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CellMethy: Identification of a focal 
concordantly methylated pattern 
of CpGs revealed wide differences 
between normal and cancer tissues
Fang Wang1,*, Shaojun Zhang1,*, Hongbo Liu1, Yanjun Wei1, Yihan Wang1, Xiaole Han1, 
Jianzhong Su1, Dongwei Zhang2, Baodong Xie3 & Yan Zhang1

DNA methylation patterns may serve as a key in determining cell phenotypes and functions. Adjacent 
CpG patterns may provide insight into methylation functional mechanisms. Some regions display 
different DNA methylation patterns between normal and cancer tissues, but the same average 
methylation level. Here, we developed a method (CellMethy) to infer a region in which all CpGs exhibit 
concordant methylation (CM) and to quantify the extent of CM in the region. Using simulation data, 
CellMethy showed high performance in discovering the concordant methylation patterns (AUC = 0.89). 
CellMethy was then applied to RRBS data including 11 normal tissues and 12 tumors. We found that the 
extent of CM exhibited wider differentials among tissues than did the average methylation levels from 
the CM regions, with 45% of CM regions occurring specifically in one tissue and mainly in tumors. Then, 
we identified CM regions through genome wide bisulfite sequencing (GWBS) data on breast cancer. 
Approximately 82% of CM regions revealed a significantly different extent of CM between cancer and 
normal tissues. CellMethy can accurately describe concordantly methylated regions, and the results 
suggest that CM might also serve as a stable marker of cell sub-populations.

Genomes of multiple species are tagged by epigenetic markers, including the methylation of cytosine within DNA. 
DNA methylation is one of the most important epigenetic modifications and plays important roles in germline 
development1,2, embryogenesis3, and somatic differentiation4–6. Methylation modifications throughout the genome 
are referred to as the ‘methylome’7. DNA methylation has been shown to occur in both regional and preserved local 
activity states, such as during gene transcription8. DNA methylation patterns may serve as a key in determining 
cell phenotypes and functions. Recently, a large number of studies have identified numerous differential regions 
based on average methylation levels across tissues9–11. In addition, many cancer-related hyper-methylated and 
hypo-methylated regions have been found10,12–14, and several onco- and tumor-suppressor genes frequently alter 
epigenetic states in tumors15. However, DNA methylation patterns are highly divergent among various cell types, 
especially comparing tumor and normal cells16–18. Unlike the genomic DNA sequence, the epigenome is variable 
among tissues/cells even from the same individual19. There are at least as many methylomes as cell types, and 
fluctuations occur within a single cell according to cellular and environmental conditions20. DNA methylation 
patterns within a cell population from somatic tissue are highly heterogeneous and polymorphic21. Currently, 
more high-throughput sequencing data are available, which make possible to observe each methylation pattern 
in cell populations.

Although average DNA methylation levels have proven their powers, the mechanism of underlying different 
methylation patterns remains poorly understood. Some studies have observed that adjacent CpGs within a region 
exhibit co-methylation states, especially within CpG islands (CGI)22,23. The methylation patterns of adjacent CpGs 
may provide insight into methylation functional mechanisms. Different methylation patterns within a cell popu-
lation may result in an identical average methylation level of the region but represent the outcomes of markedly 
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different epigenetic mechanisms. We have termed the adjacent concordantly methylated CpG patterns in a region 
focal concordantly methylated patterns.

Here, we aimed to identify concordantly methylated patterns of adjacent CpGs using high-throughput, 
single-base-resolution DNA methylation data. Adjacent CpGs within a region tend toward co-methylation, and 
the aberrance of concordant methylation between adjacent CpGs in specific regions is often invoked as a direct 
driver of the carcinogenic process. Therefore, we focused on the focal concordant methylation of adjacent CpGs. A 
computational approach (CellMethy) was developed to identify regions containing concordantly methylated DNA 
(CM region, CMR) and to quantify the extent of genomic regions that share a common concordant methylation 
status. Tthe methylation status in each sequence read, called an epiallele21, can be regarded as a representation of 
the “haplo-methy-type” in each cell. The ratio of concordant methylation “haplo-methy-type” can be estimated as 
a novel biomarker representing the cell sub-population. CellMethy can be used to analyze methylation patterns 
in mixed cell populations, including tumor cells; may be beneficial in exploring cell subpopulations with unique 
DNA methylation patterns and can be regarded as a biomarker representing a cell subpopulation.

