequency along the unit circle, with a constant 
phase difference between them. In (c) more conformists are present in the system. The cluster of the conformists 
further enlarges, leading to the increase of the order parameter. The inset in (c2) shows the phase distribution at 
that moment. The phase difference between two peaks is 1.2π.
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conditions that will be analyzed in the next Figure. (b) Given fixed central frequency of FD Δ  =  0.5, the critical 
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Figure 7. Characterization of the coherent states. Δ  =  0.5 and γ =  0.5. Rows (a–c) correspond to κ =  2.05, 
2.5, and 4.0, respectively, i.e., to the points A, B, and C of Fig. 6(a). The arrangement of panels are the same as in 
Fig. 5.
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states can be heuristically understood as follows. As pointed out in ref. 21, the phase-locking condition for a pair 
of oscillators in system (1) is

ω ω ω ω ω κ∆ = | − |/(| | + | |) < , ( )r 33ij j i j i

i.e. a pair of oscillators is forbidden to synchronize with each other (for any given κ) if such a condition does not 
hold. Now, if a pair of oscillators have natural frequencies with different signs, Δ ωij =  1. In the incoherent state, 
κr is typically much less than 1, and therefore those oscillator pairs with Δ ωij =  1 will most likely violate the above 
condition. At variance, oscillator pairs with the same frequency sign are easier to synchronize, especially when 
their natural frequencies are close enough. This explains why clusters always form among conformists or contrar-
ians, as observed in Fig. 5. In the traveling wave state, both coherent clusters of conformists and contrarians rotate 
with the same instantaneous frequency that is greater than 0. According to Eq. (2), the conformists turn to approach 
the mean-field phase φ due to ωi >  0. Nevertheless, in order to make the instantaneous frequency θ > 0i  of contrar-
ians, sin(φ −  θ) must be less than 0, i.e. their phases will always rotate against the mean-field phase φ, and one will 
observe a phase difference between the two clusters (conformists and contrarians) which is always greater than 
π/2.

Previously, ref. 15 has investigated a system with both conformists and contrarians. However, the model in ref. 
15 is essentially different from ours in terms of both the frequency distribution and the coupling scheme. In ref. 
15, the natural frequencies satisfy the Lorentzian distribution, but the coupling is chosen as double δ function, i.e., 
the coupling strength takes either κ1 <  0 or κ2 >  0. In such way, the conformists and the contrarians are defined. 
Since ref. 15 considered Lorentzian distribution that is symmetric with respect to 0, it is reasonable that the π 
states, in which the average frequency of oscillators is 0, are observed (besides the traveling wave states). In our 
model, both the distribution of natural frequencies and the couplings are asymmetric Lorentzian, so generally the 
average frequency is not 020. As a consequence, the traveling wave states are typically observed as described above.

Discussion
Two decades ago, Strogatz et al. reported LD effects in the classical Kuramoto model5. In this work, we extended the 
formalism to a frequency-weighted case, where conformist and contrarian oscillators interact. The used analytical 
treatments, such as linear stability analysis and the method of Laplace transform, are inherited from ref. 5, but our 
model substantially differs from past approaches in the following aspects. On the one hand, the frequency-weights 
of our model lead to heterogeneous couplings that are essentially different from the homogeneous couplings in the 
classical Kuramoto model. On the other hand, the frequency-weighted coupling distinguishes two types of oscil-
lators in the system, i.e., the conformists and contrarians, according to the signs of natural frequencies. Moreover, 
our model exhibits certain new features. For instance, as shown in Fig. 1(e), the system is neutrally stable though 
it has a discrete eigenvalue on the left complex plane. Remarkably, it is the ghost eigenvalue (rather than this alive 
one) that actually controls the decay of the order parameter.

