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Genome-wide DNA methylation 
map of human neutrophils reveals 
widespread inter-individual 
epigenetic variation
Aniruddha Chatterjee1,2, Peter A. Stockwell3, Euan J. Rodger1, Elizabeth J. Duncan2,4, 
Matthew F. Parry5, Robert J. Weeks1 & Ian M. Morison1,2

The extent of variation in DNA methylation patterns in healthy individuals is not yet well 
documented. Identification of inter-individual epigenetic variation is important for understanding 
phenotypic variation and disease susceptibility. Using neutrophils from a cohort of healthy 
individuals, we generated base-resolution DNA methylation maps to document inter-individual 
epigenetic variation. We identified 12851 autosomal inter-individual variably methylated fragments 
(iVMFs). Gene promoters were the least variable, whereas gene body and upstream regions showed 
higher variation in DNA methylation. The iVMFs were relatively enriched in repetitive elements 
compared to non-iVMFs, and were associated with genome regulation and chromatin function 
elements. Further, variably methylated genes were disproportionately associated with regulation of 
transcription, responsive function and signal transduction pathways. Transcriptome analysis indicates 
that iVMF methylation at differentially expressed exons has a positive correlation and local effect on 
the inclusion of that exon in the mRNA transcript.

Methylation of DNA is a mechanism for regulating gene function in all vertebrates. It has a role in gene 
silencing, tissue differentiation, genomic imprinting, chromosome X inactivation, phenotypic plasticity, 
and disease susceptibility1,2. Aberrant DNA methylation has been implicated in the pathogenesis of sev-
eral human diseases, especially cancer3–5.

Variation in DNA methylation patterns in healthy individuals has been hypothesised to alter human 
phenotypes including susceptibility to common diseases6 and response to drug treatments7. The impact 
of epigenetic variation in modulating gene expression and phenotypic traits has been demonstrated in 
cloned animals8 and model organisms9.

Although the potential effects of DNA methylation variation has been speculated10, firm evidence of 
variable methylation between healthy human individuals is relatively limited. Recently, variable methyl-
ation has been described in different ethnic population11–14. Previous documentation of inter-individual 
variation in DNA methylation has been affected by the use of mixed cell types in cord or whole blood 
12,15,16 or peripheral blood leukocytes17. Different cell types exhibit distinct DNA methylation patterns18,19 
and these differences contribute substantially to inter-individual DNA methylation20. A recent large-scale 
epigenomic map revealed substantial variation between human tissue types, further suggesting use of 
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mixed cell types can confound discovery of inter-individual variation21. Few studies have attempted to 
investigate DNA methylation variation in an individual cell type22,23.

Here we present single-nucleotide resolution DNA methylation maps from 11 healthy individuals, 
using Reduced Representation Bisulfite Sequencing (RRBS). We choose neutrophils as these are an acces-
sible, abundant and homogeneous cell type. Implementing a novel fragment-based analysis approach24, 
we identified genomic regions that showed significant inter-individual variation in DNA methylation. We 
explored methylation variation in different elements of the genome (promoters, gene body and regions 
far upstream of the gene) and integrated them with gene regulatory features (such as transcription factor 
binding sites (TFBS), histone marks and enhancers) and repetitive elements to gain a perspective on 
the potential role of methylation variation in genome regulation. Further, we determined that variable 
methylation is associated with differential gene expression and exon usage, providing a mechanism by 
which variable methylation might affect the phenotype of these individuals.

Results
Features of neutrophil methylome.  We used enriched neutrophils (median purity =  96%) from 
the peripheral blood of 11 healthy individuals to generate DNA methylation maps (Supplementary Table 
S1). A total of 12 neutrophil methylomes, including a technical replicate, were generated using RRBS 
and 340 million sequenced reads were obtained. Unique alignment efficiency ranged from 55.5% to 
72.4% (median =  67%, Supplementary Table S2). The distribution of read coverage of CpG sites sug-
gested that PCR-induced amplification bias of the libraries was negligible (Supplementary Fig. S1). 
The median bisulfite conversion rate was calculated to be > 98%, assuming that all non-CpG methyl-
ation was due to inefficient bisulfite conversion. As expected the neutrophils showed a bimodal distri-
bution of DNA methylation (Supplementary Fig. S2). The level of DNA methylation was significantly 
lower in promoters (median =  3.0%) and core CpG islands (CGI) (median =  2.4%) than in gene bodies 
(median =  17.4%) and regions upstream from genes (median =  87.8%) and CGI shore (median =  88.2%) 
and shelf (median =  82.3%) (ANOVA test, P-value < 2 ×  10−16; Supplementary Fig. S3-S4). Exons showed 
significantly lower levels of methylation compared to introns (9.9% vs. 83.3% median methylation; 
Supplementary Fig. S5). To assess the technical reproducibility, we compared methylation of fragments 
of two replicates by using a Bland-Altman plot, in which the 95% limits of agreement were − 11.7% to 
11.5% methylation. The graphical presentation of agreement (Supplementary Fig. S6) demonstrates high 
reproducibility of RRBS data, in agreement with previous reports25,26.

Identification of inter-individual variably methylated fragments (iVMFs).  To investigate 
inter-individual DNA methylation variation we used MspI fragments (40–220 bp in size, median size of 
the fragments =  104 bp, average fragment size =  111.5) as the unit of analysis24. To filter fragments that 
were suitable for analysis, first we selected the fragments having 10 or more reads at ≥ 2 CpG sites in each 
individual (Supplementary Table S3). Of the predicted in silico 647,626 MspI fragments within an RRBS 
genome (40–220 bp sized fragments), the number of qualifying fragments per individual ranged from 
115,141 to 347,536. From these qualifying fragments 64,934 MspI fragments (containing 432,957 CpG 
sites) satisfied the inclusion criteria in at least 9 of the 11 sequenced individuals. Henceforth, these are 
referred to as the “analysed fragments”. A Chi-square distribution test was then performed on the ana-
lysed fragments across these individuals to identify fragments with the largest variability (Supplementary 
Fig. S7).

We identified 14,489 inter-individual variably methylated fragments (iVMFs) that exceeded our sig-
nificance threshold (Bonferroni adjusted cut off P-value =  1.54 ×  10−8). These iVMFs comprised 22.3% 
of the analysed fragments, and 2.2% of the in silico MspI-digested reduced representation (RR) genome 
(40–220 bp fragments). These iVMFs contained 92,013 CpG sites, which comprised 21.3% of those con-
tained within the analysed genome and 2.3% of those contained within the in silico MspI digested RR 
genome.

Comparison of Chi-square test with other methods for detecting variable methyla-
tion.  Although the distribution of methylation data is not well characterised, other groups have meas-
ured methylation variability using standard deviation (SD) methods13,16. We compared the Chi-square 
statistics with SD to assess how these two methods detect variability in our cohort. For this comparison 
we first plotted the mean DNA methylation against the SD for all the analysed fragments (plotted in red 
in Fig. 1A), then overlaid the iVMFs (plotted in blue) as detected by the Chi-square test. The expecta-
tion was that the iVMFs would show higher SD compared to the total analysed fragments. In fact, the 
median SD of the iVMFs was 7.68 compared to 3.55 for all fragments analysed (the median SD of the 
non-variable fragments was 2.99). However, the iVMFs with very high or very low levels of methylation 
had low SDs. We performed a similar comparison using a coefficient of variation (CV). We calculated 
a modified CV to account for the DNA methylation scale of 0 to 100% (Fig. 1B). Although the use of 
CV slightly improved the separation of iVMFs from analysed fragments compared to SD, the iVMFs 
with high and low methylation still showed relatively low CV, compared to iVMFs with intermediate 
methylation.

DNA methylation close to 0 or 100% necessarily leads to a low SD as methylation tends to be tightly 
clustered around these extremes. To enhance visualisation we log-transformed the SD or CV values and 
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performed a logit transformation (log odds) of methylation. After the transformation, the iVMFs showed 
much more obvious separation from the non-variable fragments based on (log) SD (Fig.  1C) or (log) 
modified CV (Fig. 1D).

