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Topological phase transition in 
quasi-one dimensional organic 
conductors
Xiao-Shan Ye1, Yong-Jun Liu1, Xiang-Hua Zeng1 & Guoqing Wu1,2

We explore topological phase transition, which involves the energy spectra of field-induced spin-
density-wave (FISDW) states in quasi-one dimensional (Q1D) organic conductors, using an extended 
Su-Schrieffer-Heeger (SSH) model. We show that, in presence of half magnetic-flux FISDW state, 
the system exhibits topologically nontrivial phases, which can be characterized by a nonzero Chern 
number. The nontrivial evolution of the bulk bands with chemical potential in a topological phase 
transition is discussed. We show that the system can have a similar phase diagram which is discussed 
in the Haldane’s model. We suggest that the topological feature should be tested experimentally in 
this organic system. These studies enrich the theoretical research on topologically nontrivial phases 
in the Q1D lattice system as compared to the Haldane topological phase appearing in the two-
dimensional lattices.

Topological superconductors and topological insulators have been of considerable interest in condensed 
matter physics because of their nontrivial topological properties as new states of quantum matter and 
potential remarkable technological applications. Unfortunately these materials are relatively rare among 
condensed matter materials and understanding their properties has huge challenges due to the com-
plexity of their topological states1–10. It is believed that topological superconductors have a full pairing 
gap in the bulk and gapless surface states which are usually related to Majorana fermions11,12, while in 
close analogy to the topological superconductors the topological insulators can be characterized by a 
full insulating gap in the bulk and gapless edge or surface states protected by time-reversal symmetry. 
Therefore, different edge states have different properties. Moreover, an applied high magnetic field can 
break a time-reversal-invariant symmetry, leading to a chiral edge state and a quantized Hall effect13. In 
contrast, a spin-orbit coupling can preserve the time-reversal-invariant symmetry and produce a helical 
edge structure6, as well as quantum spin Hall effect which has a quantized spin-Hall conductance and 
a vanishing charge-Hall conductance. Thus the quantized Hall effect and the quantum spin Hall effect 
have different origins and characters.

Various models have been proposed for the understanding of the topological states and the topo-
logical properties. For example, the existence of a quantum spin Hall state was explained by the Kane 
and Mele lattice model6, which corresponds to two copies of the Haldane model developed earlier for 
the graphene material14. According to the Kane and Mele model, the spin up electron exhibits a chiral 
integer quantum Hall Effect while the spin down electron exhibits an anti-chiral integer quantum Hall 
effect. This gives a zero charge-Hall conductance and a fixed quantum value of spin-Hall conductance. 
Soon after, the existence of spin-orbit coupling was understood as a momentum-dependent magnetic 
field coupling to the spin of the electron, using the model developed by Bernevig and Zhang15. An 
important view is that all these models indicate that the time-reversal symmetry plays a fundamental 
role in guaranteeing the topological stability of the states and in the topological properties. On the other 
hand, some researchers suggest the possibility of a cold atom crystal fabrication with the use of artificial 
optical lattice16,17, considering the engineering difficulty of applying the Haldane model which requires 
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the applications of an upward magnetic field for spin-up electrons and an downward magnetic field for 
spin-down electrons at meanwhile.

Remarkably, recent progress in understanding the topological properties have led to the experimental 
observation of the topological states (including those in the HgTe quantum wells) and the discovery of 
new time-reversal-invariant topological materials, including Be2Te3, Be2Se3 and CuxBe2Se3

12.
The Haldane model gives the conceptual basis for theoretical research on topological insulators. To 

enrich theoretical research, in this work, we put forward a novel approach to study the Haldane model’s 
phase diagram in Q1D systems. Unlike the general schemes which concentrate on two dimensional sys-
tems by introducing a complex next-nearest-neighbor (NNN) hopping term while without any net mag-
netic flux through a unit cell of the honeycomb lattice, we will explore the realization of Haldane’s phase 
diagram in Q1D organic systems with special modulated order parameters. We consider FISDW states 
in the Q1D lattice using a tight-binding model, which includes the dimerization effect. We demonstrate 
that nontrivial edge states emerge with the introduction of the dimerization effect when the FISDW 
order parameter is changed. If we define a parameter to describe the dimerization effect, we can use this 
parameter and momentum to define a topological invariant in an extended two dimension parameter 
space to distinguish different topological phases. When we change the system filling, the topological 
invariant will give rise to a phase diagram similar to that of the two dimension Haldane’s model. The 
topologically nontrivial edge states in our model may be observable in this system because the FISDW 
order and the dimerization effect in the Q1D organic conductors (TMTSF)2X have been discovered by 
experiments.