Recently, the Ott-Antonsen (OA) ansatz has been proposed to obtain the low dimensional dynamics of a large 
system of coupled oscillators22, and has been successfully applied in many situations15. It turns out that such a 
method can be used to analyze the stability of the incoherent state (to predict the critical coupling strength and 
the decaying rate of the order parameter). However, it fails to treat properly the partially coherent state in our 
case. Therefore, the OA method does not provide information more substantial than the traditional linear stability 
analysis. As the latter can also provide detailed insights on eigen-spectra (that are indeed crucial in the context of 
LD), we preferred to make use of it in the present work.

Together with providing evidence of LD effects in the synchronization of coupled oscillators, our results are 
of significance in that they contribute to shed light on the mechanisms at the basis of some phenomena beheld 
in social and economical sciences. For example, in western countries, the mainstream politics is the multiparty 
system. Basically, there exist both competition and cooperation among the multi parties. Nevertheless, as far as a 
specific political issue be concerned (mean-field), some parties tend to agree (conformists) while the others tend 
to oppose (contrarians). As a consequence, we frequently observe the phenomenon that “the left wing” confront 
with “the right wing” in the congress. In addition, the weaker side becomes more united as the stronger sides 
becomes more powerful, while the two sides hardly compromise with each other. Similar phenomena can also 
be found in economical systems. For example, the Intel microprocessor is dominant in PC market over the years 
(mean-field). As a consequence, the numerous PC producers in China face two choices: either use it (conformists), 
or use others such as AMD microprocessor (contrarians). This leads to the polarization of PC producers in China: 
Dell, TCL, Haier, and Founder, etc, vs Legend, HP, and Shenzhou, etc. Our results may then enlighten the reasons 
for the occurrence of such circumstances.

In summary, we investigated the synchronized dynamics of an ensemble of phase oscillators when the coupling 
to the mean field is frequency-weighted and two populations of oscillators (conformists and contrarians) can be 
identified. Analytically, we derived the critical coupling strength for synchronization and determined the stability 
of the incoherent state. In all regimes where the linear theory predicts neutral stability, the order parameter decays 
exponentially, in analogy with the Landau damping effect in plasma physics. Extensive numerical simulations fully 
support the theoretical predictions, and show that a continuous synchronization transition occurs by changing 
the ratio of conformists and contrarians. Traveling wave states are generically observed after synchronization. This 
work is helpful to enhance our understandings of LD effects in coupled oscillators systems.

References
1. Landau, L. On the vibration of the electronic plasma. J. Phys. USSR 10, 25 (1946).
2. Infeld, E. & Rowlands, G. Nonlinear Waves, Solitons and Chaos (Cambridge Univ. Press, New York, 1990).
3. Malmberg, J. H. & Wharton, C. B. Collisionless damping of electrostatic plasma waves. Phys. Rev. Lett. 13, 184–186 (1964).



www.nature.com/scientificreports/

1 1Scientific RepoRts | 5:18235 | DOI: 10.1038/srep18235

4. Lynden-Bell, D. The stability and vibrations of a gas of stars. Mon. Not. R. Astr. Soc. 124, 279–296 (1962).
5. Strogatz, S. H., Mirollo, R. E. & Matthews, P. C. Coupled nonlinear oscillators below the synchronization threshold: relaxation be 

generalized Landau damping. Phys. Rev. Lett. 68, 2730–2733 (1992).
6. Kuramoto, Y. Chemical Oscillations, Waves, and Turbulence. (Springer, New York, 1984).
7. Strogatz, S. H. & Mirrolo, R. E. Stability of incoherence in a population of coupled oscillators. J. Stat. Phys. 63, 613–635 (1991).
8. Strogatz, S. H. From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 

143, 1–20 (2000).
9. Boccaletti, S., Kurths, J., Osipov, G., Valladares, D. L. & Zhou, C. S. The synchronization of chaotic systems. Phys. Rep. 366, 1–101 

