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MHD Stagnation-Point Flow and 
Heat Transfer with Effects of 
Viscous Dissipation, Joule Heating 
and Partial Velocity Slip
Mohd Hafizi Mat Yasin1, Anuar Ishak1 & Ioan Pop2

The steady two-dimensional stagnation-point flow and heat transfer past a permeable stretching/
shrinking sheet with effects of viscous dissipation, Joule heating and partial velocity slip in the presence 
of a magnetic field is investigated. The partial differential equations are reduced to nonlinear ordinary 
differential equations by using a similarity transformation, before being solved numerically by shooting 
technique. Results indicate that the skin friction coefficient and the local Nusselt number increase as 
magnetic parameter increases. It is found that for the stretching sheet the solution is unique while for 
the shrinking sheet there exist nonunique solutions (dual solutions) in certain range of parameters. 
The stability analysis shows that the upper branch solution is stable while the lower branch solution is 
unstable.

The flow and heat transfer of a viscous (Newtonian) and non-Newtonian fluid past a static flat plate is a classical 
problem and has been studied by many authors (see Schlichting and Gersten1, White2, Pop and Ingham3 and 
Bejan4). It seems that Crane5 was the first who has studied the viscous and incompressible fluid over a stretching 
sheet obtaining a closed form analytical solution. This paper has been extended by different authors taking into 
account different effect, such as, suction/injection, radiation, etc. Further, Miklavčič and Wang6 studied the vis-
cous flow induced by a shrinking sheet. Existence and (non) uniqueness solutions were proven. Exact solutions, 
both numerical and in closed form were obtained. The industrial applications of stretching/shrinking sheets are 
numerous such as aerodynamic extrusion of plastic sheets, the boundary layer along a liquid film, condensation 
process of metallic plate in cooling bath and glass, and also polymer industries, etc. It is worth mentioning here 
that the shrinking sheet flow is essentially a backward flow and it shows physical phenomena quite distinct from 
the stretching sheet flow (Goldstein7).

Flow and heat transfer over a stretching/shrinking sheet near a stagnation point has attracted the interest of 
many researchers. Ishak et al.8 investigated the stagnation-point flow and heat transfer over a shrinking sheet in 
a micropolar fluid. Bachok and Ishak9 studied numerically the stagnation-point flow towards an exponentially 
stretching/shrinking sheet immersed in a viscous fluid. Then, an unsteady two-dimensional flow and heat trasnfer 
of a viscous fluid near a stagnation-point over a shrinking sheet in the presence of time-dependent free stream have 
been analysed by Mahapatra and Nandy10. Suali et al.11 studied the similar problem but with prescribed surface 
heat flux. Next, Chen12 presented the unsteady mixed convection flow over a stretching sheet in the presence of 
velocity and thermal slips near the stagnation-point. The steady stagnation-point flow in the presence of chemical 
reaction past a stretching/shrinking cylinder was done by Najib et al.13. Zaimi et al.14 investigated the flow and heat 
transfer over a stretching/shrinking sheet in a nanofluid and reported the existence of dual solutions for a certain 
range of parameter. Das15 considered a steady two dimensional laminar boundary layer stagnation point flow in a 
micropolar fluid towards a shrinking sheet in the presence of magnetic field. Nandy16 and Lok et al.17, respectively, 
investigated the magnetohydrodynamic (MHD) stagnation point flow past a stretching and shrinking sheets.

The aim of this study is to investigate the effects of viscous dissipation, Joule heating and partial velocity slip of a 
viscous, incompressible and electrically conducting fluid near the stagnation point on a stretching/shrinking sheet 
in the presence of magnetic field near the stagnation point when suction and injection is taken into consideration. 
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A stability analysis is performed to investigate the stability of the dual solutions and thus determine which solution 
is stable and physically realiable.

Problem formulation
Consider a steady two dimensional, electrically conducting viscous and incompressible fluid over a permeable 
stretching/shrinking sheet coinciding with the plane =y 0, and the flow being confined to >y 0. This problem 
also considers the effect of viscous dissipation, Joule heating and partial slip. The flow is generated by the stretching/
shrinking effect along the x-axis. It is assumed that the velocity of the outer (inviscid) flow is ( )u xe , while that of 
the stretching/shrinking is λ ( )u xw  with λ being a positive constant for the stretching sheet and λ a negative con-
stant for the shrinking sheet. The constant applied magnetic field, parallel to the y axis is B0. Also, the surface mass 
transfer velocity is ( )v xw  with ( ) <v x 0w  for suction and ( ) >v x 0w  for injection. Further, it is assumed that the 
surface temperature is ( )T xw , while the constant ambient temperature is ∞T . Under these conditions, the governing 
boundary layer equations are
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The boundary conditions of Eqs. (1)–(3) are
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where u and v are the velocity components in the x and y directions, respectively, T  is the fluid temperature, L is 
the velocity slip length, α is the thermal conductivity, ν is the kinematic viscosity, ρ is the density, C p is the specific 
heat at constant pressure and σ is the electrical conductivity.