Results
Overview of CellMethy. CellMethy was developed to identify CMR and quantify its extent in a cell popu-
lation based on single-base-resolution DNA methylation data. The region shown in Fig. 1A, displayed different 
DNA methylation patterns but the same average methylation level (0.55), upon comparing the cell populations. 
However, the quantization of the CMR is great enough to reflect the differential methylation patterns between cell 
populations (CM fraction =  0 vs. 0.49). Therefore, it is very important to accurately assess DNA methylation in a 
cell population, as different DNA methylation patterns may result in differential epigenetic regulation mechanisms, 
driving multiple cell phenotypes.

A brief overview of CellMethy is outlined in Fig. 1B. First, the reference genome was divided into small win-
dows based on the number of CpGs after sequencing reads were mapped to the reference genome. Starting from 
the sliding window, the CellMethy algorithm claimed that all CpGs in the window were commonly covered by at 
least 10 sequencing reads. The fraction of reads in which all CpGs were concordantly methylated was calculated 
(CM fraction). Second, the hot spot was selected as the location in which the CM fraction was the highest in the 
neighborhood. We extended the hot spot to both sides of the window until the CM fraction equaled zero or the 
distance between two adjacent windows was greater than 100 bp. Lastly, CMRs were determined and quantified 
based on the definite integral strategy (see Methods).

Identification and assessment of CMR in simulation data. Simulation datasets with four different 
coverage depths (10× , 20× , 50× , and 100× ) were used to estimate parameters, including the length of the sliding 

Figure 1. Outline of CellMethy. (A) Diagram of concordant methylation in cell. Balls indicated by blue 
shading represent individual cells from the tissue. Filled and empty circles represent methylated and 
unmethylated CpGs, respectively. Rows represent methylation patterns of each sequencing read. The regions in 
different somatic tissues showed similar average methylation levels (55%) but different methylation patterns. 
CM fractions represent the extent of concordant methylation of adjacent CpGs in the region. (B) Flowchart of 
identification and quantification of CMR. Empty circles represent CpGs in the human genome. Blue empty bars 
represent sequencing reads, in which red and gray represent methylated and unmethylated states corresponding 
to the genome CpG. Scatter points in the fitting curve represent the CM fraction of sliding windows, the 
horizontal axis represents the physical position of the genomem, and dx and dy represent the physical distance 
of two adjacent siliding windows.
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window and the coverage depth. The state of each CpG site in each simulation dataset was generated randomly 
(random methylated data) or identically to the state of the adjacent CpG (concordantly methylated data) (see 
Methods). With the size of sliding windows ranging from 2 to 10 CpGs, CMRs were identified in both random 
and concordantly methylated simulation data. We found that the characteristics of CMRs, including the number of 
regions (Supplementary Figure 1), number of CpGs (Supplementary Figure 2), and CM fraction (Supplementary 
Figure 3), did not vary with coverage depth. However, the characteristics did vary with sliding window size. CM 
was significantly different between the random and concordantly methylated data when the sliding window length 
was greater than 4. Moreover, the probability distribution of the CM fraction was similar to the theoretical uniform 
distribution in random methylated data but similar to the bimodal distribution in concordantly methylated data. 
Thus, the sliding window length and the least coverage depth were defined as 5 and 10×  in the following analysis, 
respectively.

The power of CellMethy in identifying concordant methylation patterns compared to average methylation levels 
was measured through simulation data. A methylation value randomly selected from 0.1 to 0.9 was considered the 
theoretical value of each region. CM (positive) and random methylation (negative) were simulated based on the 
theoretical value, and replication was randomized 1000 times. Both the CM fraction and the average methylation 
levels were estimated in each region. The theoretical value of each region in the positive set was regarded as the true 
CM fraction. As shown in Fig. 2A, the area under the receiver operating characteristic curve (AUC) of CellMethy 
was 0.89, which can accurately distinguish between concordant and random methylation patterns. When average 
methylation levels were used as the distinguishing indicator, the AUC value was 0.50, corresponding to the power 
of random prediction. Moreover, the predicted values of the CM fraction were highly correlated with the true value 
(R2 =  0.88, Fig. 2B). Above all, CellMethy not only showed high performance in distinguishing the concordant 
methylation pattern, but also accurately estimated the extent of CM in a cell population.