Chromosome-wise distribution of iVMFs.  Chromosome-wise distribution of iVMFs and in silico 
RR genome fragments revealed that neither the iVMFs nor the RR genome follow the length distribution 
of the chromosomes, possibly due to the different frequencies of CCGG sites within them. For most of 
the chromosomes (17 out of 24), the proportion of iVMFs per chromosome was less than that for the RR 
genome, and of these chromosomes 1, 3, 15 and 17 showed significantly lower levels of variable methyl-
ation (P <  0.0001, Chi-square test). However, chromosomes 21 and X showed significantly higher levels 
of variation (P <  0.0001) (Fig. 2). Chromosome X showed a striking increase in iVMFs (11%) compared 
to the distribution of the RR genome (3.6%). As our cohort included six females this result was expected 
and served as a useful internal control since in females one X chromosome is inactivated by heavy meth-
ylation. 55.2% of the iVMFs in the X chromosome were in gene bodies, concordant with the finding 
that the active X chromosome exhibits significant difference in gene body methylation between male 
and female27. We attempted to further address whether inter-individual variation identified could be is a 
by-product of sex differences and performed differential methylation analysis between male and female 
groups (with ANOVA, using DMAP24 package). After multiple test correction (using Bonferroni correc-
tion at significance level of 0.05), none of the analysed 41464 fragments remained significant between 
male and female groups. Next, ignoring P-value, we analysed fragments that showed a mean methylation 
difference of 20% or higher between male and female groups and identified 110 fragments. We found 
102 fragments were hypermethylated in females compared to males (median difference =  22%) and only 
8 fragments were hypermethylated in male subjects compared to females (median difference =  25%) 
and 91 of these 110 fragments (83%) were located in chromosome X. These data suggest that number 
of differentially methylated fragments between our male and female groups is negligible and autosomal 
chromosomes are least likely to be affected by sex specific variation in healthy individuals. The allosomal 

Figure 1.  Visualisation of variable methylation: comparison of SD, CV and transformation methods 
with Chi-squared test. (A) Standard deviation (SD) vs. mean DNA methylation. (B) Coefficient of variation 
(CV) vs. mean DNA methylation. CV was calculated as CV =  SD divided by the square root of (mean*(100-
mean)/n), where n is the number individuals sampled. (C) The x-axis shows log odds of methylation, 
defined as log mean/(100-mean). The y-axis shows log of SD. (D) Log odds of methylation vs. log of CV. 
Red dots represent all autosomal fragments analysed including the iVMFs. Autosomal iVMFs (blue dots) are 
overlaid on all analysed fragments.
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iVMFs were excluded to avoid potential sex-specific effects, resulting in 12,851 autosomal iVMFs for 
further analysis (Supplementary Table S10).

Genomic distribution of iVMFs.  The autosomal iVMFs were mapped to their nearest protein coding 
gene (Fig. 3A). Overall, 9.8% of the iVMFs were located in promoters (defined as up to 5 kb upstream 
from the start of the gene). Within the promoter-associated iVMFs, 15% showed direct overlap with the 
transcription start site (TSS) of known protein-coding genes (Fig. 3B). Interestingly, 50.4% of the iVMFs 
reside within the gene body (includes exon, introns and exon/intron or intron/exon boundaries). Of the 
6481 gene-body-associated iVMFs, 62.9% were found to be in introns and 28.0% in exons. A small pro-
portion of the iVMFs were found to be in exon/intron and intron/exon boundaries (Fig. 3C). We found 
37.2% of the iVMFs were located more than 10 kb upstream from the nearest gene start site (defined as 
distant iVMFs).

We sought to determine whether this iVMF distribution in genomic features merely reflects the 
distribution of analysed fragments or whether different elements in the genome biologically differ in 
methylation variability. Therefore, we assigned a variability score (VS) to each of these genomic features 
by dividing the number of iVMFs with the number of analysed fragments for that feature. Promoter, 
gene body and distant regions had a variability score of 0.16, 0.20 and 0.24 respectively; gene promoters 
were significantly less variable compared to other genomic regions (P =  0.0001). Moreover, the variability 
score showed consistent increments with distance from the promoter (Fig.  3E). The lowest variability 
score of 0.15 was found in the region of 0 - 2 kb upstream of the transcription start site. Within the gene 
body, there was no significant difference between the variability within the exons, introns, intron/exon 
boundaries and exon/intron boundaries.

The distribution of iVMFs within CpG features (CGI core, shore (flanking 2 kb either side of the core 
CGI) and shelf (flanking 2 kb either side of the CGI shore)) was investigated. 65.3% (8392) of the iVMFs 
were located within one of these CpG features. It was found that 23.0%, 41.0% and 1.3% of the iVMFs 
were within CGI cores, CGI shores and CGI shelves respectively (Fig. 3D) similar to the distribution of 
analysed fragments (24.0%, 39.9% and 1.3% respectively) (Supplementary Table S4).

The mean number of CpG sites per fragment were significantly higher in iVMFs (promoter, gene body 
and distant fragments) compared to the non-variable fragments (P =  0.0001) (Supplementary Table S5),  
suggesting that although the iVMFs were not enriched for a particular CpG feature, their mean CpG 
density is higher than the analysed non-variable fragments.

Genome regulation and variable methylation.  To determine whether variable DNA methylation 
is enriched within regions with particular chromatin states or regulatory roles, we integrated the iVMFs 
with publicly available data for gene regulatory elements (ENCODE consortium28). The promoter, gene 
body and distant iVMFs were separately analysed in the EpiExplorer platform29 to determine their overlap 
with gene regulatory features. We focused our comparison with the annotated features of the K562 cell 
line (derived from human chronic myelogenous leukemia)30 as, of the nine annotated cell types available, 

Figure 2.  Chromosome-wide fragment distribution of iVMFs and the in silico RR genome. For RR 
genome, the % of RR MspI fragments was calculated for each chromosome (number of fragment in RR 
genome of 40–220 bp =  647,626). Statistical significance was calculated with Chi square test (with Yates 
correction, ****P <  0.0001).
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this cell line is the most closely related to neutrophils. However, K562 will show many differences in 
transcription factor expression, histone marks and regulatory elements than those in neutrophils.”

For this comparison, iVMFs with either a significantly higher or lower proportion (P <  0.05) of 
overlap within a feature compared to non-variable fragments were referred to as either “enriched” or 
“depleted” respectively (Supplementary Table S11). Promoter and gene body iVMFs were enriched in 
weakly transcribed regions in the genome. All three categories of iVMFs (distant, promoter and gene 
body) were depleted in polycomb-repressed regions and were enriched in repetitive elements. Whereas 
simple repeats and low terminal repeats follow this trend, long interspersed elements (LINE) were only 
enriched in gene body and distant iVMFs. On the other hand, short interspersed elements (SINE) were 
enriched in promoter iVMFs but depleted in gene-body and distant iVMFs. Distant iVMFs were depleted 
in conserved regions and insulator elements (Fig. 4A–C and Supplementary Table S11).

Different histone modification marks have distinct roles and distribution across the genome31. We 
compared the association of iVMFs with 12 major histone modification marks (10 active marks and 2 
repressive mark) with that for the non-variable fragments. The promoter iVMFs were depleted for the 

Figure 3.  Landscape of iVMFs in different genomic elements. (A) Overall distribution of the iVMFs in 
genomic elements. (B) Distribution of the iVMFs around transcription start site and regions upstream from 
the start of the gene. (C) Distribution of the iVMFs in the gene body elements. (D) Distribution of the 
iVMFs in different CpG feature. (E) Schematic landscape of DNA methylation variability across the genome. 
For each feature variability score was calculated as the number of iVMFs/number of analysed fragments for 
that feature. Each circle on x-axis represents the variation score of a genomic feature.
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following active marks: H3K4me1, H3K4me2, H3K9me1 and H4K20me1(as described by Barski et al.32 
and designated as active promoter state by Ernst and Kellis31). In addition to these active marks, pro-
moter iVMFs were also depleted for the repressive mark H3K27me3. On the other hand, the promoter 
iVMFs were enriched for the active mark H3K36me3 and the repressive mark H3K9me3. The gene body 
iVMFs showed depletion for the majority of the histone marks (for eight active and one repressive mark). 
The distant iVMFs were also depleted for most histone modifications (9 out of 12), except H3K4me1 
(active mark) and H3K9me3 (repressive mark), for which they were significantly enriched (Fig.  4D–F, 
and Supplementary Table S11).

One of the mechanisms by which DNA methylation can regulate gene expression is by modulating 
the binding and interaction of transcription factors (TF) with DNA33. We analysed the overlap of iVMFs 
with 20 major transcription factor binding sites. The promoter iVMFs did not show significant asso-
ciation with most transcription factors except in PU1 sites where iVMFs were enriched and in USF1 
sites where they were depleted. All three categories of iVMFs (distant, promoter and gene body) were 
enriched for transcriptional regulator Kaiso. The gene body iVMFs showed depletion for 10 out of 20 
TF binding sites and no association with the remaining 9 TFs. The distant iVMFs also showed signifi-
cant enrichment for several transcription factors binding sites (GABP, PU1, BCLAF1, SRF, SIX5, USF1, 
ATF3, SIN3AK20, MEF2A) (Fig. 4G–I). It is possible that some of these results could be influenced by 
genotypic variation between the individuals (see discussion for detail).

