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An integrated network of 
Arabidopsis growth regulators and 
its use for gene prioritization
Ehsan Sabaghian1,2, Zuzanna Drebert1,2,†, Dirk Inzé1,2,* & Yvan Saeys1,2,3,4,*

Elucidating the molecular mechanisms that govern plant growth has been an important topic in 
plant research, and current advances in large-scale data generation call for computational tools 
that efficiently combine these different data sources to generate novel hypotheses. In this work, we 
present a novel, integrated network that combines multiple large-scale data sources to characterize 
growth regulatory genes in Arabidopsis, one of the main plant model organisms. The contributions 
of this work are twofold: first, we characterized a set of carefully selected growth regulators with 
respect to their connectivity patterns in the integrated network, and, subsequently, we explored 
to which extent these connectivity patterns can be used to suggest new growth regulators. Using a 
large-scale comparative study, we designed new supervised machine learning methods to prioritize 
growth regulators. Our results show that these methods significantly improve current state-of-the-art 
prioritization techniques, and are able to suggest meaningful new growth regulators. In addition, the 
integrated network is made available to the scientific community, providing a rich data source that 
will be useful for many biological processes, not necessarily restricted to plant growth.

Size control of multi-cellular organisms poses a longstanding biological question that has fascinated sci-
entists from every time and generation. Currently, the mechanism behind size measurement and fixation 
during growth of an organ or organism is far from being resolved, essentially because of its complex, 
integrated nature of regulation at the cellular, tissue, organ and whole-organism level1–3. Due to the 
importance for food and renewable energy sources, dissecting the genetic networks underlying plant 
growth under both favorable as well as environmentally limiting conditions, is becoming a high priority 
of plant scientists worldwide4,5.

To model plant organ growth, we focus here on leaf growth in Arabidopsis. By using sunlight very 
efficiently as energy source to capture carbon dioxide and to build sugars, leaves have an indispensable 
role in providing ecosystems with energy and chemical building blocks. Leaves also have a pivotal role 
in crop productivity and, therefore, understanding how they grow and reach their final size is of high 
scientific interest. Arabidopsis leaf growth is a well-established experimental system to understand the 
regulatory networks governing organ size control, and during the last decade, numerous genes that reg-
ulate leaf size in Arabidopsis, as well as in other plants, have been identified2,6,7. At the same time, it has 
been recognized that growth regulatory networks are highly complex and involve many components that 
remain to be identified. Current advances in systems biology can significantly contribute to complete 
such networks8.

Within the field of systems biology, gene prioritization techniques refer to a class of computational 
methods that can be used to rank a set of genes with respect to a certain criterion of relevance9. Typically, 
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such criteria concern the involvement in a particular biological process (such as leaf growth) or related-
ness to a certain disease. Whereas many gene prioritization techniques exist in the medical field, usually 
attempting to find novel, disease-related genes, gene prioritization techniques in the plant sciences are 
still in their infancy. Computational strategies for gene prioritization in the medical field can be largely 
divided into two classes: filtering strategies and ranking strategies10. While filtering strategies reduce the 
set of candidate genes by applying filtering steps such as gene function or association status to obtain 
a small set of candidate genes, ranking strategies sort all candidate genes from most promising to least 
promising. The latter category allows for a finer analysis of the candidates, thereby avoiding the use of 
hard thresholds used in filtering strategies.

Ranking strategies can be further subdivided into text mining methods, similarity profiling, and 
network-based methods. Text mining methods typically start from a chosen set of keywords, subse-
quently retrieve the relevant literature, and extract from this the candidate genes that can be linked to 
the keywords. Statistical measures are then used to rank these candidate genes. A major limitation of 
this approach is the fact that only obvious genes will be found, and chances are low to find truly novel 
findings. Similarity profiling combines both knowledge bases and raw data, and uses these to measure 
the similarity of the candidate genes to a set of known genes. Subsequently, data fusion approaches are 
used to combine all similarity scores of all data sources into a global ranking. Finally, network-based 
methods use a network representation to combine all data sources, representing candidate genes as nodes 
and similarities based on different data sources as edges in the network. Graph-based algorithms are 
then used to rank all nodes in the network with regard to an initial subset of nodes (genes) known to be 
involved in the biological process or disease of interest11.

Currently, more than 33 gene prioritization tools are being used in the medical field12,13, whereas only 
two major prioritization tools for plants exist: AraNet14 and GeneMANIA15, both using a network-based 
approach for gene prioritization. AraNet14 is a probabilistic, integrated network of two main association 
data sets: comparative genomics data and proteomics data. AraNet first scores each network based on 
its ability to correctly reconstruct shared membership in Arabidopsis biological processes. Subsequently, 
all data is integrated into a single integrated network that contains 1,062,222 links among 19,647 genes. 
Each link is weighted by estimating the association between each pair of genes, defined as the likelihood 
of participating in the same process. The prioritization approach ranks genes by summing the scores of 
those links that are related to a set of query genes. Genes with high scores are strongly connected to the 
set of query genes and can be considered as the most likely new candidates.