Concordantly methylated patterns are characteristic across cells/tissues. We applied CellMethy 
to RRBS data downloaded from the Encode Project including 11 normal cells/tissues and 12 tumors. The lengths 
of CMRs identified in normal cells/tissues were similar, especially H1 ESC, which showed the highest CM extent 
among normal cells/tissues (Table 1). We found that the H1 ESC and testis showed an increased CM fraction 
compared to other normal tissues, corresponding to different average methylation levels, especially in the testis, 
which was almost linearly correlated with average methylation levels (Fig. 3A). It has been suggested that meth-
ylation patterns within germline and pluripotent cell populations maintain a stable state but undergo stochastic 
variation processes during subsequent somatic development. Therefore, decreased CM fraction at similar average 
methylation levels were observed in other somatic cells/tissues. This result was consistent with the conclusion of 
epipolymorphism, which was lower H1 ESC and testis21.

Compared to normal cells, tumor cells contained longer CMRs, involved more CpGs, and showed a higher 
CM extent (Fig. 3B). Moreover, the promoter, 5′ -UTR, exon, intron, 3′ -UTR, DNase I hypersensitive sites (DHS), 
CGI, and CpG island shore (CGS) all revealed higher occupancy rates of CMRs in cancer than in normal cells/
tissues. The greatest difference between cancerous and normal cells/tissues was observed in CGI (Fig. 3C). Some 
CMRs were located in DHS and had the lowest CM fraction (Fig. 3D). Due to the inhibition of transcription from 
DNA methylation, regions marking active chromatin and controlling active transcription, such as the promoter 
and DHS, showed an inverse correlation with CM. However, smaller occupancy rates but a higher extent of CMRs 
were located in the CGS compared to the CGI. The CGI shore was associated with the differentiation of tissues 
but had lower CpG density than the CGI. It is implied that a high CM extent located in the CGI shore may be due 
to differences among tissues.

Figure 2. Performance evaluation on identification and quantification of CMRs based on simulation data. 
(A) Receiver operating characteristic curve (ROC) of CMR. Red lines represent the ROC curve of CellMethy 
with the AUC value of 0.89 (CM). Black lines represent the ROC curve of average methylation levels with 
the AUC value of 0.50 (Meth). (B) The correlation between predicted and theoretical values of CM fractions. 
R-square was calculated by linear regression model.
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Combined with average methylation levels, we found that the extent of CM was significantly different between 
normal and cancerous cells, especially in moderately methylated regions (0.2 ~ 0.8) (Fig. 3E, Supplementary Figure 4).  
It is suggested that, compared to normal tissue, adjacent CpGs in moderately methylated regions are more prone 
to co-methylation in cancerous tissue. However, lower correlations of CM fractions were observed among cancers 
than in normal cells/tissues. Moreover, the correlations of CM fractions among cells were lower than the corre-
lations of average methylation levels (Fig. 3F). Interestingly, breast cell lines (MCF) showed global differences in 
CMRs compared to both normal and cancer tissues. This result hinted thatthe focal concordant methylation may 
diverge more among tissues than their average methylation levels, and may be regarded as biomarkers of different 
tissues, especially in cancers.

Thus, the average quantity of CM in normal tissue and the standard deviation within each tissue were calculated. 
As expected, CM showed greater variation than the average methylation levels both in normal and cancerous 
tissues, with the greatest variation observed in cancer (Fig. 4A). Moreover, the average differential degrees of the 
CM fraction between cancerous and normal tissue within the promoter, 5′ -UTR, exon, intron, 3′ -UTR, CGI, 
and CGS were greater than the average methylation levels (Fig. 4B). Distribution of the number of samples that 
shared the same CM or methylation regions revealed that although the vast majority (approximately ~45%) of 
CMRs were methylated in all 23 tissues, more than 45% of CMRs revealed a concordantly methylated pattern only 
in one tissue and were enriched primarily in cancer cells (Fig. 4C), suggesting concordant methylarion is highly 
specific. It is noteworthy that these cancer-specific CMRs were primarily enriched in breast cancer (Fig. 4D). These 
results indicate that the extent of concordant methylation exhibits greater differences among cells/tissues and has 
specificity in cancerous cells. This result suggests that concordant methylation is more likely to be a characteristic 
of the cancer methylome.

Widespread differences in focal concordant methylation between breast cancer and normal 
tissue. CellMethy was also successfully applied to a GWBS dataset including one HCC1954 breast cancer cell 
line (HCC) and one normal primary human mammary epithelial cell line (HMEC) and identified 1723 CMRs in 
total. There were 1093 and 835 CMRs identified in HCC and HMEC, respectively (Supplementary Table 1). The 
number of CMRs in HMEC accounted for less than half of the total CMRs, and the overlaps between cancer and 
normal tissue were less. The median value of the CM fraction was 0.38 in HCC and 0 in HMEC from all 1723 
CMRs, displaying a more significant difference than their average methylation levels (Supplementary Figure 5).

