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Extreme events in multilayer, 
interdependent complex networks 
and control
Yu-Zhong Chen1, Zi-Gang Huang1,2, Hai-Feng Zhang3, Daniel Eisenberg4, Thomas P. Seager4 
& Ying-Cheng Lai1,5

We investigate the emergence of extreme events in interdependent networks. We introduce an 
inter-layer traffic resource competing mechanism to account for the limited capacity associated 
with distinct network layers. A striking finding is that, when the number of network layers and/
or the overlap among the layers are increased, extreme events can emerge in a cascading manner 
on a global scale. Asymptotically, there are two stable absorption states: a state free of extreme 
events and a state of full of extreme events, and the transition between them is abrupt. Our 
results indicate that internal interactions in the multiplex system can yield qualitatively distinct 
phenomena associated with extreme events that do not occur for independent network layers. An 
implication is that, e.g., public resource competitions among different service providers can lead to 
a higher resource requirement than naively expected. We derive an analytical theory to understand 
the emergence of global-scale extreme events based on the concept of effective betweenness. 
We also articulate a cost-effective control scheme through increasing the capacity of very few 
hubs to suppress the cascading process of extreme events so as to protect the entire multi-layer 
infrastructure against global-scale breakdown.

Internal resource competitions are ubiquitous in complex dynamical systems, but relatively little atten-
tion has been paid to its impact on the dynamical evolution and resilience of the underlying interdepend-
ent, multilayer networked systems. Relevant situations include the airport and train-station networks of 
the public transportation system, the base station network of the cellular communication system, and 
the virtual networks based on software defined networks (SDNs). For example, in the airport network, 
different airlines cover different subsets of the airports across the whole country, and airlines operate in 
the same airport have to share and compete for the limited resources such as space and time. In the near 
future, different communication service providers may share base stations, generating potential compe-
titions for bandwidth and processing capabilities of the based stations. The next generation of Internet 
may be built upon the framework of SDN, enabling one same physical server network to be virtually 
separated into multiple independent subnetworks with scalable sizes, each serving or being operated by 
a particular user without interfering with other subnetwork layers. In this case, the same server may 
carry the load generated by multiple layers (users), and its finite processing capacity is competed by the 
layers of virtual servers. All these call for a systematic study to understand the resilience of multilayer, 
interdependent networks subject to internal resource competitions. The goals of this paper are to develop 
a model capturing the key topological and dynamical features of the multilayer infrastructures incor-
porating inter-layer resource competitions, to study the extreme event dynamics from the standpoint of 
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resilience, and to articulate control strategies to enhance the resilience against global-scale, catastrophic 
breakdown of the whole network system.

Extreme events associated with transportation dynamics on networks are intimately related to nodal 
flux fluctuations1–7. In previous models of single-layer transportation networks, extreme events tend 
to occur independently in space and time, which often have little effect on the system resilience7–10. 
However, for an interdependent network with multiple interacting layers, fluctuations can induce quali-
tatively distinct phenomena in the system that is intrinsically nonlinear. Recent works on multilayer net-
works have uncovered a rich variety of phenomena associated with network fragility and robustness11–17, 
diffusion and spreading processes18–22, game dynamics23–26, and synchronization27–30. Other related works 
range from redefining the basic structural measures to understanding the impacts of the multilayer 
nature of the network on dynamical processes. In spite of the previous efforts, to our knowledge there 
were no prior models of interdependent networks with multiple layers defined according to resource 
competitions, let alone any study of the extreme event dynamics in such networks.

In this paper, utilizing transportation as a prototypical dynamical process, we articulate an inter-layer 
traffic resource competing mechanism to characterize the situation where different network layers (e.g., 
corresponding to different social entities) coexist under limited capacities. A striking phenomenon is 
that, when the number of network layers and/or the overlap among layers are increased, extreme events 
can emerge in a cascading manner to trigger global-scale catastrophes, even when the capacity is capable 
of accommodating the same number of independent layers. We find that the system typically evolves into 
one of the two stable absorption states: a state free of extreme events and a state with frequent occur-
rence of extreme events, and the transition between the two states is abrupt in both time and parameter 
domains. The finding indicates that internal competitions in a multiplex network system can yield quali-
tatively distinct phenomena. An implication is that public resource competitions among different service 
providers can lead to higher resource requirement than anticipated. We derive an analytical theory to 
understand the emergence of global-scale extreme events based on the concept of effective betweenness 
that we specifically introduce to characterize and comprehend the extreme event dynamics on interde-
pendent networks. We also articulate an efficient control scheme based on augmenting the capacity of 
very few hubs, which can dramatically suppress the cascading process of extreme events and protect the 
entire multi-layer infrastructure against global-scale breakdown.