Results
(TMTSF)2X are the Q1D organic compounds that have parallel conducting chains in the a −  b-plane of 
the crystal lattice, where TMTSF is the abbreviation of tetramethyltetraselenafulvalene and X represents 
an inorganic anion (X =  PF4 and ClO4). (TMTSF)2X are charge-transfer salts that have unpaired electrons 
residing in the Se π-orbitals (π-electrons) of the donor unit TMTSF18–20. The π-electrons can be delocal-
ized throughout the crystal and give rise to the metallic conductivity with a Q1D conducting band, as a 
result of the inter-molecules π-orbital overlaps along the conducting chains (stacking axis of the 
planar-shape TMTSF molecules along the crystal a-axis)20–22. (TMTSF)2X exhibit interesting behaviors 
when a strong magnetic field is applied perpendicular to the a −  b-plane), with which a metal-insulator 
phase transition appears at low temperatures. The phase transition is known to be caused by FISDW, a 
long-range spin ordering effect due to the application of the externally applied magnetic field19–23. As the 
applied magnetic field is increased further, a series of quantum phase transitions within the FISDW states 
occurs22–24. Here we discuss the FISDW state with the energy spectrum of the (TMTSF)2X electron sys-
tem. According to the tight-bonding model, (TMTSF)2X are characterized by a simple electron spectrum: 
(kx, ky) =  2ta coskx +  2tb cosky where ta/tb =  10. Each quantized FISDW is characterized by an order 
parameter ∆ ( ) = ∆ ( )ir G rexp NGN

, where N is an integer18,23. Here Δ  characterizes a change of the 
strength of the order parameter, and GN =  (NG, π/b), where b is the lattice constant along the b-axis (also 
the y-axis direction), and G =  ebH/ħc (e is the electron charge, H is the magnitude of the applied mag-
netic field, ħ is the Planck constant, and c is the velocity of light). The applied magnetic field H is applied 
⊥  to the conducting chain of the Q1D compounds, i.e., H =  (0, 0, H). Thus we also have aG =  2πφ/φ0, 
where a is the lattice constant along the crystal a-axis, φ =  abH is the magnetic flux per unit cell, the 
φ0 =  hc/e is the magnetic flux quantum. By considering a charge particle hopping between nearest neigh-
bors with hopping amplitude t in the presence of FISDW, we obtain the Hamiltonian: 

σ µ= −∑ + ∑ ∆ − ,σ σ σ σ σ σ
+ ( ) +H t C C e C C[ ]int ij ij i j i

i r
i i

GN  where μ is the chemical potential.
For simplicity, first, we will assume that the FISDW potential is spin independent. Then we will dis-

cuss the spin-dependent case. In the absence of the FISDW, the organic compounds of the (TMTSF)2X 
are metals. When a strong magnetic field is applied ⊥  to the conducting chain of the Q1D compounds, 
there is a phase transition from the metallic state to a FISDW state. In Fig.  1(a), we show the band 
structure of it in presence of the FISDW with a small FISDW strength (Δ  =  0.2, here ta =  1 is set as the 
unit of energy). Each band is broad and there are two sine or cosine modulated forms in it. The bands 
broaden are bigger at G =  (2π/5)*n(n =  0, 1, 2, 3, 4). There are energy gaps near these points in each 
broaden band. That is, each band is split into two sub-bands due to the FISDW order parameter. We call 
one conductanc sub-band and the other valence sub-band. With increasing of the strength of the FISDW 
(Δ  =  0.6), the energy bands begin to touch each other. The energy gaps near commensurate wave vector 
points become larger. When Δ  =  2, all these energy gap edges in each band touch each other. The energy 
spectrum with different G is presented in Fig. 1(b). We can find that it has a similar Hofstadter butterfly 
energy spectrum structure of the two-dimensional lattice system25.

Owning to soft properties, there are strong electron-phonon couplings in these organic conductors. 
Here, we discuss the dimerization effect on the FISDW order using the SSH model. The SSH model is a 
standard tight-binding model with spontaneous dimerization proposed by Su, Schrieffer and Heeger to 
describe the Q1D system24. Considering the dimerization effect, we obtain the following Hamiltonian:
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where ta+ =  ta +  δt and ta− =  ta −  δt (δt representing the dimerization strength). The FISDW order param-
eter ∆ ( )rGN

 equals to Δ exp(iGN(r +  δr)) at odd sites and Δ exp(iGN(r −  δr)) at even sites along the chain. 
We set G ⋅  δr =  θ in the following discussions. From the FISDW order parameter, we can see that the 
energy spectrum varies with the vector G. When G =  2πφ/φ0 =  π, the energy spectrum consists of two 
Dirac cones(Fig. 2(a)). These two cones are separated by a gap when we consider the dimerization effect.