Differential methylation region (DMR) and differential CM region (DCMR) were identified respectively 
through the same criterion which were at least 0.2 differences in average methylation level or CM level. We further 

Sample NO. Length ± SD
NO. 

CG ± SD CM ± SD M ± SD

Normal

H1 ESC 2903 39.6 ±  41.03 6 ±  3 0.65 ±  0.31 0.93 ±  0.29

SF 3533 37.47 ±  38.56 6 ±  2 0.43 ±  0.34 0.78 ±  0.34

HMEC 3316 35.56 ±  33.35 6 ±  2 0.49 ±  0.36 0.70 ±  0.33

SMC 10144 38.09 ±  37.96 6 ±  2 0.19 ±  0.30 0.30 ±  0.36

BL 1 3141 35.74 ±  33.25 6 ±  2 0.52 ±  0.34 0.89 ±  0.27

BL 2 2431 34.85 ±  30.59 6 ±  2 0.43 ±  0.32 0.71 ±  0.28

Pancreas 2790 33.39 ±  30.19 6 ±  2 0.34 ±  0.34 0.51 ±  0.36

Skeleton 3646 36.36 ±  33.75 6 ±  2 0.39 ±  0.35 0.65 ±  0.35

Skin 4702 37.23 ±  37.42 6 ±  3 0.37 ±  0.35 0.52 ±  0.37

Testis 3908 36.99 ±  35.79 6 ±  3 0.34 ±  0.33 0.43 ±  0.36

Uterus 4351 35.88 ±  34.44 6 ±  2 0.37 ±  0.35 0.56 ±  0.37

Normal Mean 4078 36.47 6 0.41 0.63

Cancer

Lung 5347 45.74 ±  52.10 7 ±  3 0.65 ±  0.33 0.76 ±  0.27

Colon 7137 49.85 ±  59.29 7 ±  4 0.64 ±  0.35 0.75 ±   0.36

Endometrium 5019 43.64 ±  49.29 7 ±  3 0.57 ±  0.33 0.77 ±  0.26

Neuroblastoma 5598 45.31 ±  54.19 7 ±  4 0.51 ±  0.35 0.69 ±  0.32

AML 6637 50.35 ±  58.80 7 ±  4 0.62 ±  0.34 0.77 ±  0.30

Cervial 7544 58.87 ±  71.41 8 ±  5 0.69 ±  0.29 0.83 ±  0.24

Liver 6345 50.27 ±  61.54 7 ±  4 0.52 ±  0.33 0.73 ±  0.27

PML 5674 38.12 ±  39.70 6 ±  3 0.41 ±  0.37 0.61 ±  0.35

ACL 4886 39.79 ±  41.56 7 ±  3 0.51 ±  0.35 0.71 ±  0.31

CLL 5156 51.66 ±  62.36 7 ±  4 0.46 ±  0.31 0.70 ±  0.26

Prostate 6541 48.21 ±  57.90 7 ±  4 0.48 ±  0.33 0.70 ±  0.29

Breast 11183 64.08 ±  68.72 8 ±  5 0.63 ±  0.31 0.79 ±  0.28

Cancer Mean 6422 48.82 7 0.56 0.73

Table 1.  Identification of CMRs based on RRBS data from Encode. NO.: The number of CMRs whose CM 
fraction were more than 0, identified from the sample. Length: average length of CMRs corresponding to the 
sample. SD: standard deviation. NO.CG: average number of CGs in CMRs. CM: average CM fraction of all 
CMRs corresponding to the sample. M: average methylation level of each sample.
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identified 1407 DCMRs in HCC, most of which revealed a greater CM fraction in the cancerous cells. On the 
other hand, 506 DMRs were identified with an absolute difference in average methylation levels of more than 0.2. 
Most DMRs revealed hypo-methylation in cancer, which is distinct from differential CMRs (DCMRs). As shown 
in Fig. 5A, approximately 27% of the differential CMRs overlapped with 75% of the DMRs. A large number of 
differential CMRs did not overlap with DMRs, but they showed a significant difference between HCC and HMEC 
(Fig. 5B). These results illustrate that the extent of focal concordant methylation is more distinct between breast 
cancer and normal cells than their average methylation levels. In addition, we found some regions with decreased 
average methylation levels in cancer but increased CM fractions. The number of these regions was higher than in 
cancerous cells whose average methylation levels increased, but whose CM fractions decreased (38 vs. 9, Fig. 5C). 
It is suggested that adjacent CpGs prefer concordant methylation in tumors. Functional enrichment analysis of 
DCMRs revealed that multiple Gene Ontology (GO) functional terms were significantly enriched. Those regions 