Results
Our model is motivated by the setting of a large infrastructure, which we regard as a complex network 
G of N nodes. Among the M service providers, each provides packet transportation service on a sub-
network Gm(1 ≤  m ≤  M) of Nm(Nm ≤  N) nodes connected via the links of G. The entire network G thus 
has M layers, each being the subnetwork operated by one service provider, as shown schematically in 
Fig. 1. For convenience, we call G the global network. Packets belonging to layer Gm have their origins 
and destinations solely within Gm: they can only be transported within Gm through its nodes and links, 
not to any other layer. Different layers can share common nodes, and the number of layers sharing node 
i is denoted as Mi.

The load of node i in G is defined as the total number of packets from all the layers containing node 
i, i.e., = ∑ =f wi m

M
mi1 , where wmi is the flux in layer m, among which there are Mi nonzero values. If fi 

reaches the capacity Ci of node i, we say that an extreme event has occurred on this node. The capacity 
Ci can be written as7

α σ= + ⋅ , ( )C f 1i i i

where 〈  fi〉  is the average load, σi is the standard-deviation of fi, and α >  1 is the capacity parameter. 
Following ref. 7, we set α =  4 (somewhat arbitrarily) in our study. In fact, variation in α, insofar as it is 
larger than unity, will not affect the results qualitatively. This setting allows the capacity of node i to be 
adjusted according to the number of layers Mi sharing it see Methods. For simplicity, we assume that all 
layers have the same nodal coverage, i.e., Pm =  Nm/N, where Pm =  1 corresponds to the special case that 
every layer is identical to the whole network, i.e., Gm =  G.

The rules for packet transport/delivery are as follows. Within each layer, at each time step,  ⋅ N m 
new packets are generated, where   is the packet generation rate. The newly generated packets have 
randomly assigned destinations and are originated from randomly selected nodes that are free of any 
extreme events at the time. On a node, each previously generated packet is transported to a neighbor of 
the node along the shortest path towards the packet’s destination. If no extreme event occurs on the 
target neighbor at this time, the movement can be completed. If, however, there is an extreme event on 
the node that the packet is supposed to move into, the packet is transported to a randomly chosen neigh-
bor with no extreme event, provided that such a neighbor exists. If all the neighbors are currently having 
extreme events, the packet will remain at the original node.

Global extreme events and two absorption states.  To quantify the transportation dynamics on 
the multilayer network, we use two quantities: (1) extreme event occurrence rate REE, defined as the 
fraction of nodes at which extreme events occur at each time step, and (2) packet arrival rate RA defined 
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as the ratio between the numbers of packets arriving and newly generated. Figure 2 shows the behaviors 
of REE and RA for various numbers of layers and nodal coverage values. As shown in Fig.  2(a,b), REE 
for a single layer network (M =  1) is close to 0%, and RA is 100%, implying that the capacity of a single 
layer network is sufficient to handle all the load in the network. As the number of layers is increased, 
the capacity is increased accordingly. If the layers are independent of each other, the total capacity can 
accommodate all the load from all layers, ruling out extreme events. However, when the layers are inter-
dependent, there is a dramatic increase in REE, indicating much higher total load generation due to 
internal resource competitions among the layers. The competitions drive the load of many nodes to their 
capacities, finally leading to the occurrence of extreme events on a global scale, i.e., REE =  100% and 
RA =  0. Further computations reveal another phenomenon: after the system evolves into an equilibrium, 
only two types of steady absorption states can arise. They are (1) a free state nearly free of extreme events 
(REE  0), and (2) a catastrophic state in which every single node has an extreme event. The surprising fea-
ture is that there are no stable intermediate states in between the two cases. In fact, we find numerically 
that any intermediate state is transient in the sense that it must eventually evolve into one of these two 
absorption states. The value of REE thus represents the probability of emergence of the catastrophic state.

Note that, the value of REE +  RA is approximately unity. The reason is that the nodes with extreme 
events occurring on them will not accept any newly arrived packets. As a result, these packets can only 
reach other nodes in the network at time time, the portion of which is 1 −  REE. Since the packet des-
tinations are uniform, the fraction of the packets that can arrive at their destinations is approximately 
1 −  REE. Before the final equilibrium is achieved, at each time step, there is no guarantee that the sum of 
the extreme event occurring rate and the packet arrival rate is exactly unity, due to asynchronized updat-
ing and randomness. If the system reaches a catastrophic, global extreme-event state, we have REE =  1 
and RA =  0 so that REE +  RA =  1 holds exactly. Otherwise, in a free state where no extreme events occur, 
we have REE ≈  0 and RA ≈  1, so REE +  RA ≈  1.