GeneMANIA16 uses a combination of different data sets to find the genes that are most related to 
a set of query genes. The combined data set consists of genetic interactions, pathways, co-expression, 
co-localization and protein domain similarity. Two steps describe the whole procedure in GeneMANIA. 
In the first step, a variation of ridge regression is used to integrate multiple association networks. 
Subsequently, in the prediction step, a label propagation algorithm is used to rank genes in function 
of their relation to the query genes. GeneMANIA covers 10,244,303 edges between 24,815 Arabidopsis 
genes15.

Comparing both approaches, it is clear that GeneMANIA covers more Arabidopsis genes and also 
contains a richer network to find associations between genes. Another difference concerns the prioritiza-
tion algorithm; whereas the prioritization in AraNet is based upon the principle of guilt-by-association, 
using only direct connections, GeneMANIA uses a more advanced strategy, taking into account global 
connectivity between genes and also further exploiting indirect connections in the network. The 
guilt-by-association approach used by AraNet has been shown to be problematic when dealing with 
genes having multiple functions, and is also an error-prone approach in a large-scale network context17. 
By looking at global connectivity, GeneMANIA determines a measure of similarity between each gene 
and the set of query genes based on the topology of the network. However, GeneMANIA does not 
explicitly look at specific, local topological patterns that could be useful to better characterize the query 
genes, and thus improve the prioritization.

In this work, we describe an in-depth analysis of novel network-based prioritization approaches for 
ranking Arabidopsis growth-regulating (GR) genes. At the data level, our work contributes two new 
network resources, based on state-of-the-art machine learning methods for transcriptional regulatory 
network inference on one hand, and event extraction from literature data on the other hand. These novel 
data sources were further combined with existing resources into a network representation. At the algo-
rithmic level, a large variety of both existing and newly proposed connectivity patterns was subsequently 
extracted from the combined network, and machine learning methods were used to suggest new growth 
regulators (GRs). Using a large-scale comparison, these newly developed methods were able to outper-
form current network-based prioritization methods, and to suggest new, meaningful GRs.

The individual and combined networks, as well as all rankings, are publicly available at http://bioin-
formatics.psb.ugent.be/supplementary_data/ehsab/gene_prioritization/.

Results and Discussion
An integrated network of leaf growth regulators in Arabidopsis. We constructed an integrated 
network from seven different sub-networks, including both publicly available networks, as well as newly 
constructed networks that are made available to the community (Table  1). The AGRIS sub-network 
consists of known transcriptional regulatory links in Arabidopsis thaliana, and was obtained from the 
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Arabidopsis Gene Regulatory Information Server (AGRIS)18. The MaMut genetic modification design 
sub-network contains information about differentially expressed genes when comparing wild-type plants 
to transgenic plants, and was obtained from the “genetic modification data set” of CORNET, a pub-
licly available database of gene associations in plants19. The PPI sub-network was also obtained from 
CORNET, and consists of both predicted as well as experimentally identified protein-protein interactions 
(PPIs). The PCC and GENIE3 sub-networks were obtained from the curated “leaf ” microarray compen-
dium, also available in CORNET and which is a curated and filtered compendium, specifically grouping 
experiments done on Arabidopsis leaves. From this microarray compendium, we constructed a gene 
co-expression network, containing only the most correlated genes (Pearson Correlation Coefficient or 
PCC sub-network), as well as a transcriptional regulatory network (GENIE3 sub-network). The GENIE3 
sub-network was constructed using a network inference tool (GENIE3)20, which achieved the best per-
formance in the DREAM5 network inference challenge21. The GeneMANIA sub-network was also used, 
in itself consisting of a combination of different publicly available data sets, collected from a variety of 
databases16, and finally, a sub-network representing gene-gene associations predicted using text mining 
algorithms was extracted from the EVEX resource, which is built on top of the PubMed literature22. 
In this work, we only used gene-gene associations from EVEX that were annotated as belonging to 
Arabidopsis genes.

In this integrated network, genes were represented by nodes and biological relationships between 
genes by edges. To explore this integrated network, network topology properties were used. The result-
ing integrated network was a multiple-connected, undirected network without self-loops, consisting of 
27,376 nodes (genes) and 24,361,406 edges. Table 1 depicts the global network properties of all individual 
sub-networks, as well as their integration. The largest sub-network in terms of edges was the network 
based on co-expression (PCC), while the GeneMANIA sub-network contained the highest number of 
nodes.

The GENIE3 and EVEX sub-networks are two novel networks introduced in this study, representing 
inferred networks of respectively predicted transcription factor-target relations from microarray data and 
relations extracted from PubMed texts using state-of-the-art text mining algorithms. While the GENIE3 
sub-network covered the majority of all genes (21,503 nodes) and a substantial amount of edges, the 
EVEX sub-network constituted the smallest network, covering only about 10% of all Arabidopsis genes.

Overall, the integrated network was sparsely connected, showing a network density (ratio of the actual 
number of edges to the number of possible edges) of 0.065 and containing a limited overlap between 
the constituting sub-networks. 92% (22,309,895) of the edges were unique to one of the sub-networks, 
which means that only 8% (2,051,511) of the edges were part of two or more sub-networks. The diame-
ter (longest geodesic distance between two nodes in the network) was 11 and the average shortest path 
between each two nodes was 2.13.