exhibiting an increased CM fraction in cancer are associated with more functions, such as molecular function 
regulation, cell death regulation, phosphate metabolic processes, and intracellular signaling cascades. In addition, 
regions with an increased CM fraction in cancer were significantly associated with the MAPK signaling pathway 
and were up-regulated in normal epithelial cells (Fig. 5D). Together, the extent of concordant methylation was 
larger in tumors than in normal tissue and seems to reflect a dynamic mechanism of methylation that drive the 
formation of tumor cells.

Further analysis of genes associated with breast cancer, including ABCB1, BRCA1, GSTP1, IGF2, and TERT, 
showed a high CM fraction in cancer but non-CM in normal cell lines (Fig. 5E). ABCB1, BRCA1, GSTP1, and IGF2 
displayed both an increased CM fraction and hyper-methylation in cancer. It is interesting that TERT exhibited 
higher CM in cancer than normal tissue (0.27 vs. 0) but a lower average methylation level (0.53 vs. 0.65). TERT, 
normally repressed in postnatal somatic cells, plays a role in cellular senescence by the progressive shortening 
of telomeres, and its decreased expression in somatic cells may play a role in oncogenesis. Consistent with this 
result, the expression of TERT is suppressed in breast cancer, as assessed by quantitative polymerase chain reac-
tion (q-PCR)24, but no studies have shown variations of TERT DNA methylation in breast cancer. In our study, 
we found that a CGI within TERT showed a significantly differential CM fraction between cancerous and normal 
cells (absolute difference =  0.27), significantly higher than the difference of average methylation levels (absolute 

Figure 3. Characteristics of CM. (A) The relationship of CM fractions and average methylation levels in 
normal tissues is shown in Table 1. The maximum CM and CM of random methylation trends were computed 
using simulated data of concordant and random methylation pattern (methylation levels from 0.1 to 0.9), 
respectively. (B) Probability density distribution of average CM fraction from cancer and normal tissues, 
respectively. (C) Occupancy rates of CMRs in promoter, 5′ -UTR, exon, intron, 3′ -UTR, DHS, CGI and CGS. 
Box figure represents the degree of difference in occupancy rate between cancer and normal cells in each region. 
Notably, the occupancy rate of CGI in cancer was more than 1 because the length of some CMRs in CGI was 
longer than the CGI. (D) Average values of CM fraction of cancer and normal cells in promoter, 5′ -UTR, exon, 
intron, 3′ -UTR, DHS, CGI and CGS. (E) The relationship between CM fractions and average methylation levels 
in normal and cancer cells, respectively. (F) Heat map of correlation of CM fraction or average methylation 
levels among tissues.
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difference =  0.12) that was not identified as a DMR based on the absolute difference cutoff (0.2). Although TERT 
showed a higher average methylation level in normal, adjacent CpGs of the CGI within TERT preferentially showed 
concordant methylation in cancer cells but a random methylated pattern in normal cells. Variation in the concord-
ant methylation pattern rather than average methylation levels of TERT may lead to deregulation of expression. 
Thus, we propose that focal DNA concordant methylation can more accurately reflect phenotype regulation than 
average methylation levels, which may drive the variation in cell phenotypes.