Abrupt transition.  As shown in Fig. 2(a,b), the curves corresponding to higher Pm values have sys-
tematically higher REE values, indicating that Pm has an effect on the probability of the catastrophic 
state. Figure 2(c,d) are further results of how REE and RA vary with Pm when the number of layers (M) is 
fixed. A higher value of Pm means that it is more likely for two different layers to share common nodes, 
signifying a higher degree of interdependence with more severe internal competitions. As a result, REE 
(or RA) increases (or decreases) monotonically with Pm. A striking behavior occurs for relatively large 
values of M, where REE (RA) exhibits an abrupt increase (decrease) as Pm passes through a critical point, 
giving rise to an abrupt transition. In fact, about the transition point, the probability for the system to 
evolve into a catastrophic state can exhibit a dramatic change, i.e., from 0 to 100% or vice versa, meaning 

Figure 1.  Schematic illustration of a multilayer, interdependent network subject to internal (inter-
layer) resource competitions. Layers 1 (G1) and 2 (G2) are two different subsets of Layer 0 (G, or the global 
network). Note that Layer 0 is used to illustrate the process of model generation - it is not involved in 
the transportation dynamics. In this schematic example, N =  10 (number of node in Layer 0), M =  2 (the 
number of interdependent layers), and Pm =  0.5 (m =  1 and 2), where Pm ≡  Nm/N with Nm being the number 
of nodes in layer m. Here, we have Nm =  N ⋅  Pm =  5 and, correspondingly, the average nodal degrees of Layers 
1 and 2 are half of that of Layer 0 (fluctuation exists due to randomness). The combination of Layers 1 and 
2 forms a multilayer interdependent network. Nodes 5 and 6 exist in both Layers 1 and 2, and thus, the 
two layers would compete for resources through these two nodes. Nodes 4 and 9 exist in neither of the two 
layers. Each of the other nodes exists in only one of the two layers (see Methods).
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that an arbitrarily small change in Pm can drive the system into catastrophe. The value of Pm thus has a 
critical impact on the emergence of extreme events on the global scale. The implication is that, for an 
infrastructure consisting of multiple, interdependent layers, its resilience against catastrophe can exhibit 
a sensitive dependence on the system parameter, such as Pm, whose critical value depends on the number 
of layers. In the design of infrastructural systems, it is then necessary to construct a detailed multilayer 
network model to estimate the critical parameter region of the abrupt transition, and the choices of the 
parameters should be such that they are far away from the critical region with large margins.

Time evolution and packet lifetime.  In order to understand the emergence of extreme events at 
the global scale, we investigate the time evolution of various dynamical quantities. Figure 3(a) shows the 
time evolution of the states of all nodes in the network, where at any time, each node can be in one of 
the two possible states: free (blue) and catastrophic (red). Figure  3(b) shows the relative load of each 
node, fi/Ci, versus time. In both panels, a sudden transition can be seen immediately before t =  150, at 
which the entire population of nodes is taken over by extreme events almost simultaneously. After the 
transition, transportation dynamics in the entire system is completely stalled.

If no extreme event occurs throughout the system, each packet would follow the shortest path towards 
its destination without any delay so that its lifetime τ equals the length L of the path. In equilibrium, the 
expected total number of packets accommodated in layer m is given by (see Methods)

 τ= ⋅ = ⋅ , ( )W N N L 2m m m

where 〈 τ〉  is the average packet lifetime and 〈 L〉  is the average shortest path length of the layer. An 
extreme event occurring at the packet’s next target node along the shortest path is most likely to increase 
the lifetime τ by causing the packet to take one step onto a randomly selected neighbor of the current 
node (carrier), because the probability is small for such a neighbor to locate along another shortest 
path of the same length. In the case where extreme events occur on all current carrier’s neighbors, the 
packet will stop moving and wait until at least one of the neighboring nodes becomes free of extreme 
events. This scenario will cause τ to increase. Figure  3(c) shows some quantities characterizing packet 
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Figure 2.  Extreme event occurrence and packet arrival rates. (a) Extreme event occurrence rate REE and 
(b) packet arrival rate RA versus the number of layers, M, for systems with Pm =  0.25 (circles), 0.5 (squares), 
0.75 (diamonds), and 1 (triangles), respectively. (c) REE and (d) RA versus Pm for M =  3 (diamonds), 5 
(circles), and 10 (squares), respectively. The results are obtained through 20 simulation realizations for 
each of the 10 network realizations. Each network has the average degree 〈 k〉  =  4 and size N =  1000. Each 
realization runs for 500 time steps. The quantities REE and RA are averaged over the last 300 steps (typically, 
the system evolves into equilibrium within 200 time steps).