(2002).
10. Acebrón, J. A., Bonilla, L. L., Pérez Vicente, C. J., Ritort, F. & Spigler, R. The Kuramoto model: A simple paradigm for synchronization 

phenomena. Rev. Mod. Phys. 77, 137–185 (2005).
11. Arenas, A., Díaz-Gilera, A., Kurths, J., Moreno, Y. & Zhou, C. Synchronization in complex networks. Phys. Rep. 469, 93–153 (2008).
12. Zhang, X., Hu, X., Kurths, J. & Liu, Z. Explosive synchronization in a general complex network. Phys. Rev. E 88, 010802(R) (2013).
13. Hu, X. et al. Exact solution for first-order synchronization transition in a generalized Kuramoto model. Sci. Rep. 4, 7262 (2014).
14. Zanette, D. H. Synchronization and frustration in oscillator networks with attractive and repulsive interactions. Europhys. Lett. 72, 

190–196 (2005).
15. Hong, H. & Strogatz, S. H. Kuramoto model of coupled oscillators with positive and negative coupling parameters: an example of 

conformist and contrarian oscillators. Phys. Rev. Lett. 106, 054102 (2011).
16. Hong, H. & Strogatz, S. H. Conformists and contrarians in a Kuramoto model with identical natural frequencies. Phys. Rev. E 84, 

046202 (2011).
17. Zhang, X., Ruan, Z. & Liu, Z. An efficient approach to suppress the negative role of contrarian oscillators in synchronization. Chaos 

23, 033135 (2013).
18. Börgers, C. & Kopell, N. Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity. Neural 

Comput. 15, 509–538 (2003).
19. Qu, Z., Shiferaw, Y. & Weiss, J. N. Nonlinear dynamics of cardiac excitation-contraction coupling: An iterated map study. Phys. Rev. 

E 75, 011927 (2007).
20. Petkoski, S., Iatsenko, D., Basnarkov, L. & Stefanovska, A. Mean-field and mean-ensemble frequencies of a system of coupled 

oscillators. Phys. Rev. E 87, 032908 (2013).
21. Zhang, X., Zou, Y., Boccaletti, S. & Liu, Z. Explosive synchronization as a process of explosive percolation in dynamical phase space. 

Sci. Rep. 4, 5200 (2014).
22. Ott, E. & Antonsen, T. M. Low dimensional behavior of large systems of globally coupled oscillators. Chaos 18, 037113 (2008).

Acknowledgements
Work partially supported by the National Natural Science Foundation of China under Grants No. 11375066 and No. 
11135001; and the Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical 
Physics, Chinese Academy of Sciences, China (No. Y4KF151CJ1).

Author Contributions
T.Q., S.B., Z.H.L. and S.G.G. designed the research; T.Q., Y.Z., J.L., H.B. and S.G.G. performed the theoretical 
analysis and numerical simulations; T.Q., S.B. and S.G.G. wrote the paper. All authors reviewed and approved the 
manuscript.

Additional Information
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Qiu, T. et al. Landau damping effects in the synchronization of conformist and 
contrarian oscillators. Sci. Rep. 5, 18235; doi: 10.1038/srep18235 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by/4.0/

	Landau damping effects in the synchronization of conformist and contrarian oscillators
	Introduction
	Results
	Linear stability analysis
	The Landau damping
	The numerical simulations

	Discussion
	Additional Information
	Acknowledgements
	References



 
    
       
          application/pdf
          
             
                Landau damping effects in the synchronization of conformist and contrarian oscillators
            
         
          
             
                srep ,  (2015). doi:10.1038/srep18235
            
         
          
             
                Tian Qiu
                Yue Zhang
                Jie Liu
                Hongjie Bi
                S. Boccaletti
                Zonghua Liu
                Shuguang Guan
            
         
          doi:10.1038/srep18235
          
             
                Nature Publishing Group
            
         
          
             
                © 2015 Nature Publishing Group
            
         
      
       
          
      
       
          © 2015 Macmillan Publishers Limited
          10.1038/srep18235
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep18235
            
         
      
       
          
          
          
             
                doi:10.1038/srep18235
            
         
          
             
                srep ,  (2015). doi:10.1038/srep18235
            
         
          
          
      
       
       
          True
      
   