Discussion
In this study, bisulfite sequencing data (BS-Seq) have been reanalyzed at the read level instead of by average meth-
ylation. We developed a method (CellMethy) to systematically identify the region in which adjacent CpGs are 
concordantly methylated and to quantify the extent of concordant methylation. Through CellMethy, we have ana-
lyzed different methylation datasets and found distinct methylation patterns across cancers. The cancer methylome 
generally exhibits a larger extent of concordantly methylated pattern than the normal methylome. Moreover, the 
CM extent showed greater variability than the average methylation levels among tissues/cells. In particular, approx-
imately half of CMRs were specific to a single tissue/cell, especially cancerous ones. Of course, this finding is only a 
preliminary insight from our observation that needs to be studied in more cancerous and normal methylomes. In 
addition, we identified DMRs and DCMRs based on the same criterion in the GWBS data of breast cells. We found 
that 27% of DCMRs overlapped with DMRs and accounted for 75% of DMR, in which 88% regions had the same 
change directions in average methylation and CM levels. For the regions with opposite change directions between 
DMRs and DCMRs, the overlaps of hypo-DMRs and H-DCMRs were greater than the overlaps of hyper-DMRs 
and L-DCMRs (38 vs. 9). The remaining 25% of DMRs were not DCMRs, and two-thirds showed a reduction of 
average methylation levels in cancer. Although the difference of CM fraction in the remaining 25% of DMRs was 
not more than 0.2, two-thirds of regions showed a slightly higher CM fraction. The phenomenon that hypo-DMRs 
exhibited a higher CM fraction suggested that adjacent CpGs might prefer concordant methylation in tumors.

Although CellMethy infers CMRs based on BS-seq data, it is different from some DMR detection tools such as 
BSmooth25. DMR detection tools usually identify DMRs between two types of samples, e.g., normal and cancer, 
through a comparison of average methylation level. A majority of DMRs may bury the differential methylation 
pattern. However, the opposite is not always true. There are a large number of regions with different methylation 
patterns showing similar average methylation levels among different samples that reflect different epigenetic regu-
latory mechanisms. We focus on the region that shows a concordant methylation pattern of all CpGs and quantify 

Figure 4. Divergence and specificity of CM. (A) Standard deviations of each tissue from average value of all 
normal tissues/cells. Blue represents the standard deviations of methylation levels. Red represents the standard 
deviations of CM fractions. (B) Differential degree between normal and cancer cells in promoter, 5′ -UTR, exon, 
intron, 3′ -UTR, DHS, CGI and CGS regions. Dark red represents the differential degree of CM fractions, while 
light red represents the differential degree of methylation levels. (C) Distribution of the number of samples that 
shared the same CM or methylation regions. Blue represents CMRs with methylation levels greater than 0, and 
red represents a CM fraction greater than 0. (D) Distribution of CMRs (%) among somatic tissues. Normal 
represents all normal tissues/cells; others represent each cancer.
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Figure 5. DCMRs of breast cancer from GWBS data. (A) DCMRs and DMRs. (B) Differential degree of  
CM fractions and average methylation levels in CMRs. The dotted line represents the cutoff of variance.  
(C) Overlap between differential CM and methylation regions. H(L)-DCMR represents higher (lower) CM 
fractions in cancer than normal cells, and Hyper(Hypo)-DMR represents higher (lower) average methylation levels 
in cancer than normal cells. (D) Enrichment analysis of DCMRs that did not show differential methylation levels. 
Red represents functions enriched in H-DCMRs, green represents functions enriched in L-DCMRs, and purple 
represents functions enriched in both H-DCMRs and L-DCMRs. (E) An example of CM patterns from TERT, 
ABCB1, GSTP1, IGF2 and BRCA1 that were associated with breast cancer in previous studies. The gray rectangle 
corresponding to each gene represents the genomic position. Vertical lines represents the locations of CMRs, and 
arrows represents the transcriptional direction of each gene. Purple histograms represents the average methylation 
level of each CpG in CMR from sequencing reads. Heat map shows methylation state of each CpG in sequencing 
reads in HCC1954 (left, cancer) and HMEC (right, normal). Red is methylated and gray is unmethylated.
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the extent of concordant methylation in a single sample. MethylPurify is a statistical algorithm that uses sequencing 
reads showing discordant methylation levels to infer tumor purity from tumor samples26. This algorithm focuses 
on the heterogeneity between tumorous and normal cells and infers tumor purity from tumor samples based on 
the assumption that tumor tissues often contain normal cells. Sequencing data from a tissue are frequently het-
erogeneous due to being composed of various cells. We focused on the heterogeneity of methylation patterns in 
both tumor and normal cells, further identifying the regions or markers that can reflect the proportion of tumor 
cells showing a specific methylation pattern.