www.nature.com/scientificreports/

5Scientific Reports | 5:17277 | DOI: 10.1038/srep17277

movements in one layer versus time as the system evolves from a free state into a globally catastrophic 
state. At each time step, the total number of packets in the layer, W, equals the sum of Wjump, the number 
of moved packets, regardless of whether the packets are along the shortest path, and Wstop, the number 
of stuck packets due to the extreme events in the neighborhood. The quantity Wjump is equal to the sum 
of Wshort, the number of packets that have moved along their corresponding shortest paths, and Wrand, 
the number of packets that are stuck through random walks. Based on these considerations, we can write

= + = + + . ( )W W W W W W 3stop jump stop short rand

Until a global catastrophe takes place, Wstop is close to zero, Wshort increases slightly but Wrand increases 
much faster with time. The behaviors of Wjump and consequently W are thus dominated by that of Wrand, 
demonstrating the key role played by Wrand: a few extreme events lead to random walks that lead to an 
increase in 〈 τ〉  and consequently to an increase in W. The larger number of packets in turn cause the 
total load to increase, enhancing the probability of extreme events, which further generate more random 
walks. This self-stimulating, positive feedback type of mechanism is responsible for driving the whole 
system into the catastrophic phase.

For a single-layer network, a catastrophic phase cannot arise. In this case, PLd
, the fraction of packets 

that are Ld steps away from their destinations, are constant in equilibrium. Assuming that packets corre-
sponding to each Ld value have the same probability η to be driven into random walks, we can solve both 
PLd

 and η analytically by using the principle of detailed balance from statistical physics (see Methods).

Positive feedback loop.  Due to the internal resource competitions, the following process emerges: 
Inter-layer at a time step, the resource requirement in layer m at node i is high, and a substantial portion 
of node i’s capacity is devoted to layer m. As a result, other layers sharing node i will have to redistribute 
their load onto i’s neighbors, squeezing the capacity available for layer m of these neighbors and leading 
to reduction of their load back onto node i in layer m, and so on. This mechanism can trigger a cascading 
process and finally drive the system into a global-scale catastrophe. The cascading process is more likely 
to take place in systems with more layers.

Betweenness and effective betweenness.  It is difficult to develop a rigorous mathematical theory 
to fully grasp the mechanism of the cascading process. Our aim is to provide a physical understanding. In 
fact, the probability for an extreme event to occur on a node can be quantitatively analyzed through esti-
mation of the nodal flux distribution function using the concept of nodal betweenness31, denoted as B(i). 
Previous works2,5,7,10,32 established that, for a single-layer transportation network, under random routing 
the probability for a node to be visited is proportional to its degree, but for the shortest-path routing 
scheme, the probability is proportional to the number of shortest paths through the node. Motivated by 
these considerations, we hypothesize that the probability for node i to be visited is determined by the 
following normalized betweenness:

Figure 3.  System’s time evolution towards a catastrophic state. For a multilayer network of N =  1000 
nodes, M =  3 layers, and Pm =  1, (a) transition between a free (blue) and a catastrophic states (red) in time 
for all nodes. (b) The ratio of node i’s load fi to its capacity Ci versus time for all nodes. (c) Time traces of 
the total number of packets in the layer (denoted as W, thick solid line), of the number of “stuck” packets 
due to the surrounding extreme events (Wstop, triangles), and of the number of movable packets (Wjump, 
squares). Among the Wjump movable packets, the number of those that effectively execute random walks 
(Wrand, red dashed line) and the number of the remaining packets moving along their respective shortest 
paths (Wshort, blue dot line) are also plotted versus time.
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Under the shortest path routing scheme, the transportation dynamics can be regarded as a random-walk 
process with nodal visiting probability pB(i). If packets are uniformly distributed on various paths of 
different length, the betweenness centrality scales with the nodal degree in a power-law fashion31,33:

β( ) ≈ , ( )
γp i k 5iB

where β is a normalization constant and γ is the power-law scaling exponent (both parameters can be 
determined numerically). This relationship holds for most degree values (see Methods), providing a basis 
for our physical analysis.