Connectivity patterns of Arabidopsis leaf growth regulators. In a next step, we defined our bio-
logical process of interest as leaf growth in Arabidopsis. To this end, we defined a reference set of genes 
related to leaf growth consisting of two groups of genes. The first set of 57 genes (referred to as Intrinsic 
Yield Genes) are known to have a proven effect on leaf size when modified (available from http://www.
yieldbooster.org/), the functions of which include regulation of cell size and/or cell number. The sec-
ond set consisted of 98 putative growth-related genes selected from genome-wide transcript profiling of 
developing leaves, derived from an independent microarray experiment23 (see Methods). The two sets of 
GR genes showed 8 common genes, resulting in a total set of 147 GR genes (Supplementary Table S1). 
The remaining 27,229 genes out of the total set of 27,376 analyzed Arabidopsis genes were then further 
considered as the set of genes to be prioritized, in order to suggest potential novel GRs.

Sub-network # Edges # Nodes Density
Clustering 
coefficient Diameter

Average 
path 

length

AGRIS 13,033 9,443 3.48E-05 0.001 7 2.68

MaMut 142,299 17,147 3.80E-04 0.003 6 2.61

PPI 1,147,589 22,372 3.06E-03 0.267 18 3.32

PCC 12,526,356 11,763 3.34E-02 0.745 15 2.47

GENIE3 281,327 21,503 7.51E-04 0.021 5 3.05

GeneMANIA 10,244,303 24,815 2.73E-02 0.135 6 2.09

EVEX 6,499 2,335 1.73E-05 0.170 15 5.49

Total 24,361,406 27,376 6.50E-02 0.553 11 2.13

Table 1.  Global Topology of Each Sub-Network. Network statistics of the different sub-networks as well as 
the total, integrated network.

http://www.yieldbooster.org/
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Comparing the Arabidopsis GR genes with the remaining genes of the network showed that their 
degree distribution was shifted toward higher numbers (Supplementary Fig. S1A), implying that GR 
genes were thus more connected to other genes than non-GR genes, and they were also more strongly 
connected to each other than to non-GR genes (Supplementary Fig. S1B). Also in terms of shared neigh-
bors, Arabidopsis GR genes were more connected to each other than to other genes (Supplementary Fig. 
S1C).

Figure  1 shows a graphical representation of the interconnectivity in the local network connecting 
only the GR genes to each other. Genes are grouped into horizontal layers, with layers at the bottom 
having higher degrees of interconnectivity. Within each layer, genes situated toward the right have higher 
degrees of interconnectivity. Colored edges between genes show the different sub-network types, whereas 
node colors indicate the betweenness centrality of each gene, a measure of how important the gene is 
in connecting subparts of the network. In this local network, ANT was the most connected gene (138 
edges), followed by ARF5 and MYC1 (both 117 edges). On the other hand, SAUR19 was not connected 
to any other GR gene, and JAW and ANAC081 had only one edge connecting them to other GR genes. In 
terms of centrality in the local network, AP2 was the most important gene, whereas JAW, ANAC081 and 
PPD1 were the least central genes in the network. A special case was ANAC021, which – despite its low 
degree of connectivity (10 edges) – still had a large effect on the network, as shown by its relatively high 
betweenness value. The underlying reason for this is the fact that ANAC021 plays a key role in connect-
ing nodes mainly connected by the PCC sub-network to nodes mainly connected by the GeneMANIA 
sub-network. Also when looking at the edge and node betweenness values for the local network of GR 
genes (Supplementary Fig. S2), the link between ANAC021 and AP2 was of high importance, as well as 
the few links that connected low-degree nodes to the rest of the network (e.g. JAW, PPD1).

In the global network connecting all genes, HD2A, encoding a histone deacetylase, was interestingly 
the most connected growth regulator (8084 edges), while JAW, encoding miR319a, was again the least 
connected growth regulator with only three edges, coming from the text mining network. The importance 
of histone acetylation/deacetylation in regulating transcription and development is well documented (for 
a recent review, see Liu, et al.24). The median of the number of direct edges to GR genes was 38 for GR 
genes internally, and 7 for other genes. However, 5,078 of the non-growth regulators had at least 38 direct 
edges to the set of 147 GR genes, showing that there is a huge number of genes that is directly connected 
to GR genes. Therefore, only relying on the direct connection, the so-called “guilt-by-association” prin-
ciple can be estimated to be insufficient to prioritize new GR genes.

Network contribution. Looking at the contribution of each sub-network to both the local network, 
composed of GR genes only, as well as the extended network, considering GR genes and their first 
neighbors (Table 2), it could be observed that most of the edges were contributed by the PCC and the 
GeneMANIA sub-networks, which were also the largest networks. When taking only the local growth 

Figure 1. Local Network of GR genes. Graph structure of the GR genes based on the degree of 
interconnectivity, with nodes lower in the network having a higher degree. In the same layer, nodes are 
organized from left to right with increasing degree of interconnectivity. The color of the nodes shows the 
betweenness centrality (ability of nodes to keep the network connected).
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regulatory network into account, about half of the edges were contributed by the PCC sub-network, 
followed by the GeneMANIA (30%) and the GENIE3 (10%) sub-networks. To interpret the relative 
importance of each sub-network better, we normalized these numbers according to the total number of 
edges in each sub-network, in order to obtain relative contribution percentages (Table 2, column “Percent 
Individual”). In the local growth regulatory network, the PCC and GeneMANIA sub-networks only 
showed a relative contribution of 0.02% and 0.01%, respectively, whereas e.g. the EVEX and GENIE3 
sub-networks obtained much higher relative contributions (0.57% and 0.13%, respectively). For the 
extended network that also takes into account first neighbors of GR genes, even 7.56% (EVEX) and 
10.48% (GENIE3) of all edges contributed to the network, showing their efficiency.

