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Robust High-performance Dye-
sensitized Solar Cells Based on 
Ionic Liquid-sulfolane Composite 
Electrolytes
Genevieve P. S. Lau, Jean-David Décoppet, Thomas Moehl, Shaik M. Zakeeruddin, 
Michael Grätzel & Paul J. Dyson

Novel ionic liquid-sulfolane composite electrolytes based on the 1,2,3-triazolium family of ionic 
liquids were developed for dye-sensitized solar cells. The best performing device exhibited a short-
circuit current density of 13.4 mA cm−2, an open-circuit voltage of 713 mV and a fill factor of 0.65, 
corresponding to an overall power conversion efficiency (PCE) of 6.3%. In addition, these devices are 
highly stable, retaining more than 95% of the initial device PCE after 1000 hours of light- and heat-
stress. These composite electrolytes show great promise for industrial application as they allow for 
a 14.5% improvement in PCE, compared to the solvent-free eutectic ionic liquid electrolyte system, 
without compromising device stability.

Harvesting energy efficiently from the sun has been a long-time goal of scientists and engineers. Among the 
various solar energy conversion technologies presently available, few are cost-competitive and their widespread 
commercial use is therefore constrained. In this regard, dye-sensitized solar cells (DSCs) are very attractive, as 
they are relatively low cost and easy to manufacture1–3. Furthermore, their semi-transparent and colored nature 
makes them ideally suited to building-integrated photovoltaic (BIPV) applications4.

While the best performing DSCs deliver up to 13% power conversion efficiency under full sun illumination, 
these high-performance devices usually employ volatile organic solvents in the electrolytes, such as acetonitrile, 
which greatly reduce their stability and lifetime5. Overcoming this limitation is therefore of paramount importance 
for the successful translation of this technology to the market.

Ionic liquid-based electrolytes, on the other hand, have been shown to provide DSCs with excellent long-term 
device stability6–9. The high ionic conductivity, wide electrochemical window, high thermal stability and 
non-volatile nature of ionic liquids are highly desirable for electrochemical applications, including DSCs, batter-
ies and supercapacitors7–11. Most ionic liquids, however, are highly viscous and prevent efficient charge transport 
of the redox couple within the electrolyte, resulting in much lower efficiencies compared to devices based on 
traditional organic solvents7. Research in this field has been largely restricted to ionic liquids based on a limited 
selection of cations and anions, with the imidazolium salts being the most widely used6–9. Ionic liquids based on 
the 1-ethyl-3-methyl imidazolium cation have been extensively investigated in electrolytes for use in DSCs, and is 
frequently used as a benchmark6. In contrast, there are comparatively few reports on the application of low viscous 
1,2,3-triazolium-based ionic liquid electrolytes in DSCs, though they have been shown to afford similarly good 
performance7. Recently, we described the synthesis of some bicyclic 1,2,3-triazolium ionic liquids and demonstrated 
their successful application as electrolytes in DSCs7. Herein, we report on a method to improve overall device 
performance through the addition of a plasticizer to the bicyclic 1,2,3-triazolium ionic liquid-based electrolytes, 
with no loss in device stability.

Results
A series of electrolytes that incorporate ionic liquids based on the bicyclic 1,2,3-triazolium cations (Fig. 1A) 
were prepared. One set of electrolytes followed the standard composition for solvent-free eutectic ionic liquid 
electrolytes, coded E1 to E4 (see Methods for composition details). It was previously shown that a linear, inverse 
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correlation exists between the viscosity of the electrolyte and the volume percentage of sulfolane in the electrolyte12. 
Therefore, to achieve the best photovoltaic performance, 50 vol% of sulfolane was added to electrolytes E1 to E4, 
to obtain a second set of electrolytes (coded ES1 to ES4). The triiodide diffusion coefficients in each electrolyte 
were determined via cyclic voltammetry and by applying equation (1), see Table 1.
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While there does not appear to be a clear trend between the triiodide diffusion coefficients and the length of the 
alkyl chain on the ionic liquid cation, the results show that addition of 50 vol % sulfolane to the electrolytes results 
in a considerable increase in the triiodide diffusion coefficient, in some cases by up to 6 times (ES1). A higher 
triiodide diffusion coefficient is typically indicative of better overall device performance due to faster transport 
and dye regeneration kinetics13.