In order that Eqs. (1) to (3) admit similarity solutions, we assume that ( ) = ( ) =u x u x a xw e  and 
( ) = +∞T x T bxw

2, where a and b are positive constants. The momentum and energy equations (2) and (3) can 
then be transformed into the corresponding nonlinear ordinary differential equations by the following similarity 
transformation

η ν η θ η η ν= ′( ), = − ( ), ( ) = ( − )/( − ), = / ( )∞ ∞u axf v a f T T T T y a 5w

where prime denotes differentiation with respect to η. Based on Eq. (5), the mass transfer velocity ( )v xw  is given 
by

ν( ) = − ( )v x a S 6w

where S is the constant mass transfer velocity parameter with >S 0 for suction and <S 0 for injection.
Substituting Eq. (6) into Eqs. (2) and (3), we get the following system of nonlinear ordinary differential 

equations:
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where Pr is the Prandtl number, Ec is the Eckert number, M is the constant magnetic parameter and γ is the velocity 
slip parameter, which are defined as
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Physical quantities of interest are the skin friction coefficient C f  and the local Nusselt number Nux, which are 
given by
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Using variables (5), we obtain

θ= ″( ), / = − ′( ) ( )
/ /C f NuRe 0 Re 0 12x f x x

1 2 1 2

where ν= ( ) /u x xRex e  is the local Reynold number.

Stability of solutions
We mention that there are several papers that have performed the stability analysis to determine which solution is 
stable and physically reliable, such as Merkin18, Weidman et al.19, Roşca and Pop20,21, Sharma et al.22 and Mansur 
et al.23. As in these papers, in order to perform a stability analysis, we consider the unsteady problem. Equation 
(1) holds, while (2) and (3) are replaced by
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where t denotes the time. Based on the variables (5), we introduce the following new dimensionless variables:
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so that (2) and (3) can be written as
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and are subjected to the boundary conditions
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To test the stability of the steady flow solution f(η) =  f0(η) and θ(η) =  θ0(η) satisfying the boundary value 
problem (1)–(4), we write

λ

Present Results Aman et al.25 Wang26

Upper 
Solution

Lower 
Solution

Upper 
Solution

Lower 
Solution

Upper 
Solution

Lower 
Solution

− 0.25 1.402241 1.4022 1.40224

− 0.50 1.495670 1.4957 1.49567

− 1.00 1.328817 0 1.3288 0 1.32882 0

− 1.10 1.186680 0.049229

− 1.15 1.082231 0.116702 1.0822 0.1167 1.08223 0.11670

− 1.18 1.000449 0.178361 1.0004 0.1784

− 1.20 0.932473 0.233650

Table 1.  Comparison with previously publish data for the values of f ″(0), when M = 0 and γ = 0 (no slip) 
for shrinking case (λ < 0).
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where ε is an unknown eigenvalue, F(η, τ) and G(η, τ) are small relative to f0(η) and θ0(η). Solutions of the eigen-
value problem (16)–(18) give an infinite set of eigenvalues ε ε< < ...1 1 ; if the smallest eigenvalue is negative, there 
is an initial growth of disturbances and the flow is unstable but when ε1 is positive, there is an initial decay and the 
flow is stable. Introducing (19) into (16) and (17), we get the following linearized problem
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along with the boundary conditions

Figure 1.  Variation of the skin friction coefficient with λ when Pr = 1, Ec = 0.5, S = 2 and γ = 0.1 with 
various value of M. 

Figure 2.  Variation of the local Nusselt number with λ when Pr = 1, Ec = 0.5, S = 2 and γ = 0.1 with various 
value of M. 
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The solutions f(η) =  f0(η) and θ(η) =  θ0(η) of the steady equations (6) and (7) are obtained by setting τ =  0. 
Hence F(η) =  F0(η) and G(η) =  G0(η) in (20) and (21) identify initial growth or decay of the solution (19). In this 
respect, we have to solve the linear eigenvalue problem

ε+ ″ + ″ − ′ ′ − ′ + ′ = ( )‴F f F f F f F MF F2 0 230 0 0 0 0 0 0 0 0
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M λ Upper Solution Lower Solution

0 − 3.2 1.1210 − 1.0269

− 3.25 0.8671 − 0.8104

− 3.3 0.5061 − 0.4864

− 3.32 0.2500 − 0.2451

0.05 − 3.2 1.2201 − 0.9434

− 3.25 0.9682 − 0.7265

− 3.3 0.6119 − 0.4051

− 3.32 0.3663 − 0.1733

0.1 − 3.2 1.3169 − 0.8570

− 3.25 1.0664 − 0.6393

− 3.3 0.7132 − 0.3186

− 3.32 0.4730 − 0.0913

Table 2.  Smallest eigenvalues ε at selected values of λ with various M when S = 2, Ec = 0.5, Pr = 1 and 
γ = 0.1.