Figure 4.  Comparison of the overlap of iVMFs with regulatory feature and chromatin state maps. 
Overlap of iVMFs was compared with the non-variable fragments for the same feature. (A–C) Overlap 
comparison of all three categories (promote, distant, gene body) of iVMFs with genome regulatory feature. 
(D–F) Overlap comparison with major histone modification marks. (G–I) Overlap comparison with major 
transcription factors. Statistical significance was calculated with Chi-square test (with Yates correction) and 
features with P <  0.05 are indicated by an asterisk.



www.nature.com/scientificreports/

7Scientific Reports | 5:17328 | DOI: 10.1038/srep17328

Identification of variably methylated genes.  To generate a list of highly variable methylated genes 
(VMGs), the 12,851 autosomal iVMFs were associated with 6353 protein coding human genes. Then 
iVMF frequency was calculated, i.e., assigning the number of iVMFs associated with each gene. We 
found 1298 genes had three or more associated iVMFs (Supplementary Table S6). A variability score was 
assigned to each of these genes by dividing the number of associated iVMFs by the number of analysed 
fragments for that gene. Of these 1298 genes, 441 showed a variability score of ≥ 0.5; i.e., more than 
half of the analysed fragments were variable (Supplementary Table S12). For this analysis, no limit was 
imposed on how far upstream an iVMF can lie from these genes.

To identify VMGs present within functionally important regions (promoter, gene body, enhancer 
and insulator), a variability score was assigned to fragments within each functional category (regions 
containing < 3 iVMFs were not considered). We identified 29, 240, 4 and 8 genes that showed high var-
iability (≥ 0.5) in their promoter, gene body, enhancer and insulator elements respectively (Table 1 and 
Supplementary Table S12; 10 genes were included in more than one category, Supplementary Fig. S8).

Overlap of variable genes with previous genome-wide studies and assessment of tissue 
specificity in iVMFs.  We compared our data with three previously published genome-wide stud-
ies in relation to our candidate variable genes. Of the five previously reported human gene-associated 
metastable epialleles (in peripheral blood leukocytes of rural Gambian children)17, one appeared in our 
list of top variable genes (ZFYVE28 with 9 iVMFs and variability score =  0.69). The variable nature of 
ZFYVE28 was also reported by another independent study34. Another metastable epiallele at PAX8 that 
was previously validated in human also appeared in our initial list (PAX8 with 7 iVMFs and variability 
score =  0.41); however, PAX8 was not among our top variable genes as its variability score was < 0.5.

Feinberg et al. reported 212 variably methylated genes in whole blood from their use of compre-
hensive array-based relative methylation (CHARM) analysis16. Of these, 121 were within the promoter 
region (< 5 kb upstream of the gene). Six genes appeared in both lists. This degree of overlap was 
expected by chance (P =  0.60, hypergeometric test). Harris and colleagues previously reported 1013 pro-
moter and gene body associated metastable epiallele genes34. When we compared our promoter and gene 
body associated VMGs (271 genes) with that of Harris, we found highly significant overlap of 43 genes 
(P =  1.75 ×  10−7, hypergeometric test). Further, two genes were identified that were common between 
the three independent studies (our study, Feinberg et al. and Harris et al.; Supplementary Boxes 1–6). 
The differences in the number of overlapping genes between these studies could be attributed to the 
mixed cell type used in the previous studies, the platform used for DNA methylation analysis and false 
discovery rates (FDR).

After performing the Chi-square test, we used a stringent Bonferroni correction to derive a cut-off 
P-value for filtering iVMFs. After applying the Bonferroni correction, a large number of fragments 
remained significant. Use of different multiple correction method could yield different lists of differen-
tially methylated regions and therefore could explain some of the differences between our study, Feinberg 
et al. and Harris et al. studies (see Supplementary Table S9 and description of statistical test to iden-
tify inter-individual variably methylated fragments section in Supplementary Information 1 for detailed 
explanation on statistical methods for methylation analysis).

To assess potential influence of tissue-specific DNA methylation variation in the identified iVMFs, 
we compared our iVMF data with previously published CpG sites that were differentially methylated 
among different blood cell types. We have analysed the overlap of our 12851 iVMFs with 1865 differ-
entially methylated CpG sites between different purified blood cell types (CD4+  T cells, CD8+  T cells, 
NK cells, B cells, monocytes, granulocytes, eosinophils, neutrophils and whole blood) reported from 

Functional 
category

Variable 
genes1

Overlap 
with list of 
441 VMGs2 Genes3

Promoter 29 21
NSD1, KLHDC7B, PRCP, MED31, 
LHX8, ENOSF1, DHX32, CMYA5, 

C2orf84, AL355149.1

Gene body 240 192
DHX32, SUSD1, HSPB6, HOXA5, 

FBXO41, EML3, ZSWIM4, ZNF578, 
UGGT2, PRRX2

Enhancer 4 1 IL4I1, PPP1R26, RP3-377D14.1, 
ETV3

Insulator 8 6 KCNK15, RIN3, ZBTB46, PRRX2, 
F12, SP6, ANAPC2, MAPK11

Table 1.  Summary of variably methylated genes. 1The genes that showed VS of ≥ 0.5. 2The lists of variably 
methylated genes (VMGs) for a particular region was overlapped with the overall list of 441 genes. 3For the 
promoter and gene body, the top 10 genes with VS of 1.0 are shown. Complete lists are in Supplementary 
Table S12.
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previous genome-wide studies19,35. We found only 13 out of these 1865 CpG sites (0.7%) overlapped with 
11iVMFs. These results further demonstrate that the iVMFs detected in this study are not influenced by 
tissue-specific methylation variation.

DNA methylation and gene expression.  We performed RNA-Seq on neutrophil RNA from four 
individuals in our cohort to explore the association of DNA methylation with gene expression. As 
expected, DNA methylation of core CGIs was negatively associated with expression of corresponding 
genes: fragments with 0–30% CGI methylation were associated with higher expression compared to the 
highly methylated (> 70%) fragments (Fig. 5A, P <  0.05, ANOVA with a Tukey HSD post-hoc test). To 
investigate the effect of methylation around the TSS on gene expression we used different windows to 
define promoters. This inverse association between methylation and gene expression was strongest for 
fragments located 0–500 bp downstream of the start of the gene (P =  3.5 ×  10−16, Fig. 5B). This inverse 
association became weaker with increased distance upstream of the gene start and > 3000 bp upstream 
of the gene the inverse association was no longer significant (Supplementary Table S7).

At the level of individual exons, highly expressed exons showed higher levels of DNA methylation 
(Fig. 5C; Supplementary Fig. S9-S10). Two examples were CYBA (r =  0.68 and P =  8.3 ×  10−9) and SIRT6 
(r =  0.67 and P =  7.5 ×  10−5) genes (Fig. 5D,E).

Within the four RNA samples, differential expression was identified for 257 genes (false discovery 
adjusted P ≤  0.01). Similarly, 1857 genes contained promoter or gene body iVMFs in these four individ-
uals (these iVMFs were re-derived using methylation data for the four individuals as described above for 
the 11 individuals). When the differentially expressed genes were overlapped with genes that contained 
iVMFs in their promoter or gene body, 24 genes were in common. Of these 24 genes, three genes con-
tained iVMFs in their promoters (MAP7D2, PROK2, GATA2). The other 21 genes contained iVMFs in 
their body.

Since DNA methylation has been linked with alternative exon usage36 we sought to determine the 
extent to which variation in methylation is associated with exon usage. Using the DEXseq37 package 
we identified exons that were differentially expressed. 78 iVMFs (re-derived for these four individuals) 
directly overlapped differentially expressed exons. The level of methylation at these iVMFs was positively 
correlated with inclusion of the exon in the mRNA transcript (r =  0.48, P =  2.2 ×  10−16) (Fig. 5F). As a 
control, the correlation of iVMF methylation was much weaker with the expression of the upstream 
(r =  0.17, P =  0.004, Fig. 5G) or the downstream exon (r =  0.20, P =  0.0008, Fig. 5H). These results sug-
gest that methylation level of an iVMF has a local association with the expression of the iVMF-containing 
exons but not the adjacent exons.

Functional enrichment of variably methylated genes.  We investigated whether variably meth-
ylated genes are disproportionally involved with particular biological functions. For this analysis, we 
restricted our list to 271 genes that contained iVMFs only in promoter, gene body, enhancer and insula-
tor. The variably methylated genes were significantly enriched for regulation of transcription, gland devel-
opment, organ morphogenesis and chromatin remodeling related genes. Interestingly, genes with high 
level of expression in brain genes were significantly enriched in the list of variable genes (Supplementary 
Table S8 and Supplementary Table S13).

Discussion
DNA methylation can be interrogated by using different units of analysis (e.g., single CpG sites, fragments, 
or tiling windows). To investigate DNA methylation variation, we chose MspI fragments as the unit of 
analysis24, since biological relevance tends to be associated with regional methylation and since the use of 
fragments integrates the information from multiple CpG sites, thereby minimising sampling variation38. 
Use of large tiling windows (e.g. 1000 bp) is a common approach; however for RRBS, the majority of 
genomic windows will not contain sequenced reads or will have partial inclusion of MspI-digested frag-
ments. Further, if a region is variably methylated, use of a large window might obscure this variation38.