Figure 1. (A) Structures of 1,2,3-triazolium-based salts used in this study, (B) Structure of ruthenium dye, 
C106.

Device Alkyl chain Electrolyte Light intensity [mW cm–2] Jsc [mA cm–2] Voc [mV] Fill Factor PCE [%]

A C1 E1
100 8.6 680 0.76 4.7

50 5.5 667 0.72 5.3

B C2 E2
100 10.7 696 0.71 5.5

50 5.7 679 0.76 5.9

C C3 E3
100 5.9 690 0.87 3.6

50 4.8 674 0.81 5.2

D C4 E4
100 6.4 675 0.83 3.7

50 5.2 668 0.74 5.2

E C1 ES1
100 12.3 709 0.62 5.5

50 6.8 694 0.70 6.5

F C2 ES2
100 13.4 713 0.65 6.3

50 7.1 695 0.74 7.1

G C3 ES3
100 11.4 733 0.69 5.9

50 7.0 717 0.72 7.1

H C4 ES4
100 13.3 715 0.64 6.2

50 7.2 696 0.72 7.1

Table 2.  Photovoltaic parameters of devices A–H measured under standard AM 1.5G illuminations at 
100 mW cm–2 and 50 mW cm–2.

Electrolyte* Triiodide Diffusion Coefficient [cm2 s–1]

E1 5.67e-08

E2 9.46e-08

E3 5.83e-08

E4 6.78e-08

ES1 3.78e-07

ES2 3.26e-07

ES3 1.36e-07

ES4 3.59e-07

Table 1.  The electrolytes triiodide diffusion coefficient determined by cyclic voltammetry. *E1,E2,E3 and 
E4 contain 0.33 M I2 and ES1, ES2, ES3 and ES4 contain 0.165 M I2.
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Photovoltaic Performance and Stability. DSCs were fabricated with a ruthenium-based photosensitizer 
(C106, Fig. 1B) using a 4 μ m transparent mesoporous TiO2 film and electrolytes E1–E4 and ES1–ES4, affording 
devices A to H, Table 2. Notably, device performance (power conversion efficiency, PCE) does not correlate well 
with the triiodide diffusion coefficients measured. However, electrolytes E2 and ES2 (which contain ionic liquids 
bearing the C2 alkyl chain) are clearly superior to the other electrolytes, giving PCEs of 5.5% and 6.3% under stand-
ard AM 1.5G illuminations at 100 mW cm−2, respectively. Furthermore, we note that devices which employed the 
sulfolane-based electrolytes (devices E–H) exhibited higher VOC values compared to the devices which employed 
the solvent-free eutectic ionic liquid electrolytes (devices A–D). This difference may be ascribed to an increase in 
the redox energy of the electrolyte and a negative shift of the conduction band due to the use of sulfolane in the 
electrolyte, as described previously12.

Figure 2. I-V performance of the devices (A=device I, B=device J, C=device K). Red corresponds to the 
initial condition and blue, the aged. The solid lines represent photocurrent, and the dotted lines represent dark 
current.

Device Alkyl chain Electrolyte Aging [h] JSC [mA cm–2] VOC [mV] Fill Factor PCE [%] Ecb shift Δ(Ecb Shift–VOC)

I C2 ES2
0 7.82 682 0.73 7.87 –

0
1000 7.91 646 0.72 7.50 36

J C3 ES3
0 7.22 688 0.74 7.49 –

10
1000 7.48 663 0.73 7.34 35

K C4 ES4
0 7.73 665 0.72 7.50 –

15
1000 7.10 643 0.70 6.45 37

Table 3.  Photovoltaic parameters of devices I, J and K measured at 50 mW cm-2, before and after aging 
under standard AM 1.5G illuminations at 100 mW cm-2 and 60 °C.
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The best performing electrolytes, i.e. ES2, ES3 and ES4, were then used to fabricate DSCs with a double layer 
TiO2 film (8 +  5 μ m), affording devices I, J and K. The application of double layer TiO2 films as photoanodes, in 
conjunction with these lower viscosity electrolytes, led to enhanced PCEs in most cases, with the best performing 
device delivering 6.3% and 8.4% power conversion efficiencies at 100 mW cm−2 and 10 mW cm−2, respectively 
(device I).