Each cell population, especially in a tumor, may contain multiple cell subpopulations, which could have tre-
mendous therapeutic implications. There are existing clinical therapies that may target the most prevalent cells 
but do not complement all cellular sub-types contained within the population, so the tumors always come back. 
To optimize therapy, differential drugs and operation methods should be adopted according to the composition 
of tumor cells. Human cancers harbor epigenetic alterations, such as DNA methylation, that can be dynamically 
altered. Moreover, some regions of the promoter have shown methylation heterogeneity within individual met-
astatic tumors27. The heterogeneity of DNA methylation may contribute to the heterogeneity of cells from the 
same cell type. Landan et al. found that regional DNA methylation patterns within a cell population from the 
same cell type were highly polymorphic, both in normal and tumorous cells21. They observed reduced levels of 
epipolymorphism in testicular and H1 ESC populations, which were dominated by completely methylated or 
unmethylated patterns compared with other somatic cells. We obtained similar results in testicular and H1 ESC 
populations, which revealed increased levels of CM compared with other somatic cells. In addition, Landan et al. 
found that the epipolymorphism of cancer was lower than normal control samples in hypermethylated regions but 
similar in hypomethylated regions. Although the distribution of methylation patterns was not further explored 
in hypomethylated regions, the frequency of concordantly methylated pattern is increased in hypermethylated 
regions with an average methylation level of 60–70%. The results were partial agreement with our observation that 
higher differences were observed between cancer and normal cells in the moderately methylated regions (0.2 ~ 0.8).

There are many DNA methylation patterns within a cell population, and we did not infer the fractions of all 
methylation patterns in a cell population. A concordantly methylated pattern of adjacent CpGs was selected because 
local hyper-methylation is one of the primary features of the cancer epigenome. Although we only focused on 
the concordantly methylated pattern, CellMethy can be applied to other methylation patterns to further explore 
the constituents of cells. This method may further understanding of the dynamic changes in DNA methylation 
patterns during the development and differentiation of cells, and potentially target a specific cell subpopulation 
to support personalized cancer therapy.

Methods
Data and processing. Three datasets of DNA methylation were downloaded from the Encode (http://genome.
ucsc.edu/ENCODE/) and SRA databases (http://www.ncbi.nlm.nih.gov/sra/). The Encode datasets included DNA 
methylation data on 11 normal and 12 cancer samples through the RRBS technique, including samples of embry-
onic stem cells (H1 ESC), skin fibroblasts (BJ), mammary epithelial cells (HMEC), skeletal muscle cells (Hsmm), 
B-lymphocytes (Gm12891, Gm12892), pancreas, skeleton, skin, testis, uterus, lung cancer (A549), colon cancer 
(Hct), endometrial carcinoma (Ecc1), neuroblastoma (Be2c), acute megakaryocytic leukemia cells (Cmk), cervi-
cal carcinoma (Helas), hepatocellular carcinoma (Hepg2), promyelocytic leukemia cells (Hl60), T cell leukemia 
(Jurkat), leukemia (K562), prostate cancer (Lncap), and breast cancer (Mcf). GWBS data were downloaded from 
the SRA database (accession no. SRP006728), including HCC and HMEC as a control. A human reference genome 
was downloaded from Ensemble (HG19). All short sequence fragments from the three datasets were aligned to the 
human reference genome through bismark respectively. If there were multiple replicates in one tissue, all sequence 
fragments were merged, and the DNA methylation status of CpGs from each read was determined.

CellMethy algorithm. To identify and quantify concordant methylation regions using single-base resolution 
DNA methylation data, every read resulting from the DNA methylation data was regarded as representative of a 
methylation state or epiallele. All reads mapping to a CpG represented a mixture of methylation patterns in a cell 
population. The method began with sliding windows: the window size was defined from 2 to 10 CpGs, and the 
sliding step was one CpG. Common reads that covered all CpGs in a window were first identified, suggesting that 
the distance of adjacent CpGs in the window was no more than the length of bisulfite sequence fragment. That 
is to say, the distance of adjacent CpGs in the window was no more than 100 bp because the length of reads from 
RRBS data was usually ~100 bp. If the number of common reads was more than 10, we calculated the fraction of 
reads (f) that showed methylation for all CpGs in a window from common reads. Scanning the genome from 5′  
to 3′ , the f value of each window was obtained from each sample in the three datasets. The window containing the 
highest f value in the neighborhood was considered the hot point. We extended the hot spot to both sides of the 
window and computed the integration of the f value (I) as follows, until either dx or dy was greater than 100 bp or 
the f value equaled 0:

∫ ∫= +
( )

I fdx fdy 1x y

If the region after extension is from a to b (Fig. 1), then I satisfies the following equation:

∫ ∫ ∫= + = ( )
( )