Network-based prioritization. Model-based prioritization. We trained a number of well-known 
machine learning methods, including Naïve Bayes (NB), Linear Discriminant Analysis (LDA), Support 
Vector Machines (SVM), Lasso and elastic-net regularized generalized linear models (Glmnet), Random 
Forest (RF), and Generalized Boosted Regression Models (GBM), to learn the mapping between 
network-based properties and involvement in growth regulation. Two classes of features were used: 
network-based features and Gene Ontology (GO)-derived features. Figure 2 displays the comparison of 
the results using a) only the network-based features (without_GO), and b) including also the GO-based 
features. Including the GO-based features within the model-based approaches clearly boosts their ability 
in predicting GR genes in a leave-one-out cross-validation (LOOCV) scheme (see Methods). For all 
methods, this resulted in a lower median rank and likewise, a lower first quartile, which is the most 
important part of the ranking if genes are to be evaluated in a top-down fashion (Table 3).

In terms of median ranking, the best results were obtained by the RF model (median rank of 589), 
which also had the lowest inter-quartile range (IQR) and ranks most genes within the first quartile. 
Interestingly, the best result for the first quartile (the top of the ranking) was obtained using the SVM 
method, which obtained a first quartile rank of 127 and was able to rank almost 30% of the GR genes 
within this first quartile. The two other methods that were able to rank a large number of GR genes within 
the first quartile were RF (20.3%) and Glmnet (13.3%). These results, especially the SVM approach, were 
encouraging and reliable enough to be used as automated prioritization techniques.

In addition to building separate models for gene prioritization, we also examined combinations of 
models, an approach referred to as ensemble models. Overall, no major improvements were noted by 
combining methods, and the best combination was only able to marginally improve the median ranking 
(RF combined with Glmnet, see Table 3). The implementation of the ensemble models and their results 
are available in the Supplemental Information (Supplementary Fig. S3).

To test the sensitivity of the results to the chosen cross-validation setup, we repeated the analysis using 
10-fold cross-validation. In the latter setup, instead of leaving out each time only one gene as a test set, 
10% of the GR genes were left out for testing, thus reducing the amount of genes for training the model. 
Very similar results were obtained compared with the original setup, concluding that our approach also 
works for smaller training sets (Supplementary Figs 4–6).

Comparison with GeneMANIA. In order to compare our results with a state-of-the-art gene prioritiza-
tion tool, we ran GeneMANIA in the same LOOCV setting on our set of GR genes. Figure 3C compares 
GeneMANIA with the best model-based prioritization techniques, and a detailed overview of all ranking 
criteria is shown in the bottom part of Table 3. While the SVM model clearly outperformed all others 
only in terms of first quartile results, the RF model markedly outperformed GeneMANIA in terms of 
both first quartile and median rank. The difference between the RF model and GeneMANIA was signif-
icant at a 95% confidence level (Mann-Whitney test, P-value =  0.014).

Sub-network

Local GR gene network Local GR gene network + first neighbors

Edge 
number

Percent 
Total

Percent 
Individual Edge number

Percent 
Total

Percent 
Individual

AGRIS 4 0.11% 0.03% 448 0.09% 3.44%

MaMut 65 1.77% 0.05% 6338 1.30% 4.45%

PPI 85 2.32% 0.01% 9421 1.93% 0.82%

PCC 1952 53.25% 0.02% 301262 61.61% 2.41%

GENIE3 360 9.82% 0.13% 29474 6.03% 10.48%

GeneMANIA 1163 31.72% 0.01% 141537 28.95% 1.38%

EVEX 37 1.01% 0.57% 491 0.10% 7.56%

Total 3666 Nodes =  147 488971 Nodes =  22078

Table 2.  Network Contribution. Network contribution of the different sub-networks constituting the 
integrated network, both for the sub-network network connecting the GR genes (left column) as well as the 
extended network containing GRs and their first neighbors in the integrated network (right column).
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A detailed comparison of the ranking differences of individual genes is shown using dot plots in 
Fig. 3, comparing both the RF model and the SVM model to GeneMANIA. Figure 3A shows that most 
points are plotted above the diagonal, indicating that GeneMANIA in general ranks genes further away 
than RF, while Fig.  3B shows that clearly two subsets of genes can be distinguished. The top-ranked 
genes by SVM were all ranked at a worse position by GeneMANIA, while for the remaining genes the 
situation was reversed.

Network importance. To assess the importance of each sub-network for the prioritization, we explored 
the impact of leaving out each sub-network, and compared the prioritization results without the 
sub-network to the original approach using all sub-networks integrated. We could observe that remov-
ing a single sub-network had only little impact on the prioritization results (Supplementary Figs 7,8), 
meaning that model-based approaches are clearly robust to the inclusion of noise. Apart from the Naïve 
Bayes classifier, which benefits from leaving out the PCC sub-network, we saw that the results of most 
other techniques remained stable when removing individual sub-networks. For the best performing 
methods, such as SVM, Glmnet and RF, combining sub-networks improved the performance. Here, the 
inclusion of both the PCC and the GeneMANIA sub-networks appeared to be beneficial for the predic-
tive performance.