Consider now a multilayer network. For layer m, the probability density function (PDF) of the flux 
wmi through node i is binomial:
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For simplicity, we set Pm =  1 so that all layers are identical. In this case, we can replace Wm with 〈 W〉  so 
that the number of layers sharing node i is simply Mi =  M. The total load on node i from the M layers, 
= ∑ =f wi m

M
mi1 , can then be written as a sum of M binomial random variables with identical distribu-

tions as given by Eq. (6). During the dynamical evolution, interdependence among the M random vari-
ables is taken into account through the inequality fi ≤  Ci. It is useful to calculate the probability of fi =  Ci, 
the criterion for an extreme event to occur on node i. If we set the system free by removing the capacity 
bound of every node and allowing fi to increase indefinitely, the probability will essentially be given by 
P( fi ≥  Ci), where fi is the sum of M independent, identically distributed binomial random variables. The 
PDF of fi is then given by

( ) β β, =




 ⋅






( ) ( − ) .
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The probability for an extreme extent to occur on a node of degree k is

∑ β β( , ) =




 ⋅


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( ) ( − ) ,
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EE
k k
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where fk and Ck denote the load and the capacity of a node of degree k, respectively. As shown in 
Fig.  4(a,b), this analysis captures the qualitative behavior of the system from simulation. We further 
see that, for nodes of relatively high degrees, qEE(k) for high values of M (or k) is generally larger than 

Figure 4.  Numerically obtained and theoretical predicted probabilities of extreme events. For M =  1 
(circles), 3 (squares), 5 (diamonds), and 10 (triangles), (a) numerically obtained probability qEE(k) for an 
extreme event to occur on a node of degree k and (b) theoretical prediction based on the concept of 
betweenness. (c) For Pm =  1, the probability of extreme events versus M, where the degree distribution 
function P(k) used in the calculation of qEE is ( ) = /∑−

=
−P k k kk k

k3 3
min

max  for kmin =  2 and kmax =  75 (typical 
values from network realizations). In fact, small variations in the values of kmin and kmax do not affect the 
main features of the results.
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those for lower values of M (or k), revealing that extreme events tend to occur on nodes shared by more 
layers and of larger degrees. This result should be contrasted to the case of single layer networks, where 
extreme events tend to occur more on small degree nodes, e.g., under the random routing scheme7. Thus, 
in multilayer networks, the hub nodes play a crucial role in generating extreme events. Based on this, we 
can write the probability for an extreme event to occur in a M-layer system as

∑( ) = ( ) ⋅ ( , ),
( )=

−

P M P k q k M
9k

N

EE
1

1

EE

where P(k) is the degree distribution of the entire network. Figure 4(c) reveals a monotonically positive 
correlation between PEE(M) and M, providing a qualitative explanation for the more frequent occurrence 
of extreme events in systems with more layers.

If we calculate pB(i) using the actual betweenness values for all the individual nodes and then aver-
aging the nodes of the same degree (which can be done based on the topological information of the 
network) instead of using the approximation Eq. (5), we find systematical deviation in qEE(k) as given 
by theory from that through simulation, as shown in Fig. 5(a–e). Empirically, we are able to identify a 
quantity to replace the betweenness centrality in determining qEE(k) and PEE(M). We name it effective 
betweenness, defined for node i as

∑( ) = + ,
( )≠

B i N
n

L 10
m

j s

js

js
E

where Ljs is the length of a shortest path through i between the origin j and the destination s (j ≠ s), and 
njs is the number of such paths. While a rigorous justification for the effective betweenness is difficult, it 
gives a better agreement between theory and numerics. An intuitive understanding is the following. For 
j ≠ s, i.e., Ljs >  0, since the lengths of these shortest paths are proportional to the lifetime of the packets, 
the packet assigned to a longer path Ljs has a longer lifetime. Along the path, the packet occupies each 

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

k

q E
E
(k

)

M = 1

 

 a
Simulation
B theory
B

E
 theory

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

k

q E
E
(k

)

b
M = 2

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

k

q E
E
(k

)

c
M = 3

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

k

q E
E
(k

)

d
M = 5

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

k

q E
E
(k

)

e
M = 10

10
0

10
1

10
−3

10
−2

10
−1

M

P
E

E
(M

)

 

 f
Simulation
B theory
B

E
 theory

Figure 5.  Probability of extreme events calculated from our theory of effective betweenness. (a–e) The 
probability qEE(k) for an extreme event to occur on a node of degree k obtained from simulation (circles), 
the theory of betweenness (diamonds), and the theory of effective betweenness (squares) for M =  1, 2, 3, 
5, and 10, respectively. In (f), the extreme-event probability versus M is shown, obtained from simulation 
(circles), the theory of betweenness (diamonds), and the theory of effective betweenness (squares), for 
M =  10 and Pm =  1. The degree distribution function P(k) used to calculate qEE is obtained using 10 network 
realizations. The betweenness and effective betweenness for each node of degree value k are calculated from 
the corresponding network topology and averaged over all such nodes among the 10 network realizations.
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node once, thereby contributing less to the visiting probability of a given node in each time step. The 
term Nm counts for the contribution from the case of j =  s, i.e., Ljs =  0.