Variable promoter DNA methylation has been previously reported in normal individuals39. A small 
proportion of the iVMFs that we identified were in promoters (9.8%) and we showed that the distance 
from the gene promoter correlated with increased methylation variability, demonstrating that promoters 
are the least variable regions in the genome. This observation is consistent with the hypothesis that gene 
promoters are epigenetically conserved, usually having low levels of methylation to prevent mutations 
and requiring tight regulation for proper functioning of the genome40 and therefore cannot accommo-
date large degree of variation. The variably methylated promoters showed higher CpG density than the 
non-variable promoters. Promoters with low CpG content generally show high methylation and mainly 
overlap tissue-specific genes, whereas the high CpG promoters generally have low methylation and are 
associated with broadly expressed genes41,42. This suggests that genes associated with promoter iVMFs 
are more likely to be expressed in many tissues. The variable promoters were enriched in “weakly tran-
scribed regions” consistent with their depletion for highly active histone marks (such as H3K4me1 and 
H3K4me2).

The extent of genome-scale epigenetic variation and its association with repetitive elements has not 
been explored. We show significant enrichment of repetitive elements in iVMFs. Simple repeats and 
LTRs were particularly enriched in all three different categories of iVMFs. SINE elements were enriched 
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Figure 5.  DNA methylation and gene expression relationship. Methylation of CpG island cores (A) and 
promoters (B) negatively associated with gene expression (y-axis, plotted as fragment per kb per million 
reads or FPKM). Bars that do not share a letter are significantly different. For (B), DNA methylation of 0 
to +  500 bp region (downstream) from transcriptional start site was plotted against expression (see more 
details in Supplementary Table S7). (C) Expression of individual exons is positively correlated with DNA 
methylation on that exon. For significance tests in the above figures, ANOVA with a Tukey HSD post-hoc 
test was used and P <  0.05 was considered significant). (D–E) Two examples of positive correlation between 
individual exon methylation and gene expression (log 2 of read counts for the exons were plotted in x-axis): 
cytochrome b-245 alpha polypeptide (CYBA) (r =  0.68 and P =  8.3 ×  10−9) and sirtuin6 (SIRT6) (r =  0.67 
and P =  7.5 ×  10−5) genes. (F) Methylation and expression of 78 exons where iVMFs directly overlapped 
differentially expressed exons, (G) exons upstream to these directly overlapped iVMFs and (H) exons 
downstream to these directly overlapped iVMFs.
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in promoter iVMFs but were depleted among gene body and distant iVMFs. Retrotransposons, when 
close to CpG islands, can act as methylation control centers43,44 and the overlap of transposable ele-
ments with specific enhancer marks can regulate tissue-specific functions45. Our analysis shows greater 
epigenetic variation in repetitive elements compared to other elements of the genome suggesting that 
repetitive elements perhaps serves as a reservoir to harbor variably methylated loci. Considering more 
than half of the human genome contains repetitive elements46, variation in even a small proportion of 
these elements has the potential to contribute to epigenetically-induced phenotypic variation. This find-
ing opens up a new avenue for exploring the functional role of epimutations in repetitive elements in 
healthy individuals.

This study and previous reports show that global CpG methylation generally follows a bimodal dis-
tribution pattern47,48. However, at individual CpG sites or in a contig of CpG sites, the distribution of 
methylation values are not well characterised. We chose to assess variation in DNA methylation using 
the Chi-square test as it does not assume any particular distribution. Comparative analysis showed that 
although significantly variable with Chi-square, a substantial proportion of the iVMFs (where average 
methylation of the individuals were close to 0 or 100%) had low standard deviations. This is exempli-
fied in the top candidate variable region of DHX32-FANK1 gene (variability score =  1.0) that contained 
11 iVMFs (Fig. 6A). For iVMF 5, DNA methylation between individuals ranged from 2.46% to 17.7% 
(mean =  6.34, SD =  4.09), whereas for iVMF 4 it was 26.7% to 68.1% (mean =  50.5, SD =  12.3). For lowly 
or highly methylated fragments the methylation variation was detected by Chi-square test but not with 
SD. We showed that transformation of the SD or CV to log odd ratios of methylation improved the vis-
ible separation of variably methylated fragments compared to the non-variable ones. Nevertheless, the 
Chi-square test treats each methylation count as an independent observation, and correlation between 
the methylation of neighbouring CpG sites will have an effect on the significance estimation.

In some previous studies it has been demonstrated that adjacent CpG sites are likely to show cor-
related DNA methylation levels49,50. However, we noticed for several iVMFs, the methylation pattern 
between the adjacent CpG sites showed notable variation (Fig. 7 shows an example of such an iVMF). 
Although we cannot draw conclusions about the biological effect of different methylation at adjacent 
CpG sites, the methylation status of these CpG sites could, for example, regulate binding of transcription 
factors51 or of the insulator protein CTCF52. Further, this observation is from a relatively homogene-
ous cell population of neutrophils and therefore cannot be attributed to mixed cell types53. These data 
demonstrate the enormous complexity of methylation patterns even between homogenous cells, giving 
rise to further opportunities for studying cell-to-cell and inter-individual differences.

The functional relationship and the influence of DNA methylation on transcription factor binding 
have recently begun to be appreciated. A recent analysis reported notable variability in DNA meth-
ylation between transcription factor binding sites (TFBS) and gene expression (25,000 TFBS and 164 
motifs)54. Inter-individual methylation variation could have broad implications in determining TF bind-
ing. For example, we observed that promoter and distant iVMFs showed enrichment for PU.1 binding 
sites. High levels of methylation of PU.1 sites cause silencing of adjacent genes; however, removal of 
methylation at these sites permits initiation of transcription, as shown in erythroid differentiation and 
monocyte-to-osteoclast differentiation55,56. All three categories of iVMFs showed enrichment for tran-
scription regulator Kaiso binding sites. The methylation status of these binding sites has been shown to 
regulate binding of Kaiso to its target sequence57,58. Predicting the effects of variable methylation at TFBS 

Figure 6.  DNA methylation of individuals for DHX32-FANK1 and NSD1 gene promoter. (A) DHX32-
FANK1 region contained 11 iVMFs within a 942 bp region (chr 10:127585282-127584340) with 3 promoter 
fragments being in the promoter and 8 fragments being in the first intron of the gene. iVMFs 1–3 reside in 
the promoter and iVMFs 4–11 in the intron. (B) NSD1 promoter contained 5 iVMFs within 543 bp region 
(chr 5: 176559108-176559651). Each dot represents an individual. iVMFs are drawn in yellow and CpG 
island (CGI) is drawn in green.
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is problematic, but epigenetic variability at transcription binding sites is likely to be a mechanism for 
variable gene transcription between individuals.

Our analysis suggests that the relationship between DNA methylation and gene expression in neu-
trophils is complex. It has been shown that the DNA methylation status of exons can control binding 
of insulator elements, such as CTCF, and that this can promote inclusion of a particular exon in a 
transcript36. Here we demonstrate that methylation of exons and introns have different effects on gene 
expression. A small number of iVMFs overlapped with differentially expressed exons and methylation of 
these iVMFs were positively correlated with inclusion of the exons in the corresponding transcript. This 
suggests that variable methylation is associated with exon inclusion, resulting in functional differences 
in the mRNA transcript and the protein produced. Additional observations will be required to clarify 
whether methylation promotes inclusion through transcriptional pausing36 or alternatively whether it 
occurs as a consequence of transcribed open chromatin59.

Functional enrichment analysis of variably methylated genes indicated that they were enriched for 
functions relating to regulation of transcription and Chromatin remodelling confirming their potential 
role in genome regulation. Further, gene ontology analysis suggested that the variable genes are likely to 
be highly expressed in brain tissue. Epigenetic events have been shown to have roles in memory forma-
tion, learning, brain development, establishment of neuronal identity and neurological disorders60–63. In 
the context of the present study, if epigenetic variation rises at a very early stage of life (before lineage 
commitment), then these changes will propagate in other cell types. In that case, the majority of early 
origin epigenetic variation detected in neutrophils could also be observed in brain. In fact, highly corre-
lated DNA methylation patterns between brain and blood has been reported64,65.