Novel genes predicted to be involved in leaf growth. To obtain the final prediction (ranking) 
of potential GRs, we used all GR genes to train the models, and further limited our analysis to the best 
model-based prioritization techniques. To this end, we combined all top 200-ranked genes from the 
model-based methods for which at least 25% of the top 200-ranked genes are encoding known GRs. As 
a result, only the RF, SVM and LDA models passed this criterion, and genes were sorted by aggregating 
their ranks for these methods. Because the SVM model performed best in terms of first quartile (the 
top of the ranking), it could be argued that one should only investigate the results of this single method. 

Figure 2. The Effect of GO Term Features on Classifier Performance. The effect of the inclusion of GO 
terms when using model-based approaches. By adding GO similarity scores as a new feature to the model-
based approaches, all of them improved their ability in order to rank more GR genes on the top list. Each 
box plot shows the ranking of all 147 GR genes in the list of 27,290 genes. The approach that gives lower 
ranks to GR genes has a box plot shifted more towards zero on the y axis.
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However, here, we chose the alternative of having a more robust prediction by inspecting the genes that 
were ranked consistently high by the best methods.

Among the 100 top 200-ranked genes obtained in this way, a remarkably high number of 57 genes 
turned out to be known GR genes, while 43 were newly predicted genes (Supplementary Table S2). Many 
of these novel genes have been reported to play some role in leaf growth and development. Out of the 
10 most highly ranked novel genes, seven encode important transcription factors that can be linked to 
growth of leaves or leaf-like structures such as petals and sepals (Table 4). These include the cytokinin 
response factor CRF1, important for cell proliferation during leaf development25; AP-1 (also known as 
AGAMOUS-LIKE 7, AGL7), important for floral meristem and sepal identity26; EGL3 (also known as 
MYC-2), known to be involved in leaf trichome development27; ZFP8, encoding a zinc finger C2H2 tran-
scription factor involved in the regulation of the fate of leaf epidermal cells28; RGA, encoding a DELLA 
protein, known to repress cell proliferation29; TCP15, a class I TCP gene that modulates cell proliferation 
in developing leaf blades30,31 and YAB3, encoding a YABBY domain transcription factor that regulates 
abaxial patterning and growth of lateral organs such a leaves32. All these genes are highly ranked in the 
top 100 lists of the best methods (Supplementary Table S2).

Further down the list, many other (novel) genes/proteins could be linked to leaf growth and devel-
opment. These include the DELLA protein GAI known to be involved in plant growth29; DAWDLE 
(DDL), an RNA-binding protein that interacts with DCL1 and is involved in miRNA biogenesis and 
whose mutants result in defective floral organs and smaller leaves33; AT5G51190, encoding a member 
of the ethylene response factor family; AT5G66940, encoding an OBP-1 homolog; AS1 (ASYMMETRIC 
LEAVES 1), a MYB-like transcription factor with a role in specification of leaf cell identity34; HBI1, a 
basic helix-loop-helix (bHLH) protein involved in the regulation of cell elongation35; ATHB-14 (also 
known as PHB), which encodes a Homeo-Domain-ZIP transcription factor of which dominant PHB 
mutations cause transformation of abaxial leaf fates into adaxial leaf fates36, and the microRNA Mir160 
that targets several AUXIN RESPONSE FACTOR (ARF) family members37. Also the other novel GR 
genes were highly enriched for transcription factors. In addition, the list of novel GR genes contained 
two genes encoding protein kinases, ATMMK2 and ER, further supporting their regulatory role in plant 
growth.

In conclusion, the above results convincingly demonstrate the potential of network-based gene prior-
itization techniques using machine learning approaches for the identification of regulators of biological 
processes.

Extension to other important crops. Gene prioritization techniques have a great potential to 
enhance the likelihood that selected genes have an important role in the process under examination 
and thus will rapidly gain interest for crop improvement. Here, we show that the genes prioritized for 
leaf growth are indeed strongly enriched for known leaf growth regulators that were not in the set of a 
priori selected genes. The entire data set needs to be validated further by functional analysis. Processes 
such as growth regulation are well conserved and there are many examples of genes originally found 