I fdx fdy f p dp 2x y a

b

Assuming the maximum value of f is M, and the minimum value is m in the interval [a, b], then
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( − ) < < ( − ) ( )m b a I M b a and 3

<
( − )

<
( )

m I
b a

M
4

With the assumption that f(p) is a continuous function on [a, b], the value between m and M can be reached, i.e., 
ξ  exists that satisfies

∫ ζ= ( ) = ( )( − ) ( )I f p dp f b a 5a

b

The mean area covered by f on the interval [a, b] is equal to the area of a rectangle with edge lengths of (b − a) 
and ξ( )f . Thus, ξ( )f  is considered the average size of a cell subpopulation showing full methylation, and is defined 
as the CM fraction

∫ ∫
ξ( ) =

( − )
=

+

( )
f I

b a

fdx fdy

length 6
x y

Simulation data. To determine the appropriate window size, we simulated two datasets that included both a 
random methylation pattern and a concordant methylation pattern based on genome position and the DNA meth-
ylation levels of all CpGs from RRBS data (Bj). A flowchart of the simulation is shown in Supplementary Figure 6.  
Four different coverage depths (10-, 20-, 50- and 100-fold) were simulated, and the read length was 100 bp. The 
genome was scanned from 5′  to 3′ , and the initial CpG (CpG0) and its methylation level were determined. If the 
distance between CpGi (i =  0, 1, 2, ……) and CpGi+1 was greater than 100 bp, CpGi+1 was considered a new initial 
CpG. All reads covering each CpG were allocated to two sets, RS and RC. RS includes the reads that do not cover 
the next CpG, and RC includes the reads that are shared with the next CpG. The methylation state was determined 
as 0 or 1, representing unmethylated or methylated, respectively.

Beginning from the initial CpG0 site, the relative position of each read was randomly generated and ranged from 
1 to 100. The methylation state of CpG0 was simulated according to the methylation level. Meanwhile, RC and RS 
were determined by the relative position of CpG0 and the distance between CpG0 and CpG1. Then, the methylation 
state of CpG1 on each read from RC was simulated. For random methylation simulation data, the methylation state 
of each read in RC was randomly generated based on the methylation level of CpG1. For concordant methylation 
simulation data, the methylation state of each read in RC was the same as for CpG0. Reads in RC and RS were 
updated according to the distance between CpG1 and CpG2. In a similar manner, all CpGs in the genome were sim-
ulated. If the number of total reads of RC and RS in CpGi was less than the defined coverage depth, new reads were 
generated and allocated to RC or RS according to the relative position of CpGi and the distance between CpGi and 
CpGi+1. When the relative position of CpGi in the new read minus the distance between CpGi and CpGj (j =  i − 1, 
i − 2, …, 0) was greater than or equal to zero, the methylation state of CpGj was simulated through the previous rule.

Accuracy evaluation of CellMethy. To evaluate the performance of CellMethy, we simulated 1000 random 
and concordant methylation regions as negative and positive sets, respectively, with 50-fold coverage depth. The 
number of CpGs in each region was randomly selected (> 5). To control the purity of the negative and positive 
sets, the methylation level of each region was randomly selected from 0.1 to 0.9. For each region, we simulated 
negative data through a random methylation pattern and positive data through a concordant methylation pattern 
(the same as above). In the positive set, the predefined methylation level of each region was considered the true 
level of CM. In addition, the average methylation levels of CMRs were estimated. AUC values were used to measure 
the performance of the algorithm.

Genome region distribution. The position of genes and CpG islands from the human reference genome 
were downloaded from UCSC (HG19). The promoter was defined as 2 kb upstream from the transcription start 
site of each gene. Regions with 2 kb distance from the CGI boundary were considered the CGS. The exon, intron, 
5′ -UTR, 3′ -UTR, promoter, and CGS were extracted using Python. For each genomic region, the occupancy 
rate was calculated from the total length of all CMRs located within the region divided by the total length of the 
corresponding genomic region.

Identification of differential region. The criteria for differential regions including DMRs and DCMRs 
referenced the standard of Landan et al. which required differences of at least 0.221. Therefore, if the region in the 
cancer sample showed an increase or decrease in average methylation of at least 0.2 relative to the matched normal 
sample, the region was regarded as hyper- or hyper-DMR. Similarly, a H-DCMR or L-DCMR was defined as a 
region with at least a 0.2 increase or decrease in CM level relative to the matched normal sample.

Availability. CellMethy is open source and available at https://pypi.python.org/pypi/CellMethy/1.1.27.
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