In order to investigate the long-term stability of these sulfolane-based DSCs, devices I, J and K were subjected 
to an accelerated aging test at 60 °C under constant full sun illumination (100 mW cm−2) for 1000 hours. Figure 2 
shows the I-V performance of devices I, J and K before and after light-soaking, measured at 50 mW cm−2 illumi-
nation. The variations in the photovoltaic parameters, measured at 50 mW cm−2, are presented in Table 3.

Although a 30 mV drop in the VOC was observed in devices I and J, this was partially compensated for by a 
slight increase in the JSC values, thus allowing for the retention of more than 95% of the initial device PCE after the 
1000 hours accelerated aging test. The initial JSC values for devices I, J and K were in the range of 7–8 mA cm−2, 
and the VOC values were in the range of 660–680 mV, when measured under standard AM 1.5G illuminations at 
50 mW cm−2. After aging the devices under full sunlight intensity at 60 °C, the changes in the JSC values observed 
were minor compared to the decrease in the VOC values. After light-soaking treatment, a decrease in VOC of 36, 
24, and 22 mV was observed for devices I, J, and K, respectively (Fig. 2). The drop in VOC is in agreement with the 
changes observed in the dark current of the devices during the light-soaking tests (Fig. 3). In general, the aged 
devices show a higher dark current compared to the freshly prepared devices, presumably originating from a lower 
recombination resistance or from a downward shift in the TiO2 conduction band14.

Electrochemical impedance spectroscopy (EIS) studies were undertaken to help understand the changes in 
the photovoltaic parameters of devices I, J and K during the extended light-soaking treatment. EIS measurements 
give direct access to information regarding the charge transfer resistance of the TiO2/dye/electrolyte interface, the 
transport resistance for electrons in the mesoporous TiO2, and the chemical capacitance from the filling of trap 
states in the mesoporous metal oxide. EIS investigations were performed in the dark on devices I–K. The EI spectra 

Figure 3. Dark current characteristics of the devices (A = device I, B = device J, C = device K). Red 
corresponds to the initial state and blue shows the aged dark current curve.
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were fitted according to the transmission line model15–17. The apparent electron lifetime (τ n) and transport time 
(τ trans) were estimated using the transport and recombination resistance, Rtrans and Rct respectively, in conjunction 
with the chemical capacitance (Cchem) of the TiO2 (τ n =  Rct ×  Cchem and τ trans =  Rtrans ×  Cchem)15–17.

The main parameters (charge transfer resistance, charge transport resistance and chemical capacitance of the 
mesoporous TiO2 film) extracted from the Nyquist plots by the transmission line model for devices I, J and K are 
presented in Fig. 4. After aging, a shift in the chemical capacitance of approximately 36, 35, and 37 mV is observed 
in devices I, J, and K, respectively (Fig. 4). These values indicate a shift in the conduction band edge of the TiO2 
and are close to the observed differences in the VOC before and after aging.

Plotting the electron lifetime τ n against the chemical capacitance (to rule out the shifts in the conduction band 
of different devices and compare the recombination properties at a similar charge density) the main feature that 
changes the VOC is the shift of the TiO2 conduction band (Fig. 5). For device I there is not much difference in the 
electron lifetime during the aging process. The electron lifetime increases slightly in devices J and K when aged, 
further reducing the loss of voltage due to a downward shift of the conduction band. Thus, the main change in 
VOC originates from the conduction band shift, which is partly compensated for in devices J and K by the increase 
in electron lifetime. While the length of the alkyl chain on the triazolium cation does not appear to significantly 
influence the position of the conduction band, a longer chain length does seem to favor longer electron lifetimes.

Discussion
The triiodide diffusion coefficients of each electrolyte, as determined by cyclic voltammetry, confirm our hypothesis 
that addition of 50 vol % sulfolane to solvent-free eutectic ionic liquid electrolytes results in the lowering of their 
overall viscosity, in some cases by up to 6 times. This is desirable for efficient electron transfer kinetics within the 

Figure 4. Main parameters from the EIS analysis (A = device I, B = device J, C = device K). The 
recombination resistance (Rct) clearly mirrors the observed tendencies of the dark current. Also, the change in 
the chemical capacitance can be observed.
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device, and contributes to higher device PCEs, which were also observed experimentally. Device B, which contained 
electrolyte E2, gave a power conversion efficiency of 5.5% at full sun, while device F, which contained electrolyte 
ES2, gave a power conversion efficiency of 6.3% at full sun. This represents a 14.5% improvement when going from 
the solvent-free eutectic ionic liquid electrolyte system to the ionic liquid-sulfolane composite electrolyte system. 
Dilution of the ionic liquid-based electrolytes with sulfolane is therefore a simple and straightforward method to 
reduce overall device costs while improving device performance.