Figure 3.  Velocity profiles for different values of λ when M = 0.1, S = 2 and γ =0.1.
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It should be stated that for particular values of Pr and ε, the stability of the corresponding steady flow solutions 
f0(η) and θ0(η) are determined by the smallest eigenvalue ε. As it has been suggested by Harris et al.24, the range of 
possible eigenvalues can be determined by relaxing a boundary condition on F0(η) or G0(η). For the present prob-
lem, we relax the condition that ′ ( ) →F h 00  as η → ∞ and for a fixed value of λ we solve the system (23)–(25) 
along with the new boundary conditions ″( ) =F 0 10 .

Results and Discussion
The system of ordinary differential equations (7) and (8) subjected to the boundary conditions (9) was solved 
numerically using Runge-Kutta Fehlberg method with shooting technique for some values of the governing param-
eters. The computation was carried out until we get the velocity and temperature profiles converge and satisfy the 
far field boundary conditions (9) asymptotically. The numerical calculations were carried out for different values 
of suction/injection parameter S, magnetic parameter M, power law stretching/shrinking parameter λ , Prandtl 
number Pr, Eckert number Ec, velocity slip parameter γ , and their effects on the flow and heat transfer character-
istics are analyzed and discussed.

Table 1 shows the comparison data with those of Aman et al.25 and Wang26 when M =  0 and γ  =  0 for shrinking 
case (λ  <  0). The stated data clarify the good agreement with the previous data which support the validity of our 
numerical results.

Figure 4.  Temperature profiles for different values of λ when M = 0.1, Pr = 1, Ec = 0.5, S = 2 and γ = 0.1. 

Figure 5.  Temperature profiles for different values of Pr when M = 0.1, λ = −0.5, Ec = 0.5, S = 2 and 
γ = 0.1. 
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Figures 1 and 2 respectively show the variation of the skin friction coefficient CfRex
1/2 and the local Nusselt 

number Nux/Rex
1/2 (heat transfer rate at the surface) for different values of the magnetic parameter M. These figures 

show that a unique solution exists for equations (7) and (8) with the boundary conditions (9) for the stretching 
case, dual (upper and lower branch) solutions are found for the shrinking case up to a critical value λ ( < )0c , and 
no solutions exist for λ λ< c. These values of λc are stated in Figs 1 and 2, which show that increasing the magnetic 
parameter M is to increase the range of λ for which the solution exists. The skin friction coefficient and the heat 
transfer rate at the surface increase as the magnetic parameter M increases.

To test the stability of the dual solutions, the stability analysis was performed to find the eigenvalues ε  (see 
Eq. (19)). If the smallest eigenvalue is positive, there is an initial decay and the flow is stable; while if the smallest 
eigenvalue is negative, there is an initial growth of disturbances and the flow is unstable. The smallest eigenvalues 
ε  for selected values of λ  are shown in Table 2. The results indicate that ε  is positive for the upper branch solution 
and negative for the lower branch solution. So, the upper branch solution is stable and physically reliable, while 
the lower branch is not.

Figures 3 and 4 present the velocity and temperature profiles for different values of λ  when M =  0.1, Pr =  1, 
Ec =  0.5, S =  2 and γ  =  0.1. From the figures we can see that the boundary layer thickness for the lower solution is 
thicker compared to upper solution. For a particular value of parameter, there exist two different profiles as pre-
sented in Figs 3 and 4, and thus supports the existence of dual solutions in Figs 1 and 2. Figure 5 shows the tem-
perature profile for different values of Pr when the other parameters are fixed. It is seen that the temperature 
gradient at the surface increases as Pr increases, thus increase the local Nusselt number (heat transfer rate at the 
surface). This is because increasing Pr will cause the increasing of viscosity, then reduces the thermal conductivity, 
and thus θ− ′( )0  increases (Ishak et al.27). All velocity and temperature profiles approach the far field boundary 
conditions asymptotically which support the validity of the numerical results presented in Figs 1 and 2.

Conclusion
We have numerically investigated how magnetic parameters influence the effects of viscous dissipation, Joule 
heating and partial velocity slip. The skin friction coefficient and heat transfer rate at the surface increase as mag-
netic parameter M increases. It was found that there exist dual solutions for the shrinking sheet while only unique 
solution for the stretching sheet. The stability analysis showed that there is an initial decay for the upper branch 
solution while there is initial growth of disturbance for the lower branch solution. Thus the upper branch is linearly 
stable and physically reliable while the lower branch solution is not.
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