Model Min
First 

quartile Median
Third 

quartile Max IQR

Percentage of GR 
genes within first 

quartile

NaiveBayes
Without GO 3 2676 6061 7831 26557 5154 1.3%

With GO 13 629 2480 6147 25452 5518 5.9%

SVM
Without GO 13 813 5054 11789 27169 10976 4.5%

With GO 10 127 2313 15930 27375 15803 29%

LDA
Without GO 13 965 2645 6362 27255 5397 3.8%

With GO 12 481 1551 4600 27255 4119 7.7%

Glmnet
Without GO 3 753 2616 4974 26276 4220 4.9%

With GO 5 279 885 2442 25521 2163 13.3%

GBM
Without GO 2 788 3966 7174 26560 6386 4.5%

With GO 11 899 2260 5986 26542 5086 4.1%

RF
Without GO 3 415 2103 6178 26505 5769 8.9%

With GO 4 181 589 1893 26544 1711 20%

RF +  Glmnet 4 229 520 1832 25652 1603 16.2%

GeneMANIA 12 312 738 2781 24815 2468 11.9%

Table 3.  Performance Statistics for GR Prioritization Using Model-Based Approaches. Overview of the 
different ranking statistics, including the minimum and maximum rank, the first and third quartile rank, 
the median rank, the inter-quartile range (IQR) and the percentage of GR genes retrieved within the first 
quartile.
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to affect growth in Arabidopsis that also function in a similar manner in other crops38,39. This renders 
the prioritization techniques developed here of high importance for crop improvement by considering 
that the genomes of many crops have now been sequenced, and next generation RNA sequencing tech-
nologies allow for determining the transcriptomes of any tissue in virtually any species. In addition, 
large-scale phenotyping platforms – in particular in rice – made it possible to identify central regulators 
of yield-related processes that can be used as ‘seeds’ for the prioritization techniques.

Recently, it also became clear that the combination of growth-promoting genes most often leads to 
additive or synergistic effects on growth40 and, although still subject to experimental testing, we postulate 
that genes highly ranked in the prioritization list have a higher potential to be combined than low-ranked 
genes.

Methods
An integrated network for Arabidopsis growth regulation. To construct the integrated network, 
we followed an entirely quantitative approach, in which individual networks were joined by adding the 
entity values of each network’s adjacency matrix. To this end, a large adjacency matrix, in which columns 
and rows represent gene identifiers from all individual sub-networks, and entries show the number of 
edges between each pair of genes, was made. The number of edges between each pair of nodes was 
determined by summing the number of edges in all seven sub-networks. As a result, any pair of nodes is 
connected by at most seven edges. The rationale for keeping all edges between a fixed pair of genes was 
that links from different data sources provide additional evidence for a relationship between two genes.

By looking at network topology properties, one can explore the integrated network. For these proper-
ties, multiple edges between the same pair of genes only affected the degree, Kleinberg’s hub and author-
ity scores, for which we explicitly took multiple edges into account. For all other properties, i.e. those 
related to the shortest path concept (e.g. betweenness, closeness and shortest path to other nodes), the 

Figure 3. Comparing both the RF Model and the SVM Model to GeneMANIA. Pairwise comparison 
between (A) GeneMANIA and Random Forest (RF), and between (B) GeneMANIA and Support Vector 
Machines (SVM). Each dot represents a GR gene, and its coordinates correspond to the ranks assigned 
by the different methods (ranks are displayed on a logarithmic scale). (C) Comparison of the three best 
prioritization approaches to the state-of-the-art method GeneMANIA.
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presence of multiple edges between a gene pair did not influence the score. In addition, all data sources 
were treated similarly, and no preferences or weights on the edges were introduced.

AGRIS regulatory sub-network. The Arabidopsis Gene Regulatory Information Server (AGRIS) supplies 
a resource for gene regulatory studies in Arabidopsis thaliana. A component of AGRIS, the Arabidopsis 
thaliana regulatory network database (AtRegNet) consists of transcription factors and their direct target 
genes only18. The AtRegNet database was converted into a network, keeping for each transcription factor 
its direct target genes.

MaMut genetic modification design sub-network. This sub-network was extracted from the “genetic 
modification data set” of CORNET, a publicly available database on gene associations in plants19. This 
network contains information about differentially expressed genes when comparing wild-type plants 
to transgenic plants. Links in this network represent genes that are either up- or down-regulated when 
knocking out one or more transcription factors. These differentially expressed genes are assumed to be 
the target (either direct or indirect) of the transcription factor that was knocked out.

PPI sub-network. The PPI sub-network was extracted from CORNET, and includes predicted, as well 
as experimentally identified, PPIs in Arabidopsis from different sources. Some of these interactions were 
derived from the original AraNet network14.

GeneMANIA sub-network. The GeneMANIA sub-network represents a combination of different publicly 
available data sets, collected from a variety of databases. These include co-expression data, co-localization 
data, genetic interactions, physical interactions, shared protein domains and predicted interactions, all 
combined into a single network. A detailed overview of all networks used by GeneMANIA can be found 
on the GeneMANIA website (http://genemania.org/).

GENIE3 predicted regulatory sub-network. In order to construct computationally predicted transcrip-
tional regulatory networks, we used the GENIE3 algorithm, which achieved the best performance on 
the DREAM5 network inference challenge21. GENIE3 was run on the CORNET “leaf ” compendium, 
which consists of 212 different conditions and time points, and is a collection of publicly available and 
in-house generated expression data, which has been pre-processed through a well-defined normalization 
and quality control pipeline developed for the CORNET database. The result of this analysis is a list of 
predicted transcription factor-target relations and an associated confidence score. Using a cutoff of 0.02, 
we only used the most confident associations to build the network.

Rank Gene AT code Evidence

1 CRF1 AT4G11140 Cytokinin response factor involved in cytokinin signaling. Cytokinins stimulate cell proliferation during 
leaf development.

2 AP1 AT1G69120 Floral homeotic gene encoding a MADS domain protein. Specifies floral meristem and sepal identity. 
Required for the transcriptional activation of AGAMOUS. Interacts with LEAFY.