Using the concept of effective betweenness, we obtain the probability of a node to be visited as

( ) =
( )

∑ ( )
.

( )=

p i
B i

B j 11j
NE

E

1 E

More justifications for the use of the effective betweenness can be obtained through simulations (see 
Methods).

In a similar manner, we can calculate qEE(k) and PEE(M) through pE(i) instead of pB(i). Figure 5(a–e) 
show, for a number of different settings, good agreement between the predicted values of qEE(k) with 
the numerical values. In fact, the predicted values of PEE(M) through BE also match the simulation 
results very well, as compared with those through B, as shown in Fig.  5(f). These results indicate that 
the effective betweenness is a key quantity characterizing the transportation dynamics on multilayer 
networks subject to inter-layer competitions under the standard shortest path routing protocol. Utilizing 
this concept, the transportation dynamics can effectively be mapped into a binary stochastic process for 
further theoretical development.

Control strategies to suppress extreme events.  From Fig.  2(c,d), we see that a small increase 
in the parameter Pm, when it is near the critical point, can lead to a transition between the free and 
catastrophic states. A straightforward control strategy is then to reduce the value of Pm. Since extreme 
events tend to occur on nodes shared by many layers, controlled reduction of the overlap between the 
layers can also suppress extreme events. However, these naive methods will not be effective when Pm has 
well passed the critical point.

We focus on the case where Pm, by design, exceeds its critical value by a large amount. One can 
increase the capacity of each node to prevent the occurrence of extreme events at a global scale, but 
this may be costly. According to Fig. 4(a), despite small fluctuations, extreme events take place on large 
degree nodes with a higher probability. A practical strategy is then to selectively enhance the capacities 
of the hub nodes. Figure 6(a,b) show, respectively, REE and RA when the capacities of the top ntop nodes 
(ranked by degree) in the network are multiplied by the factor ri >  1. There exists a region in the parame-
ter space that is completely free of extreme events, i.e., REE ≈  0 and RA ≈  1, with a clear boundary separat-
ing this region from the catastrophic regions. We see that neither too small values of ri nor small values 
of ntop can inhibit extreme events, implying that the extreme events occurring at a small set of hub nodes 
form a positive feedback loop through mutual stimulation and accordingly trigger global-scale cascading 
processes. We regard these hubs as constituting an extreme-event core (EE core), since they serve as the 
source of the global catastrophe. We see that extreme events can be effectively eliminated by providing 
reasonably more resources to nodes in the EE core. For example, solely increasing the capacities of the 
top 5 hubs (5 out of 1000, less than 1%) by 1.7 times can make the entire network system immune to 
any global cascade. The enhanced capacity is in fact insignificant comparing with the total capacity of 
the system, but the targeted capacity enhancement can improve the network resilience disproportionally 
by drastically reducing the probability of extreme-event cascade. For a multilayer network system of 
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Figure 6.  Occurrence rate of extreme events and packet arrival rate under control. In the control 
parameter space, ntop denotes the number of top-degree hubs whose capacities are augmented, and ri is the 
ratio of the enhanced capacity to the original capacity. The extreme event occurrence rate REE and the packet 
arrival rate RA in the parameter space are shown, respectively in (a,b). The simulation parameters are the 
same as in Fig. 2.
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infrastructure, it is thus important to identify the EE core and to assign larger capacities to the nodes 
in the core.

Discussion
The ubiquity of resource competitions in complex infrastructure systems motivates us to articulate and 
study a class of interdependent complex networks in which a set of nodes representing, e.g., public 
service facilities in a large infrastructure, are shared by different layers that correspond to, e.g., dif-
ferent service providers. The set of shared nodes have relatively large capacities. We find that internal 
competitions for common resources have a dramatic and sometimes devastating effect on the network 
transportation dynamics. In particular, as the number of network layers is increased, extreme events in 
which the delivering capabilities of certain nodes in the network are essentially depleted can occur in 
a cascading manner, leading to a catastrophic occurrence of such events on a global scale. This should 
be contrasted to the case of total absence of extreme events in systems with the same nodal capacities 
but without internal competitions (so that the layers are independent). A striking phenomenon is that, 
there are two distinct possible asymptotic states for the system: (1) a state free of extreme events and (2) 
a state completely dominated by extreme events. Varying one of the two key structural parameters, the 
number of layers and the nodal coverage rate, an abrupt transition can occur between the two states, 
meaning that the system can change abruptly from one state to another as a control parameter passes 
through a critical point. We develop a physical theory to understand the dynamics of extreme events 
based on a newly defined topological property, the effective betweenness, and the empirical scaling law 
for betweenness centrality in general. To suppress extreme events and enhance the resilience of the 
system against global-scale breakdown, we propose and test an effective and low-cost control strategy, 
the articulation of which benefits from the finding of an extreme events core formed by a small number 
of hub nodes, which plays a critical role in “spreading” the extreme events. When the capacities of the 
nodes in the core are selectively augmented, the network’s ability to resist large-scale extreme events can 
be enhanced significantly.