Now, we put the system under open boundary conditions (OBC). As showed in Fig. 2(a), there are edge 
states in the gap. Generally, the edge states are associated with the nontrivial topological properties of the 
systems. If we continuously change the parameter θ, a topological phase transition occurs at θ =  π/2 or 3π/2. 
Thus, we can define a Chern number C in the (k, θ) parameter space to describe the topological phase, 

∫ θ= (∂ − ∂ )
π θ θC dkd A Ak k
1

2
, where Ak =  i <  ϕ(k)|∂k|ϕ(k) >  and Aθ =  i <  ϕ(k, θ)|∂θ|ϕ(k, θ)>  with ϕ to 

be the occupied Bloch state. We find that C =  − 1 when θ ∈  (− π/2, π/2), and C =  1 when θ ∈  (π/2, 3π/2). A 
phase transition occurs at θ =  π/2 and θ =  3π/2. The Chern number is well defined when the gap of the 
bulk states is fully opened. This phase transition is relevant to the FIDSW strength Δ  and the dimerization 
strength δt. We also find that C =  0 with different Δ  and δt. In Fig. 3, we display the phase diagram in the 
parameter space of θ and chemical potential μ at δt/Δ  =  0.4/0.3. We find that when Δ  <  0.5 and δt/Δ  ~ 1, 
the phase diagram is always similar to that shown in Fig. 3(a) in the parameter space θ and chemical poten-
tial μ. We can explain qualitatively the origin of the phase transition. As shown in Fig. 2, there exist edge 

Figure 1. Energy varying with the wave vector G of the FISDW for (TMTSF)2X with ta/tb = 10 and the 
FISDW strength Δ = 0.2 (a), Δ = 2 (b), here ta = 1 is set as the unit of energy25.

Figure 2.  Under open boundary conditions, energy varies with the dimerization effect induced θ for 
(TMTSF)2X materials with ta/tb = 10 and the FISDW strength Δ = 2, the dimerization strength δt = 0.1 (a), the 
FISDW strength Δ = 0.4, and the dimerization strength δt = 0.3(b).
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states in the half magnetic-flux FISDW state for the Q1D systems. The existence of the edge states can be 
examined through the LDOS spectra. In Lehmann representation at zero temperature: 
ρ ω δ ω ω δ ω ω( , ) = Σ ( − ) + ( + ),+i c c0 n n 0[n i n i n

2
0

2
0  where ωn0 =  En −  E0, and 0  ( )n  is the 

ground state with energy E0 (the n −  th excited state with energy En). As the LDOS ρ(i,ω) is proportional 
to the density of state at site i, in Fig. 4, we show the density of state at different sites along the chain(a) 
direction (we make an average result in b direction). We can see that the edge state is localized at one side 
of the system as the dimerization effect gives θ =  π/2 (Fig. 4(a)), and transfers to the other side of the system 
as θ equals 3π/2 (Fig. 4(b)). The energy of this edge state changes with the dimerization effect in the form 

Figure 3. Phase diagram for the system with different chemical potential when the FISDW strength 
Δ = 0.4, and the dimerization strength δt = 0.3. (a) the FISDW strength Δ  =  2, and the dimerization 
strength δt =  0.1(b). C is the chern number. The region with the Chern number C =  0 is the trivial insulator 
phase, C =  1 and C =  − 1 are corresponding topological nontrivial insulator phases, respectively. NM is the 
normal metal phase.

Figure 4. Density profiles of the system in different states labeled by the capital letter in Fig. 2, which 
are localized at the edge state A(θ = π/2) (a), the edge state B(θ = 3π/2) (b), the insulation state C (c), 
and the metal state D (d). Here, we choose N =  L ×  L =  48 ×  48.
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E0 cosθ (E0 is the biggest excited state energy). This can be seen clearly in Fig. 2(b). If the dimerization effect 
induced gap is larger than E0, the density of state at different sites is zero except the edge site. In this case, 
the system is in topological insulator state. If the dimerization effect induced gap is not big enough, the 
density of state at different sites is shown in Fig. 4(d) when energy is greater than E0. In this case, the system 
will go into a metal state when energy is greater than E0. The LDOS can be directly measured experimen-
tally by scanning tunnelling microscope experiments. So the above numerical results for LDOS may be a 
good suggestion to experimental observations. Some researchers suggested one use LDOS to detect zero 
mode in topological superconductors26. Here, we suggest the topological phase should be tested experimen-
tally using LDOS to detect the edge state.