3 EGL3 AT1G63650 Transcription factor known to be involved in leaf trichome development. Also known as MYC-2. 
Mutants have reduced trichomes.

4 RDO2 AT2G38560
Encodes RNA polymerase II transcript elongation factor TFIIS. Mutant plants display essentially 
normal development, but they flower slightly earlier than the wild type and show clearly reduced seed 
dormancy.

5 ZFP8 AT2G41940
Encodes a C2H2 transcription factor involved in the regulation of the fate of leaf epidermal cells. 
Controls shoot maturation and epidermal cell fate by integrating gibberellins (GAs) and cytokinin 
signaling in Arabidopsis.

6 RGA AT2G01570
Repressor of GA. Member of the DELLA regulatory family. Putative transcriptional regulator repressing 
the gibberellin response and integration of phytohormone signalling. DELLAs repress cell proliferation 
and expansion that drives plant growth.

7 TCP15 AT1G69690 Involved in the regulation of endoreduplication. Belongs to class I TCP genes. Modulates cell 
proliferation in developing leaf blades.

8 ICE1 AT3G26744 Encodes a MYC-like bHLH transcriptional activator that binds specifically to the MYC recognition 
sequences in the CBF3 promoter. Mutants are defective in cold-regulated gene expression.

9 YAB3 AT4G00180 YABBY gene family member, likely has transcription factor activity, and is involved in specifying the 
abaxial cell fate of leaves.

10 ATB2 AT1G60710 Probably encodes an aldo-keto reductase.

Table 4.  Interpretation of Top Ten Novel Genes Encoding Growth Regulators (GRs). The top 10 novel 
GR genes identified by our novel approach, and a literature summary highlighting their potential role in leaf 
growth.

http://genemania.org/
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Co-expression sub-network using Pearson correlation coefficient (PCC). Using the “leaf ” compendium 
from the CORNET database, we calculated a co-expression network by calculating the Pearson correla-
tion coefficient between the expression patterns of all genes. As the resulting network was huge, we only 
kept the 5% most significant gene pairs, corresponding to the correlations that had at least an absolute 
value of about 0.8, thus keeping the most correlated or anti-correlated genes.

Text mining sub-network. A network of gene-gene associations predicted using text mining was extracted 
from the EVEX text mining resource22. Text mining was built on top of PubMed abstracts and PubMed 
Central full text articles, covering over 40 million bio-molecular events among more than 76 million 
automatically extracted gene/protein name mentions. The text mining data further has been enriched 
with gene identifiers and gene families from Ensemble and HomoloGene, providing homology-based 
event generalizations. In this work, we only used gene-gene associations that were annotated as belonging 
to Arabidopsis genes.

Arabidopsis growth regulators. As input for the prioritization approach, we started from a seed 
set of genes that is known to be involved in leaf growth, and that consists of two subsets. The first set of 
57 genes (Intrinsic Yield Genes) was based on published effects on leaf size when mutated or ectopically 
expressed (www.yieldbooster.com)6,7. The second set consisted of putative growth-related genes selected 
from genome-wide transcript profiling of micro-dissected developing leaves, harvested and profiled daily 
at six time points from day 8 (when all cells are proliferating) until day 13 (when most leaf cells start to 
expand) after stratification23. For each time point, three biological replicates were measured. 9,585 genes 
that were differentially expressed between at least two time points were identified with a moderated F-test 
and a corrected P-value of 0.05. Pairwise comparisons between time points were tested with moderated 
t-statistics and eBayes method as implemented in Limma, P-values were corrected for multiple testing41.

Subsequently, we further filtered this set of genes and only considered genes showing a difference in 
expression of at least twofold at two time points (pairwise comparison between all time points), and only 
kept genes that showed evidence of transcriptional activity. Eventually, four genes were listed as transcrip-
tion factors based on AGRIS, and 94 genes were retained based on Gene Ontology terms (GO:0003677 
(DNA binding), GO:0006355 (regulation of transcription) and GO:0003700 (transcription factor activ-
ity), GO:0005524 (ATP binding), GO:0003713 (transcription coactivator activity), GO:0003676 (nucleic 
acid binding), GO:0008270 (zinc ion binding), GO:0005515 (protein binding)).

In total we thus obtained a list of 98 genes that not only showed a significant expression change during 
leaf development, but that were also listed as regulators and transcription factors, showing a high level of 
evidence to consider them as genes involved in regulation of leaf developmental processes.

Connectivity patterns. In graph theory, many mathematical properties can be extracted from a 
graph or network. We used these properties to a) characterize our set of known GR genes, and b) to 
derive new graph-based prioritization methods. These network patterns could be divided into two main 
categories: general topological patterns that can be extracted from any network, and similarity-based 
patterns that can be defined on a network with regard to a set of genes of interest (e.g. Arabidopsis GR 
genes in our case).

General topological patterns. General topological properties of a sub-network capture connectivity 
properties of each gene in the sub-network. These include the degree of each gene (the number of con-
nections it has to other genes), the betweenness centrality (a measure of how central the gene is when 
passing through it on a path connecting two other genes), the closeness (a measure that represents how 
fast information from the current gene spreads over the network), and Kleinberg’s hub and authority 
scores, which are based on the principal eigenvector of the adjacency matrix of the sub-network. A 
detailed overview of these general topological properties, as well as formulas to calculate these properties, 
can be found in the Supplementary Information.