Our findings have potential applications in gaining insights into the resilience of large scale infra-
structural systems that are typically composed of many layers with shared public service facilities. Our 
results indicate that competitions for public resources can lead to catastrophic behaviors, and control 
is necessary to make the system resilient to large scale failures. Generally, control of extreme events in 
interdependent networked system is an important and challenging problem, and we hope our work to 
stimulate further efforts.

Methods
Model details.  For a given network G (Layer 0, shown in Fig.  1), each of the M subnetwork layers 
is generated via the following procedure: (1) randomly select a node in G; (2) randomly select its Pmk 
neighbors; (3) for each selected neighbor, do (2) and repeat the step for all newly selected nodes until 
the total number of selected nodes reaches PmN. This procedure fixes the average degree of each layer 
to be Pm〈 k〉 . To be concrete, we use the Barabasi-Albert (BA) type of scale-free topology34 for network 
G. The power-law exponent of the degree distribution for each layer is approximately the same as that 
for the entire network G.

Due to randomness in the packet transportation process, the flux of node i in layer m, wmi, is a 
random variable. Accordingly, fi is the sum of M random variables (with Mi of those being nonzero). If 
different layers are independent and packet transportation process can be described as a random walk, 
we have

σ= =

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where Wm is the total number of packets in layer m, kmi is the degree of node i in layer m, and Em is the 
total number of links in layer m. Hence, we have
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where Wm can be determined numerically through a single layer simulation or be calculated analytically 
from Eq. (2).

Numerical simulations of the dynamical process of transportation are carried out, as follows. Initially 
no packets exist in the system. At each time step, Nm  newly generated packets with random destinations 
are placed on randomly selected nodes that are currently free of extreme events. Any node with load equal 
to its capacity is not allowed to accept any packet from its neighbors, but the packets on the node can 
still leave the node, if at least one of its neighbors is not fully loaded. Asynchronous updating scheme is 
adopted in the simulation to ensure that no node has load higher than its capacity and also for the reason 
that synchronization in large infrastructure systems is not always realistic and necessary. (In fact, many 
real systems are strongly asynchronous, e.g., the planes or trains usually enter an airport or a train station 
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one after another). The number of newly generated packets in the network is determined by the packet 
generation rate   and the layer population Nm =  PmN. Without loss of generality, we treat Pm as a tunable 
parameter while keeping   fixed. Variations in   do not affect the results qualitatively. The packet gen-
eration rate is set to be  = .0 1 in our study.

Total number of packets in a layer.  In an equilibrium state without extreme events on a global 
scale, each packet can move freely along the shortest path towards its destination so that its lifetime τ is 
approximately equal to the length L of the path. Since Wm(t) includes Wm(t −  1) and the newly generated 
Nm  packets with the number of arrivals subtracted off, we can derive the expression of Wm step by step. 

In particular, starting from t =  1, we have
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where Qnew (Ld) denotes the stable fraction of the newly generated packets that are Ld steps away from 
their destinations. Apparently, if >L Ld d

max, i.e., if Ld is larger than the maximum shortest path length 
Ld

max in the focal layer, we have Qnew (Ld) =  0 and
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The relaxation time for the system to evolve into the stable equilibrium state is given by =t Ld
max. We 

obtain Wm(t →  ∞), as in Eq. (2). However, when extreme events take place in the system, the packet 
lifetime τ can assume values much larger than the path length L. In this case, we have 

 τ= >W N N Lm m m .