The BLUEPRINT project is in the process of generating epigenomic profiles of at least 100 different 
blood cell types including neutrophils from healthy and diseased individuals. The analysis modules include 
whole genome DNA methylation, RNA-Seq, Chip-Seq, Nucleosome detection, DNase-hypersensitive 
sites and co-occurring transcription factors analysis66. Our data provides genome-wide methylation and 
RNA-Seq profiles from a cohort of normal individuals of different ethnicity. These data are complemen-
tary to the BLUEPRINT initiative and provide an additional resource. Further, the BLUEPRINT data 
provide an opportunity to integrate the multiple levels of epigenomic data to prioritise candidate iVMFs 
that might have role in non-communicable human disease and explore the functional consequences of 
variable methylation in larger cohorts. For instance, if epigenetic variation was detected in the promoter 
of a gene having role in growth, fat metabolism, diabetes or asthma, it will be possible to examine the 
association of the methylation with the relevant phenotype in a larger cohort to demonstrate the con-
sequences of epipolymorphism. For example, we have identified striking DNA methylation variability 
in nuclear receptor SET domain containing protein-1 (NSD1) gene promoter (variability score =  1.00, 
analysed fragment =  5, iVMFs =  5, Fig. 6B) among the individuals. NSD1 has been associated with Sotos 
syndrome and Weaver syndrome and downregulation of NSD1 protein disrupts the normal activity of 
genes involved in growth and development67,68. Evidence for epigenetic inactivation of NSD1 in human 
cancers also exists69. With whole genome data from larger cohort of individuals with good phenotypic 
description, it will be possible to test whether DNA methylation variation in gene (such as NSD1) are 
responsible for altering disease susceptibility or phenotypic traits in normal individuals”

In relation to our study it is important to consider the contribution of genetic variation in determin-
ing inter-individual DNA methylation variation. Several studies have established that genetic variation 
(polymorphism) can influence DNA methylation status26,70–72. It has been shown that DNA methylation 
patterns of genetically related individuals tend to be similar when compared to unrelated ones26 and 
populations of similar genetic origin were closely related compared to other populations11, suggesting 
genetic influence on epigenetic profiles. However, there is no consensus on the extent to which genetic 
polymorphisms (e.g., SNPs) influence DNA methylation in an individual. A note here is that studies 
of association between methylation and SNPs were performed to quantify allele-specific methylation 
(ASM) variation only. However, recent reports suggest that the number of methylated CpG sites affected 

Figure 7.  Methylation of adjacent CpG sites in KRTCAP3-associated iVMF (chr2: 27665237-27665315). 
The 79 bp fragment contained 11 CpG sites. CpGs (1–11) are shown in horizontal axis and individuals (S1-
S11) are shown in vertical axis. White (0%) to red (100%) represents DNA methylation scale.
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by SNPs is small. Hellman et al. reported that common SNPs are present in only 10% of the regions 
that have a difference in DNA methylation between the two alleles in related and unrelated individuals73 
and independent analysis provided further support for these data12. Analysis, including multiple ethnic 
groups, indicated that genotype can explain ~25% of the variable methylation regions14. Importantly, an 
RRBS study of a three-generation family showed that, among all investigated CpG sites (~1 million with 
10 or more sequenced reads), less than 1% of the CpG sites were involved with ASM events26 suggesting 
that influence of SNPs in CpG site methylation in RRBS genome is small. Further, ASM events were 
found mainly in intergenic regions and outside CpG islands and showed low levels of evolutionary con-
servation26. Further, a recent large-scale analysis indicated although the genotypes of different ethnicity 
clusters separately and a clear distinction of population can be made by genotype. However, epigenetic 
profile of the same populations were dispersed and they couldn't be distinguished based on their DNA 
methylome unlike genotype14. This result suggests that potential for DNA methylation variation in indi-
viduals is larger than genotypic variation.

In our RRBS experiment the methylation profile of any fragment was expected to be derived from 
both alleles (ideally 50% from each allele). Therefore, the methylation profile of fragment is a mean of 
methylation of both alleles. If there is allele-specific methylation bias, then we will not be able to detect 
it with our method. Genetic vs. epigenetic variation comparison is not possible when methylation infor-
mation of two alleles are mixed. Additionally, alignment of sequenced reads will ignore C to T SNPs in 
forward strand reads and G to A SNPs in reverse strand reads, because a C to T match in forward strand 
reads will be treated as an unmethylated. C to T and G to A SNPs consists 30% of all human SNPs26.

MspI cuts the genome at C’CGG sites, so if an individual has a SNP in the recognition site, then 
the fragment will be missed for that individual. If as a result of a polymorphism, an MspI site has been 
created, the consequent fragment will not be included in the inter-individual analysis. Nevertheless, evi-
dence of similar DNA methylation patterns in genetically related individuals compared to the unrelated 
ones suggest a genetic component to epigenetic variation in a normal population26. A proportion of 
iVMFs found in this study could be associated with genetic variation; however distinguishing the genetic 
and epigenetic variation in identified iVMFs is beyond the scope of the present study and will remain a 
subject for future research. Further, it will be of broad interest for future research to investigate which 
regions of the genome genetic variation are more likely to influence variable methylation than others and 
whether there is sensitive period in development or adulthood that are more vulnerable to accommodate 
inter-individual DNA methylation variation mediated by genetic variation.

In this study, we selected individuals of diverse genetic origin to maximize the possibility of detecting 
epigenetic variation. Our results indicate that in a mixed population, epigenetic variation is widespread 
and is more extensive than previously reported. In conclusion, this work documents epigenetic variation 
in the human genome and provides a comprehensive resource for future studies aiming to understand 
the nature and mechanism of phenotypic plasticity due to DNA methylation variation. In addition, these 
data will be useful to explore complex traits and altered disease susceptibility due to variable DNA meth-
ylation pattern in normal individuals.

Methods
Ethics statement.  Informed consent was obtained from all subjects. Peripheral blood samples were 
collected from healthy individuals in accordance with the guidelines and approval obtained from the 
Dunedin Multi-region Ethics Committee, Dunedin, Otago region, New Zealand (approval number: 
MEC/09/07/068).

Recruitment of participants.  Eleven individuals (5 male and 6 female) were recruited. The individ-
uals represented diverse ethnic backgrounds and ranged in age from 26 to 34 years (see Supplementary 
Table S1). A technical replicate RRBS library was also included in the analysis.

Neutrophils isolation and DNA extraction.  16 mL peripheral blood was collected from the partici-
pating subjects and neutrophils were purified using a Ficoll-Paque method (see details in supplementary 
methods). DNA was extracted from the neutrophil suspension, using QIAamp DNA mini kit (Qiagen, 
Hilden, Germany) following the manufacturer’s protocol, with the addition of overnight proteinase K 
treatment at 55 °C.

Preparation of RRBS libraries.  RRBS provides base-resolution information for about 4 million CpG 
sites (13.4% of all CpG sites in the genome)74 and for more than 23,000 CpG islands (84% of those in 
the genome)75. RRBS libraries were prepared according to our previously published protocols using the 
TruSeq kit (Illumina)74,76–78. See supplementary methods for details of library preparation.

Sequencing RRBS libraries, base-calling and quality assessment.  Two RRBS libraries (X9015 
and X9006) were sequenced using the Illumina GAII platform and the other libraries were sequenced 
using the Illumina HiSeq2000 platform. Sequencing was single-ended and the read length was 100 bp. 
Base-calling was performed with Illumina Real Time Analyzer (RTA) software; however, post-run 
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standardization of the base-calling was performed using Illumina Off-Line Base-calling application 
where applicable76. Quality assessment of sequenced reads and processing was performed as our previ-
ously published pipelines (details in supplementary methods).

Variable methylation analysis.  Variable methylation analysis was performed with our in-house 
Differential Methylation Analysis Package (DMAP)24. DMAP contains two main programs (diffmeth and 
identgenloc). We used MspI fragments as the unit of analysis for identifying variable methylation. Using 
the diffmeth program, for each individual the MspI fragments that had at least 2 CpG sites, covered 
by 10 or more sequenced reads were included (F2 t10 switch in the diffmeth program of DMAP tool). 
Next, a Chi-square test was performed for each fragment, requiring that at least 9 out of 11 individuals 
contained enough coverage for that fragment. For the Chi square test the proportion of methylation in 
a fragment is the total number of methylated CpGs in all sequenced reads divided by the total number 
of CpGs in the reads. The fragments with a P-value of ≤  1.54 ×  10−8 (Bonferroni corrected, see statistical 
analysis section) were identified as inter-individual variably methylated fragments (iVMF). For male and 
female group comparisons, we analysed 41464 fragments (where all 5 male and all 6 female contained at 
least 10 or more sequenced reads at 2 or more CpGs in a fragment) and performed ANOVA statistical 
test using DMAP.