Similarity-based patterns. Similarity-based patterns are defined with regard to a specific subset of 
genes (nodes) in the network. They can be divided into two classes: topology-based and Gene Ontology 
(GO)-based similarity measures.

The first class measures the similarity between two genes, or more generally two groups of genes using 
network-based patterns. For the purpose of this study, we calculated these properties between a chosen 
gene (query gene) and a seed set of genes of interest S (e.g. Arabidopsis GR genes). The properties we 
took into account included the number of direct connections with S, the number of shared genes with 
S, the Jaccard similarity index, the Dice similarity index, the inverse log-weighted index and the shortest 
path to S. A detailed explanation can be found in the Supplemental Information.

The second class of similarity-based patterns uses a combination of GO terms and topological prop-
erties. Two types of measures were explored: an approach based on GO term overlap and an approach 
based on GO enrichment. For the approach based on GO term overlap, we defined three term overlap 
similarity measures: term overlap between neighbors of a query gene and the seed genes, term overlap 
between the query gene itself and the seed genes, and finally the combination of both. The magnitude 

http://www.yieldbooster.com
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of the term overlap was measured by the Jaccard similarity coefficient. For the approach based on GO 
enrichment, we followed the approach proposed in Rahmani, et al.42. We counted relevant GO terms 
for S, and selected the top ten statistically most overrepresented terms. Next, for these terms a two-way 
table was constructed using the frequency of the terms in the seed genes as well as the query gene and 
its neighbors.

The reason for including neighbors was the fact that GO annotations of proteins can often be pre-
dicted well based on the GO annotations of their neighbors43,44. The P-value of a Fisher exact test com-
paring the frequency of terms in the two groups was then used as a similarity measure. The higher the 
P-value, the more similar the representation of GO terms between the two groups will be. The same 
procedure was then also applied for the top five and the first GO terms.

Machine learning models. In the model-based approach for prioritization, we used machine learn-
ing models to define the relationship between the network properties and the genes in the seed set S. We 
used a two-class classification approach for the prioritization problem, where the genes in S were assumed 
to constitute the “positive” class, and the remaining genes represented the “negative and unknown” class. 
In our case, the positive class was the set of 147 genes involved in leaf growth, and the negative/unknown 
class consisted of the remaining 27,229 genes of the Arabidopsis genome. To evaluate the prioritization 
performance of the different methods, a leave-one-out cross-validation (LOOCV) setup was used, which 
is standard in the prioritization field10. In this setup, one of the GR genes was removed from the list of 
known GR genes, and subsequently all genes in the network were ranked, the most top-ranked genes 
corresponding to the most likely GR genes. The position of the left-out gene could then be recorded, and 
this procedure was subsequently repeated for all GR genes. Performance statistics, such as the median 
or average rank of all GR genes could then be used to evaluate prioritization performance. A general 
overview of the followed procedure is shown in Fig. 4.

In this work, we used six machine learning models that are commonly used in the literature: Naïve 
Bayes (NB), Linear discriminant analysis (LDA), Support Vector Machines (SVM), Lasso and elastic-net 
regularized generalized linear models (Glmnet), Random Forest (RF), and Generalized Boosted 
Regression Models (GBM). More information about the parameter settings and implementation can be 
found in the Supplemental Information. For each of these models, the following set of 35 features was 
used: the general topological patterns (5 features), the topology-based similarity patterns (6 features), and 
24 features derived from the GO-based similarity measures. The six GO-based similarity measures were 
calculated four times: once for complete GO terms, once just for the “biological process” category, once 
for the “cellular component” category and finally once for the “molecular function” category. Splitting 
these categories over different features would allow the classification models to weigh them differently 
according to their information content (Supplementary Fig. S9).

Figure 4. Leave-One-Out Cross-Validation (LOOCV) Workflow. Graphical overview of the workflow 
when assessing the predictive performance of methods using the LOOCV setup. (a) Preparing data and 
making two classes to feed the computational parts, (b) extract multiple types of features from the network, 
and (c) combining network-derived features with machine learning models resulting in model-based 
prioritization approaches.



www.nature.com/scientificreports/

1 2Scientific RepoRts | 5:17617 | DOI: 10.1038/srep17617

GeneMANIA. GeneMANIA uses a Gaussian field label propagation algorithm for binary classifica-
tion, taking as input an association network, a list of nodes with positive labels, possibly a list of nodes 
with negative labels, and initial label bias values. In our experiments, only a list of positive labels (the 
GR genes) was available. For gene prioritization, each gene was associated with a graph node and nodes 
representing GR genes (that is, positive genes) were assigned an initial label bias value of + 1, whereas all 
other, unlabelled genes were assigned a value k =  n + /n, where n+  denotes the number of positive genes, 
and n denotes the total number of genes. The label propagation algorithms then assigned a discriminant 
value to each node by letting the initial label bias of nodes propagate through the association network to 
nearby nodes. These discriminant values were then used to prioritize (rank) all genes. Determining the 
discriminant values can be done by solving a quadratic programming problem16.
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