Effect of rerouting via random walk.  For a single-layer network, we can develop a theory to explain 
the qualitative behavior of the transportation dynamics. In an equilibrium state, the probability Q(Ld) for 
a packet to be Ld steps away from its destination satisfies the condition of detailed balance. For simplicity, 
we assume that each packet commits one step random walks with probability η, regardless of the distance 
from its destination. A walk makes a packet one more step away from its destination (which is numeri-
cally observed with high probability). Thus, at time t, packets corresponding to Ld constitute (1) the 
packets corresponding to Ld +  1 at time t −  1 and moved along the shortest path towards their destina-
tions at time t, (2) the packets corresponding to Ld −  1 at time t −  1 and committing random walks at 
time t, and (3) the newly generated packets corresponding to Ld. Consequently, for < −L L 1Ld d

max , we 
have

η η( ) = ( − ) ( + ) + ( − ) + ( ). ( )Q L Q L Q L Q L1 1 1 14d d d
new

d

Since, in a typical case, any movement of the packets corresponding to Ld
max makes their distances from 

the destinations smaller, packets for = −L L 1d d
max  include all these that are Ld

max steps away from their 
destinations. We thus have

η( − ) = ( ) + ( − ) + ( − ). ( )Q L Q L Q L Q L1 2 1 15d
max

d
max

d
max new

d
max

As boundary conditions, for packets corresponding to =L Ld d
max, we have

η( ) = ( − ) + ( ), ( )Q L Q L Q L1 16d
max

d
max new

d
max

and for packets corresponding to Ld =  1, we have

η( ) = ( − ) ( ) + ( ). ( )Q Q Q1 1 2 1 17new

Consider the case where =L 7d
max  (a typical case in our study). We obtain a complete equation set for 

solving Q(Ld), as follows:
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It can be written in the matrix form

η
η η

η η
η η

η η
η

η







− −
− −

− −
− −

− −
−

−













( )
( )
( )
( )
( )
( )
( )







= −







( )

( )

( )

( )

( )

( )

( )







,

( )

Q
Q
Q
Q
Q
Q
Q

Q
Q
Q
Q
Q
Q
Q

1 1 0 0 0 0 0
1 1 0 0 0 0

0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1
0 0 0 0 0 1

1
2
3
4
5
6
7

1
2
3
4
5
6
7 19

new

new

new

new

new

new

new

where


∑ ∑( ) = ( ) = .
= =

Q L Q L
N
W

1 and
L

L

L

L
m

m1
d

1

new
d

d

d
max

d

d
max

This set of equations can be solved numerically. When the network topology is fixed, Qnew (Ld) follows a 
constant distribution, which can be obtained from simulation. While each value of η generates a set of 
Q (Ld) values, a proper value makes the sum of Q (Ld)’s unity. In our calculation, as η is increased from 
0 to 1, we find that the sum of the Q (Ld) increases monotonically and, hence, only the η values that make 
∑ ( ) == Q L 1L

L
1 dd

d
max  provide a solution. Figure 7 shows the theoretical solution of the Q (Ld) distribution, 

which qualitatively agrees with the simulation result.

Effective betweenness calculation and flux distribution.  According to Eq. (10), the effective 
betweenness BE of each node can be calculated from information about the network topology, and the 
probability of a node to be visited (the normalized effective betweenness), pE, can be obtained from Eq. 
(11). Through extensive simulations, we find that the effective betweenness under the condition that the 
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Figure 7.  Number of packets Ld steps away from their destinations. For a single layer network of size 
N =  1000, the number of packets in an equilibrium state that are Ld steps away from their respective 
destinations from theory (triangles) and simulation (circles). The total number of packets that the system 
can accommodate in the equilibrium state is about W =  558, which includes the newly generated packets 
within the current time step (diamonds) and all the remaining old packets (squares).
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contribution of packets is inversely proportional to the path length exhibits a power-law scaling with the 
degree. The empirical relationship between pE and degree k is verified by comparing the averaged 
( )/∑ ( )=B k B kk

N
E 1 E  values corresponding to each k value obtained via the topology information and 

estimated from β( ) ≈ γp i kiE , as shown in Fig. 8(a). We see that, except the nodes with very low con-
nectivity, the PE value obtained directly from the network topology matches that obtained from the 
empirical relationship (the error bars are essentially invisible within the scale of the figure).

In our theory, the assumption that packets moving according to the shortest-path routing scheme can 
be regarded as equivalent to random walks with node-visiting probability proportional to the effective 
betweenness can be justified through the flux distribution function. As shown in Fig.  8(b), for a typi-
cal hub node, the flux distribution function obtained from theory, i.e, the binomial distribution in Eq. 
(6), correctly fits the statistics obtained from simulation. For certain nodes the theory and simulation 
results may not match well, but the theoretically predicted and numerically obtain peaks typically have 
substantial overlaps. Further calculations show that the flux distribution functions obtained from the 
conventional betweenness centrality deviate from the simulation systematically with large errors, as there 
is little overlap between the peaks obtained from theory and numerics. This provides further justification 
for the necessity to instigate the effective betweenness.
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