Feature analysis of iVMFs with ENCODE data.  Genomic and epigenomic feature analysis of 
iVMFs was performed using Epiexplorer tool29. The genomic co-ordinates of the promoter, gene body 
and distant iVMFs were separately uploaded to the Epiexplorer server. For comparison, co-ordinates of 
the analysed non-variable fragments in promoter, gene body and distant regions (within the size range 
of 40–220 bp) were similarly uploaded and analysed. The fragments that showed strong overlap (i.e., 
≥ 50% of a fragment overlapped with a feature) were filtered for analysis and statistical calculation of 
enrichment or depletion of iVMFs in a feature was performed. The comparisons described here were 
based on regulatory features from K562 cells. However, comparison was also made against aggregated 
data from all nine cell lines and this is referred to as “any tissue” analysis (Supplementary Fig. S11-S13).

Identification of gene and CpG features for iVMFs.  The identgeneloc program of the DMAP tool 
was used to locate iVMFs to their proximal genes and CpG features. Gene annotations and CpG features 
were obtained from SeqMonk (distributed from Babraham Institute) feature files (which are based on 
Ensembl annotation). The SeqMonk feature table contains a “biotype”; we used biotype “protein coding”, 
i.e., we related each iVMF to the nearest protein coding gene. Limits were not imposed on the distance 
of iVMF from a gene. From the list of iVMFs and analysed fragments, a variability score for features and 
genes were assigned (number of iVMFs per feature/number of analysed fragments per feature).

Preparation of RNA from neutrophils and RNA-Seq library construction.  For the transcrip-
tomics experiment, neutrophil RNA from four individuals was obtained using previously published pro-
tocol (details in Supplementary methods)79. The median RNA integrity number (RIN) for the 4 samples 
was 8.05. RNA libraries were constructed using 1 μ g of total RNA with TruSeq stranded mRNA Sample 
Preparation kit (Illumina) following the manufacturer’s protocol. RNA was sequenced on the Illumina 
HiSeq 2000 sequencer (Illumina, USA) with a single-ended, 51-bp run producing raw fastq files.

RNA-Seq data analysis.  The RNA-seq reads were mapped to the human genome (assembly GRCh37) 
using TopHat (v2.0.11)80, transcripts were assembled, abundances (Fragments Per Kilo base per Million 
or FPKM) of transcript were estimated. Logs 2 of the FPKM values were plotted for the 7 neutrophil 
housekeeping genes79 to confirm the expression stability of these genes and minimal variation in gene 
expression between individuals (Supplementary Fig. S14). Differential expression was examined with 
Cufflinks (v2.2.0)81 package using default parameters82. For exon usage analysis, Human gene models 
were flattened and reads assigned to exon bins and counted using HTSeq (v0.5.4p5)83. Differential exon 
usage was calculated using DEXseq37 (v1.8.0) package. DEXseq uses exon counts and compares gen-
eralized linear model to a null model with chi-square distribution to test for differential exon usage. 
Statistical analysis for RNA-Seq data was carried out within the R statistical environment. The graphs for 
methylation-expression analysis were generated using Lattice (v0.20–27) or hexbin (1.26.3).

Gene ontology.  Gene ontology (GO) term enrichment and functional annotation analyses were done 
using the Database for Annotation, Visualization and Integrated Discovery (DAVID, v6.7)84. Our gene 
sets were tested against the background of all protein-coding human genes.

Statistical analysis.  To identify the variable fragments (iVMFs), a Chi-square test was used with n-1 
degrees of freedom (where n is the number of individuals investigated for a fragment). The Chi-square 
test treats each CpG result (methylated or unmethylated) as an individual observation. However, the 
counts for adjacent CpGs in a fragment might be correlated and therefore significance will be overesti-
mated. For this reason we applied a stringent significance level of 0.001 to the Chi-square. To control for 
the family-wise error rate, the Bonferroni correction was applied and the adjusted cut-off P-value for sig-
nificance was 1.54 ×  10−8. For Gene–term enrichment analysis P-values were calculated with a modified 
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Fisher’s exact test and P <  0.05 was considered significant. The enrichment score in the gene-ontology 
analysis was the geometric mean of all the enrichment P-values for each annotation term associated with 
the gene members in the group. The other statistical tests described in this article (e.g., chromosome 
wise distribution, calculation of overlap with regulatory feature) were performed using a Chi-square test 
(based on contingency table) with Yates correction and P <  0.05 was considered significant. Association 
of gene expression and methylation at genomic elements was performed by ANOVA with a Tukey HSD 
post-hoc test (P <  0.05). Hypergeometric test was used to determine overlap with previous studies 
(P <  0.05).

References
1.	 Moore, L. D., Le, T. & Fan, G. DNA methylation and its basic function. Neuropsychopharmacology 38, 23–38, doi: 10.1038/

npp.2012.112 (2013).
2.	 Chatterjee, A. & Morison, I. M. Monozygotic twins: genes are not the destiny? Bioinformation 7, 369–370 (2011).
3.	 Baylin, S. B. & Jones, P. A. A decade of exploring the cancer epigenome - biological and translational implications. Nature 

Reviews. Cancer 11, 726–734, doi: 10.1038/nrc3130 (2011).
4.	 Chatterjee, A. Conference Scene: Epigenetic regulation: from mechanism to intervention. Epigenomics 4, 487–490, doi: 10.2217/

epi.12.47 (2012).
5.	 Chatterjee, A. & Eccles, M. R. DNA methylation and epigenomics: new technologies and emerging concepts. Genome Biol 16, 

103, doi: 10.1186/s13059-015-0674-5 (2015).
6.	 Portela, A. & Esteller, M. Epigenetic modifications and human disease. Nature Biotechnology 28, 1057–1068, doi: 10.1038/

nbt.1685 (2010).
7.	 Ivanov, M., Kacevska, M. & Ingelman-Sundberg, M. Epigenomics and interindividual differences in drug response. Clin 

Pharmacol Ther 92, 727–736, doi: 10.1038/clpt.2012.152 (2012).
8.	 Rideout, W. M., 3rd, Eggan, K. & Jaenisch, R. Nuclear cloning and epigenetic reprogramming of the genome. Science 293, 

1093–1098, doi: 10.1126/science.1063206 (2001).
9.	 Peaston, A. E. & Whitelaw, E. Epigenetics and phenotypic variation in mammals. Mammalian Genome: Official Journal Of The 

International Mammalian Genome Society 17, 365–374, doi: 10.1007/s00335-005-0180-2 (2006).
10.	 Cloud, J. Why genes aren’t destiny. Time 175, 48–53 (2010).
11.	 Heyn, H. et al. DNA methylation contributes to natural human variation. Genome Res 23, 1363–1372, doi: 10.1101/gr.154187.112 

(2013).
12.	 Wang, D. et al. Individual variation and longitudinal pattern of genome-wide DNA methylation from birth to the first two years 

of life. Epigenetics: Official Journal Of The Dna Methylation Society 7, 594–605, doi: 10.4161/epi.20117 (2012).
13.	 Lam, L. L. et al. Factors underlying variable DNA methylation in a human community cohort. Proc Natl Acad Sci USA 109 Suppl 

2, 17253–17260, doi: 10.1073/pnas.1121249109 (2012).
14.	 Teh, A. L. et al. The effect of genotype and in utero environment on interindividual variation in neonate DNA methylomes. 

Genome Res 24, 1064–1074, doi: 10.1101/gr.171439.113 (2014).
15.	 Ioannides, M. et al. Inter-individual methylation variability in differentially methylated regions between maternal whole blood 

and first trimester CVS. Molecular Cytogenetics 7, 73, doi: 10.1186/s13039-014-0073-8 (2014).
16.	 Feinberg, A. P. et al. Personalized epigenomic signatures that are stable over time and covary with body mass index. Sci Transl 

Med 2, 49ra67, doi: 2/49/49ra67 10.1126/scitranslmed.3001262 (2010).
17.	 Waterland, R. A. et al. Season of conception in rural gambia affects DNA methylation at putative human metastable epialleles. 

Plos Genetics 6, e1001252, doi: 10.1371/journal.pgen.1001252 (2010).
18.	 Adalsteinsson, B. T. et al. Heterogeneity in white blood cells has potential to confound DNA methylation measurements. Plos 

One 7, e46705, doi: 10.1371/journal.pone.0046705 (2012).
19.	 Reinius, L. E. et al. Differential DNA methylation in purified human blood cells: implications for cell lineage and studies on 

disease susceptibility. Plos One 7, e41361, doi: 10.1371/journal.pone.0041361 (2012).
20.	 Jaffe, A. E. & Irizarry, R. A. Accounting for cellular heterogeneity is critical in epigenome-wide association studies. Genome Biol 

15, R31, doi: 10.1186/gb-2014-15-2-r31 (2014).
21.	 Schultz, M. D. et al. Human body epigenome maps reveal noncanonical DNA methylation variation. Nature 523, 212–216, doi: 

10.1038/nature14465 (2015).
22.	 Shen, H., Qiu, C., Li, J., Tian, Q. & Deng, H. W. Characterization of the DNA methylome and its interindividual variation in 

human peripheral blood monocytes. Epigenomics 5, 255–269, doi: 10.2217/epi.13.18 (2013).
23.	 Illingworth, R. S. et al. Inter-individual variability contrasts with regional homogeneity in the human brain DNA methylome. 