Long-term stability tests performed on DSCs containing the novel triazolium ionic liquid-sulfolane composite 
electrolytes showed that the sulfolane-based systems are in fact very robust, retaining more than 95% of their initial 
PCE after 1000 hours of continuous light- and heat-stress (devices I and J).

In conclusion, we have developed novel triazolium ionic liquid-sulfolane composite electrolytes for applica-
tion in dye-sensitized solar cells. Devices employing these new electrolytes exhibit very good power conversion 
efficiencies and device stability, comparable to existing benchmarks.

Methods
Reagents and materials. 1,3-dimethylimidazolium iodide (DMII) was purchased from Merck. The C106 
dye, dineohexyl bis-(3,3-dimethyl-butyl)-phosphinic acid (DINHOP), and the bicyclic triazolium ionic liquids 
used were prepared as reported earlier7,18,19. Sulfolane (99%) was purchased from Aldrich and distilled before use. 
All other reagents were obtained from commercial sources and used as received.

Photovoltaic device fabrication. Dye-sensitized solar cells were fabricated using a double-layered photo-
anode made of mesoporous TiO2 as reported earlier7. Prior to use the photoanodes were briefly sintered again and 
after cooling to 80 °C immersed for 16 h at room temperature in a 0.3 mM C106 dye solution in 10% DMSO and 
tert-butanol:acetonitrile (1 :1 v/v) with DINHOP as a co-adsorbent, the molar ratio of dye to DINHOP being 4:1. 
The dye-loaded substrates were then rinsed with acetonitrile, dried and subsequently sealed with pieces of thermally 

Figure 5. Electron lifetime of the fresh (red) and aged (blue) devices (A = device I, B = device J, C = device K). 
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platinized (a drop of 8 mM hexachloroplatinic solution in 2-propanol, heated to 425 °C) FTO glass (TEC15, 
Pilkington), which served as a counter electrode. 25-μ m-thick Surlyn (Dupont) was used as a binder and a spacer. 
The electrolytes were introduced into the cells via pre-drilled holes in the counter electrodes. The ionic liquid-based 
electrolytes had the following general composition: DMII/GNCS/NMB/IL-1/IL-2/I2 (6 : 0.33 : 1.74 : 6:8 : 1.2 by mol, 
DMII =  1,3-dimethylimidazolium iodide, GNCS =  guanidinium thiocyanate, NMB =  N-methylbenzimidazole, 
IL-1 =  BT-C1+I–, IL-2 =  BT-C1+TCM–). Four different electrolytes were prepared, differing in the length of the 
alkyl chain on the cations in IL-1 and IL-2, from C1 to C4, giving electrolytes E1–E4. To obtain the sulfolane-based 
electrolytes, ES1–ES4, 50 volume % of sulfolane was added to E1–E4, respectively.

Photovoltaic measurements and accelerated aging tests. An AM 1.5 solar simulator equipped with 
a 450 W Xenon lamp (Oriel, USA) was used for all photovoltaic measurements. To obtain the I–V curves, an exter-
nal bias was applied to the cell and the generated photocurrent was measured with a Keithley model 2400 digital 
source meter. All devices were masked to attain an illuminated active area of 0.159 cm2. For the accelerated aging 
tests, the devices were placed under continuous full sun illumination (100 mW cm−2) at 60 °C, in the presence 
of a UV cut-off filter. The devices were kept under open circuit conditions throughout the experiment, and were 
periodically removed for measurements.

Electrochemical impedance spectroscopy (EIS) measurements. EIS measurements were performed 
with a BioLogic SP300 potentiostat providing a voltage modulation of 15 mV in the desired frequency range 
(1 MHz to 0.1 Hz). The EIS measurements of the devices made for the determination of the diffusion coefficient 
were performed at 0 V. Z-view software (v2.8b, Scribner Associates Inc.) was used to analyze the impedance data 
on the basis of Randles circuit. The impedance spectra of the measured devices were recorded at bias potentials 
varying from 0 to 750 mV in 50 mV steps. The impedance spectra of the DSCs were analyzed on the basis of the 
transmission line model15–17.
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