Discussions
To understand the phase diagram, we also give a connection of the Q1D model to the Haldane model. 
We make a Fourier transformation on Eq.(1). Then the Hamiltonian can be written in the form of

µ
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This h(k) gives a band energy gap θ∆( ) = ( + + ( ) − ∆ ( )+ − + −E t t t t k2 4 2 cos 2 4 sina a a a x
2 2 2 2 . It is easy 

to find the phase boundary given by 2δt/Δ  =  sinθ, corresponding to the close of the energy gap for 
kx =  π/2 or kx =  3π/2. Around the phase boundary, one can numerically calculate the Chern number. The 
numerical calculations show that the phase diagram has a similar structure to that appears in the Haldane 
model. In fact, when we review the Haldane model, we will find that our system has a similar Hamiltonian 
to Haldane’s. For the convenience of comparison, we briefly review the Haldane model. The Haldane 
model Hamiltonian is given by µ= − ∑ − ∑ − ∑ ,φ

< >
+

<< >>
+ +,H t C C t e C C C Cint ij ij i j ij ij

i
i j i i i1 2 i j  where the 

summation ∑i is defined in the 2D honeycomb lattice, which is composed of two sublattices, t1 denotes 
the nearest-neighbor hopping amplitude and t2 denotes the next nearest-neighbor hopping amplitude. A 
complex phase φij is introduced to the next nearest neighbor hopping t2. The magnitude of the phase is 
set to be |φij| =  φ, and the direction of the positive phase is anticlockwise (Note the net flux is zero in 
one unit cell). The Haldane model Hamiltonian can be written in the momentum space as:
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where ( )φ= +M t k1 cos y2
3
2

 and ( )φ= −M t k2 cos y2
3
2

. In comparison Eq. (2) with Eq. (3), if we take 
the real part Δ ei(π±θ) =  cos(π ±  θ), the form of this Hamiltonian is very similar to that in Eq. (2). This 
comparison gives us a straightforward understanding of the connection of the phase diagram of our 
model with which in the well-known Haldane model. For a spin-dependent system, we take ci =  (ci↑, ci↓) 
for spin-up and spin-down fermionic operators. Thus, the Hamiltonian in Eq. (1) can be extended to the 
spin-dependent one. From the same procedure as the spinless case to simulate the topology, the 
spin-dependent Chern number can be also defined in the (k, θ)-space under PBCs as 

∫ θ= (∂ − ∂ )σ π θ σ θσC dkd A Ak k
1

2
 (σ =  ↑  or ↓ ), where 

σ
Ak  and Aθσ are the spin-dependent Berry connec-

tion. Using these spin-dependent Chern numbers, a total topological invariant is constructed as 
ν =  (C↑ −  C↓)/2, which demonstrates the Z2-type topology. We can see that as long as the bulk gap does 
not close, the topology of the system will not change.

We notice that (TMTSF)2X materials exhibit a sequence of phase transitions between different 
FISDWs when the magnetic field is increased further18–21. Within each FISDW phase, the value of the 
Hall resistance remains constant, that is, the quantum Hall effect is observed. Considering these experi-
mental observations, we think the above phase diagram may be observed in this Q1D system. However, 
the above nontrivial topological properties of the systems depend on the FISDW vector G. When G is 
different from π, the system goes into metal states or a trivial insulator. We also notice that the FISDW 
vector G is determined by the applied magnetic field. Thus, we think the half magnetic-flux FISDW state 
can appear in this system when the magnetic field is controlled. In the real Q1D organic conductors 
(TMTSF)2X, the dimerization strength δt is far smaller than the FIDSW strength Δ . Considering this 
condition, the phase diagram shown in Fig. 3(b) may appear.

Summary
In summary, we explore the extended SSH model structure energy spectrum of the Q1D organic con-
ductors subject to the FISDW state. We find that energy spectrum can exhibit topologically nontrivial 
phases when the system is in the half magnetic-flux FISDW state. The topologically nontrivial phases due 
to FISDW and the dimerization effect are also investigated theoretically. We find that the topologically 
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nontrivial phases can be characterized by a nonzero Chern number. The nontrivial evolution of the 
bulk bands with the dimerization in the topological phase transition is discussed. We find that the sys-
tem shows a similar phase diagram to that using the Haldane’s model. These studies enrich theoreti-
cal research on Haldane topological phase in the Q1D lattice system in comparison with that in the 
two-dimensional lattices.
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