Nucleic Acids Res 43, 732–744, doi: 10.1093/nar/gku1305 (2015).
24.	 Stockwell, P. A., Chatterjee, A., Rodger, E. J. & Morison, I. M. DMAP: differential methylation analysis package for RRBS and 

WGBS data. Bioinformatics 30, 1814–1822, doi: 10.1093/bioinformatics/btu126 (2014).
25.	 Wang, L. et al. Systematic assessment of reduced representation bisulfite sequencing to human blood samples: A promising 

method for large-sample-scale epigenomic studies. Journal Of Biotechnology 157, 1–6, doi: 10.1016/j.jbiotec.2011.06.034 (2012).
26.	 Gertz, J. et al. Analysis of DNA methylation in a three-generation family reveals widespread genetic influence on epigenetic 

regulation. Plos Genetics 7, e1002228, doi: 10.1371/journal.pgen.1002228 (2011).
27.	 Hellman, A. & Chess, A. Gene body-specific methylation on the active X chromosome. Science 315, 1141–1143, doi: 10.1126/

science.1136352 (2007).
28.	 Dunham, I. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74, doi: 10.1038/

nature11247 (2012).
29.	 Halachev, K., Bast, H., Albrecht, F., Lengauer, T. & Bock, C. EpiExplorer: live exploration and global analysis of large epigenomic 

datasets. Genome Biology 13, R96, doi: 10.1186/gb-2012-13-10-r96 (2012).
30.	 Lozzio, B. B., Lozzio, C. B., Bamberger, E. G. & Feliu, A. S. A multipotential leukemia cell line (K-562) of human origin. 

Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine 166, 546-550 
(1981).

31.	 Ernst, J. & Kellis, M. Discovery and characterization of chromatin states for systematic annotation of the human genome. Nat 
Biotechnol 28, 817–825, doi: 10.1038/nbt.1662 (2010).

32.	 Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837, doi: 10.1016/j.
cell.2007.05.009 (2007).

33.	 Hu, S. et al. DNA methylation presents distinct binding sites for human transcription factors. Elife 2, e00726, doi: 10.7554/
eLife.00726 (2013).



www.nature.com/scientificreports/

1 5Scientific Reports | 5:17328 | DOI: 10.1038/srep17328

34.	 Harris, R. A., Nagy-Szakal, D. & Kellermayer, R. Human metastable epiallele candidates link to common disorders. Epigenetics: 
Official Journal Of The Dna Methylation Society 8, 157–63, doi: 10.4161/epi.23438 (2013).

35.	 Hindorff, L. A. et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and 
traits. Proc Natl Acad Sci USA 106, 9362–9367, doi: 10.1073/pnas.0903103106 (2009).

36.	 Shukla, S. et al. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature 479, 74–79, doi: 
10.1038/nature10442 (2011).

37.	 Anders, S., Reyes, A. & Huber, W. Detecting differential usage of exons from RNA-seq data. Genome Research 22, 2008–2017, 
doi: 10.1101/gr.133744.111 (2012).

38.	 Ehrlich, M. & Lacey, M. DNA methylation and differentiation: silencing, upregulation and modulation of gene expression. 
Epigenomics 5, 553–568, doi: 10.2217/epi.13.43 (2013).

39.	 Gemma, C. et al. Inactive or moderately active human promoters are enriched for inter-individual epialleles. Genome Biol 14, 
R43, doi: 10.1186/gb-2013-14-5-r43 (2013).

40.	 Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev 16, 6–21, doi: 10.1101/gad.947102 (2002).
41.	 Elango, N. & Yi, S. V. DNA methylation and structural and functional bimodality of vertebrate promoters. Molecular Biology And 

Evolution 25, 1602–1608, doi: 10.1093/molbev/msn110 (2008).
42.	 Saxonov, S., Berg, P. & Brutlag, D. L. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two 

distinct classes of promoters. Proc Natl Acad Sci USA 103, 1412–1417, doi: 0510310103 10.1073/pnas.0510310103 (2006).
43.	 Xie, H. et al. Epigenomic analysis of Alu repeats in human ependymomas. Proc Natl Acad Sci USA 107, 6952–6957, doi: 

0913836107 10.1073/pnas.0913836107 (2010).
44.	 Estecio, M. R. et al. SINE retrotransposons cause epigenetic reprogramming of adjacent gene promoters. Molecular Cancer 

Research: Mcr 10, 1332–1342, doi: 10.1158/1541-7786.MCR-12-0351 (2012).
45.	 Xie, M. et al. DNA hypomethylation within specific transposable element families associates with tissue-specific enhancer 

landscape. Nat Genet 45, 836–841, doi: 10.1038/ng.2649 (2013).
46.	 Barton, N. H. et al. Evolution. (Cold Spring Harbor Laboratory Press, 2007).
47.	 Bock, C. et al. DNA methylation dynamics during in vivo differentiation of blood and skin stem cells. Molecular Cell 47, 633–647, 

doi: 10.1016/j.molcel.2012.06.019 (2012).
48.	 Hartung, T. et al. Diametrically opposite methylome-transcriptome relationships in high- and low-CpG promoter genes in 

postmitotic neural rat tissue. Epigenetics 7, 421–428, doi: 10.4161/epi.19565 (2012).
49.	 Bock, C. et al. Quantitative comparison of genome-wide DNA methylation mapping technologies. Nature Biotechnology 28, 

1106–1114, doi: 10.1038/nbt.1681 (2010).
50.	 Harris, R. A. et al. Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic 

epigenetic modifications. Nature Biotechnology 28, 1097–1105, doi: 10.1038/nbt.1682 (2010).
51.	 Zhu, W. G. et al. Methylation of adjacent CpG sites affects Sp1/Sp3 binding and activity in the p21(Cip1) promoter. Molecular 

And Cellular Biology 23, 4056–4065 (2003).
52.	 Wang, H. et al. Widespread plasticity in CTCF occupancy linked to DNA methylation. Genome Research 22, 1680–1688, doi: 

10.1101/gr.136101.111 (2012).
53.	 Beyrau, M., Bodkin, J. V. & Nourshargh, S. Neutrophil heterogeneity in health and disease: a revitalized avenue in inflammation 

and immunity. Open Biology 2, 120134, doi: 10.1098/rsob.120134 (2012).
54.	 Chen, P. Y., Feng, S., Joo, J. W., Jacobsen, S. E. & Pellegrini, M. A comparative analysis of DNA methylation across human 

embryonic stem cell lines. Genome Biology 12, R62, doi: 10.1186/gb-2011-12-7-r62 (2011).
55.	 Fernandez-Nestosa, M. J. et al. DNA methylation-mediated silencing of PU.1 in leukemia cells resistant to cell differentiation. 

SpringerPlus 2, 392, doi: 10.1186/2193-1801-2-392 (2013).
56.	 de la Rica, L. et al. PU.1 target genes undergo Tet2-coupled demethylation and DNMT3b-mediated methylation in monocyte-

to-osteoclast differentiation. Genome Biol 14, R99, doi: 10.1186/gb-2013-14-9-r99 (2013).
57.	 Blattler, A. et al. ZBTB33 binds unmethylated regions of the genome associated with actively expressed genes. Epigenetics 

Chromatin 6, 13, doi: 10.1186/1756-8935-6-13 (2013).
58.	 Buck-Koehntop, B. A. et al. Molecular basis for recognition of methylated and specific DNA sequences by the zinc finger protein 

Kaiso. Proc Natl Acad Sci USA 109, 15229–15234, doi: 10.1073/pnas.1213726109 (2012).
59.	 Jjingo, D., Conley, A. B., Yi, S. V., Lunyak, V. V. & Jordan, I. K. On the presence and role of human gene-body DNA methylation. 

Oncotarget 3, 462–474 (2012).
60.	 Ma, D. K. et al. Epigenetic choreographers of neurogenesis in the adult mammalian brain. Nature Neuroscience 13, 1338–1344, 

doi: 10.1038/nn.2672 (2010).
61.	 Iwamoto, K. et al. Neurons show distinctive DNA methylation profile and higher interindividual variations compared with non-

neurons. Genome Research 21, 688–696, doi: 10.1101/gr.112755.110 (2011).
62.	 Migliore, L. & Coppede, F. Genetics, environmental factors and the emerging role of epigenetics in neurodegenerative diseases. 

Mutation Research 667, 82–97, doi: 10.1016/j.mrfmmm.2008.10.011 (2009).
63.	 Guo, Y. et al. CTCF/cohesin-mediated DNA looping is required for protocadherin alpha promoter choice. Proc. Natl. Acad. Sci. 

U.S.A. 109, 21081–21086, doi: 10.1073/pnas.1219280110 (2012).
64.	 Liu, J. et al. Methylation Patterns in Whole Blood Correlate With Symptoms in Schizophrenia Patients. Schizophr Bull, doi: 

10.1093/schbul/sbt080 (2013).
65.	 Auta, J. et al. DNA-methylation gene network dysregulation in peripheral blood lymphocytes of schizophrenia patients. Schizophr 

Res 150, 312–318, doi: 10.1016/j.schres.2013.07.030 (2013).
66.	 Adams, D. et al. BLUEPRINT to decode the epigenetic signature written in blood. Nat Biotechnol 30, 224–226, doi: 10.1038/

nbt.2153 (2012).
67.	 Rio, M. et al. Spectrum of NSD1 mutations in Sotos and Weaver syndromes. J Med Genet 40, 436–440 (2003).
68.	 Baker, L. A., Allis, C. D. & Wang, G. G. PHD fingers in human diseases: disorders arising from misinterpreting epigenetic marks. 

Mutat Res 647, 3–12, doi: 10.1016/j.mrfmmm.2008.07.004 (2008).
69.	 Berdasco, M. et al. Epigenetic inactivation of the Sotos overgrowth syndrome gene histone methyltransferase NSD1 in human 

neuroblastoma and glioma. Proc Natl Acad Sci USA 106, 21830–21835, doi: 10.1073/pnas.0906831106 (2009).
70.	 Kerkel, K. et al. Genomic surveys by methylation-sensitive SNP analysis identify sequence-dependent allele-specific DNA 

methylation. Nat Genet 40, 904–908, doi: ng.174 10.1038/ng.174 (2008).
71.	 Shoemaker, R., Deng, J., Wang, W. & Zhang, K. Allele-specific methylation is prevalent and is contributed by CpG-SNPs in the 

human genome. Genome Res, doi: gr.104695.109 10.1101/gr.104695.109 (2010).
72.	 Schalkwyk, L. C. et al. Allelic skewing of DNA methylation is widespread across the genome. Am J Hum Genet 86, 196–212, doi: 

S0002-9297(10)00017-0 10.1016/j.ajhg.2010.01.014 (2010).
73.	 Hellman, A. & Chess, A. Extensive sequence-influenced DNA methylation polymorphism in the human genome. Epigenetics 

Chromatin 3, 11, doi: 1756-8935-3-11 10.1186/1756-8935-3-11 (2010).
74.	 Chatterjee, A., Stockwell, P. A., Rodger, E. J. & Morison, I. M. Comparison of alignment software for genome-wide bisulphite 

sequence data. Nucl. Acids Res. 40, e79, doi: 10.1093/nar/gks150 (2012).



www.nature.com/scientificreports/

1 6Scientific Reports | 5:17328 | DOI: 10.1038/srep17328

75.	 Smith, Z. D., Gu, H., Bock, C., Gnirke, A. & Meissner, A. High-throughput bisulfite sequencing in mammalian genomes. Methods 
48, 226–232, doi: S1046-2023(09)00111-X 10.1016/j.ymeth.2009.05.003 (2009).

76.	 Chatterjee, A., Rodger, E. J., Stockwell, P. A., Weeks, R. J. & Morison, I. M. Technical considerations for reduced representation 
bisulfite sequencing with multiplexed libraries. Journal Of Biomedicine & Biotechnology 2012, 741542, doi: 10.1155/2012/741542 
(2012).

77.	 Chatterjee, A. et al. Mapping the zebrafish brain methylome using reduced representation bisulfite sequencing. Epigenetics 8, 
979–989, doi: 10.4161/epi.25797 (2013).

78.	 Chatterjee, A., Stockwell, P. A., Horsfield, J. A., Morison, I. M., Nakagawa, S. & Base-resolution DNA methylation landscape of 
zebrafish brain and liver. Genomics Data 2, 342–344, doi: 10.1016/j.gdata.2014.10.008 (2014).

79.	 Zhang, X., Ding, L. & Sandford, A. J. Selection of reference genes for gene expression studies in human neutrophils by real-time 
PCR. BMC Mol Biol 6, 4, doi: 10.1186/1471-2199-6-4 (2005).

80.	 Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111, doi: 
10.1093/bioinformatics/btp120 (2009).

81.	 Trapnell, C. et al. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nature biotechnology 31, 46–53, 
doi: 10.1038/nbt.2450 (2013).

82.	 Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature 
protocols 7, 562–578, doi: 10.1038/nprot.2012.016 (2012).

83.	 Anders, S. HTSeq: Analysing high-throughput sequencing data with Python, (2011). http://www-huber.embl.de/users/anders/
HTSeq/%3E. Date of access: 25/02/2015

84.	 Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics 
resources. Nature Protocols 4, 44–57, doi: 10.1038/nprot.2008.211 (2009).

Acknowledgements
We gratefully acknowledge the help and support from Dr Sinnakaruppan Mathavan and Dr Li Zhen 
from Genome Institute of Singapore (GIS) for their help in RNA-Seq experiments. We acknowledge the 
help received from New Zealand Genomic Limited facility (NZGL), Dunedin, New Zealand during the 
sequencing of RRBS samples. This work was supported by Gravida: National Centre for Growth and 
Development (formerly NRCGD) and Dunedin School of Medicine (DSM), New Zealand. We gratefully 
acknowledge the help of Dr Mik Black for his help with statistical design. AC is supported by the New 
Zealand Institute for Cancer Research Trust.

Author Contributions
A.C. participated in the design of the study and carried out the RRBS library preparation, data analysis 
and wrote the first draft of the manuscript. P.A.S. developed the computational pipeline for data analysis 
and performed alignments and helped in data analysis. E.J.R. contributed with RRBS library preparation, 
data analysis and preparation of figures for the manuscript. M.P. participated in statistical analysis of 
variable methylation and preparation of figures for the manuscript. R.J.W. participated in the design of 
study and setting up the RRBS protocol. E.J.D. participated in RNA-Seq data analysis and preparation of 
figures for the manuscript. I.M.M. participated in the conceptual design, data analysis and supervision 
the study. All authors read, contributed and approved the final manuscript.

Additional Information
Accession codes: The DNA methylation data generated for this study have been submitted to the 
NCBI Gene Expression Omnibus under accession number GSE59163. The RNA-Seq data generated for 
this study have been submitted under accession number GSE59528.
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Chatterjee, A. et al. Genome-wide DNA methylation map of human 
neutrophils reveals widespread inter-individual epigenetic variation. Sci. Rep. 5, 17328; doi: 10.1038/
srep17328 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The 
images or other third party material in this article are included in the article’s Creative Com-

mons license, unless indicated otherwise in the credit line; if the material is not included under the 
Creative Commons license, users will need to obtain permission from the license holder to reproduce 
the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Genome-wide DNA methylation map of human neutrophils reveals widespread inter-individual epigenetic variation
	Introduction
	Results
	Features of neutrophil methylome
	Identification of inter-individual variably methylated fragments (iVMFs)
	Comparison of Chi-square test with other methods for detecting variable methylation
	Chromosome-wise distribution of iVMFs
	Genomic distribution of iVMFs
	Genome regulation and variable methylation
	Identification of variably methylated genes
	Overlap of variable genes with previous genome-wide studies and assessment of tissue specificity in iVMFs
	DNA methylation and gene expression
	Functional enrichment of variably methylated genes

	Discussion
	Methods
	Ethics statement
	Recruitment of participants
	Neutrophils isolation and DNA extraction
	Preparation of RRBS libraries
	Sequencing RRBS libraries, base-calling and quality assessment
	Variable methylation analysis
	Feature analysis of iVMFs with ENCODE data
	Identification of gene and CpG features for iVMFs
	Preparation of RNA from neutrophils and RNA-Seq library construction
	RNA-Seq data analysis
	Gene ontology
	Statistical analysis

	Additional Information
	Acknowledgements
	References



 
    
       
          application/pdf
          
             
                Genome-wide DNA methylation map of human neutrophils reveals widespread inter-individual epigenetic variation
            
         
          
             
                srep ,  (2015). doi:10.1038/srep17328
            
         
          
             
                Aniruddha Chatterjee
                Peter A. Stockwell
                Euan J. Rodger
                Elizabeth J. Duncan
                Matthew F. Parry
                Robert J. Weeks
                Ian M. Morison
            
         
          doi:10.1038/srep17328
          
             
                Nature Publishing Group
            
         
          
             
                © 2015 Nature Publishing Group
            
         
      
       
          
      
       
          © 2015 Macmillan Publishers Limited
          10.1038/srep17328
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep17328
            
         
      
       
          
          
          
             
                doi:10.1038/srep17328
            
         
          
             
                srep ,  (2015). doi:10.1038/srep17328
            
         
          
          
      
       
       
          True
      
   




