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Selective distillation phenomenon 
in two-species Bose-Einstein 
condensates in open boundary 
optical lattices
Xiao-Dong Bai, Mei Zhang, Jun Xiong, Guo-Jian Yang & Fu-Guo Deng

We investigate the formation of discrete breathers (DBs) and the dynamics of the mixture of two-
species Bose-Einstein condensates (BECs) in open boundary optical lattices using the discrete 
nonlinear Schrödinger equations. The results show that the coupling of intra- and interspecies 
interaction can lead to the existence of pure single-species DBs and symbiotic DBs (i.e., two-species 
DBs). Furthermore, we find that there is a selective distillation phenomenon in the dynamics of 
the mixture of two-species BECs. One can selectively distil one species from the mixture of two-
species BECs and can even control dominant species fraction by adjusting the intra- and interspecies 
interaction in optical lattices. Our selective distillation mechanism may find potential application in 
quantum information storage and quantum information processing based on multi-species atoms.

Bose-Einstein condensates (BECs) trapped in periodic optical potentials are an invaluable tool to study 
fundamental and applied aspects of quantum optics, quantum computing, and solid state physics1–4. 
It is important to understand the dynamics and transport properties of BECs in optical lattices. One 
of the most interesting features of BECs in nonlinear lattices is the existence of localized excitation, 
which can propagate without changing its shape as a result of the balance between nonlinearity and 
dispersion5–8. This phenomenon is also referred to the formation of discrete breathers (DBs). DB is an 
interesting discovery in nonlinear science and has been observed in other physical systems as well, such 
as micromechanical cantilever arrays9, antiferromagnet systems10,11, Josephson-junction arrays12,13, non-
linear waveguide arrays14,15, Tonks gas16, and some dissipative systems17. In single-species BECs, many 
properties of DBs have been investigated theoretically and experimentally in the last decade18–26. One 
of its interesting properties is that the DBs are attractors and can slow down the relaxation processes 
in dissipative systems27–29. Moreover, some studies29–31 on the collision of a stationary DB with a lattice 
excitation (a moving breather or phonon) show that if the amplitude of the lattice excitation is small, it 
will be reflected entirely from the DB, while with the amplitude beyond a specific threshold, a part of 
the incident atoms transmit through the DB.

The previous works are mainly focused on single-species BECs. Actually, the two- and multi-species 
BECs have been observed in experiment and attracted much attention. In 2008, Thalhammer et al.32 
observed an interesting mixture of heteronuclear BECs in experiment, where 41K and 87Rb atoms are 
condensed together in an optical lattice. An important property of this mixture is that the interspe-
cies scattering length describing the effective colliding interaction between 41K and 87Rb atoms can be 
tuned over a wide (both positive and negative) range using a magnetic Feshbach resonance, and their 
own intraspecies scattering length remains positive for each species. That is, in this mixture both the 
inter- and intraspecies interactions can be varied and controlled completely. Subsequently, both the sta-
ble mixture33 of the isotopes 168Yb and 174Yb, and the unstable mixture34 of the isotopes 174Yb and 176Yb 
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were obtained. In 2011, two-species BECs have been realized35 with the mixture of two hyperfine states 
of 87Rb, which is spin-orbit-coupled (SO-coupled) BECs.

Recently, some interesting physical phenomena and unique properties have been discovered in 
multi-species BECs in optical lattices, such as multi-species gap solitons in spinor BECs36, dark-dark sol-
itons and modulational instability in miscible two-species BECs37, unstaggered-staggered solitons38, and 
the other two-species solitons39–46 in two-species BECs. Also, it has been found that the mixing with the 
second atomic species can lead to some different physical phenomena47,48. For example, the interspecies 
interaction of the two-species BECs can result in the phase separation in a harmonic trap, i.e., the two 
species may be immiscible49,50. In 2008, Papp et al.51 found that the repulsive interaction between atoms 
of different species can leave the mixture of two-species BECs far from its ground state in experiment.

In this paper, we numerically investigate the formation of DBs in two-species BECs inside open opti-
cal lattices using the discrete nonlinear Schrödinger equations (DNLSEs). We find that the coupling of 
intra- and interspecies interaction can lead to the existence of pure single-species DB and symbiotic DBs, 
i.e., the DBs of species 1 and 2 locate together with the same or different species fraction at the same sites 
in open optical lattices. Furthermore, we explore the dynamics of the mixture in two-species BECs with 
a pure single-species DB in open optical lattices. Interestingly, we find that there is a selective distillation 
phenomenon in both the mixture of initial condition selected randomly and that of symbiotic DB. That 
is, by adjusting the interspecies interaction one can make one species transmit through the DB and 
the other be blocked, therefore increasing the relative proportion of the ultracold atoms in the former. 
Moreover, one can also improve the dominant specie fraction of the mixture of two-species BECs by tun-
ing the interspecies interaction in three mixtures: initial condition selected randomly, moving symbiotic 
DBs, and stable symbiotic DBs. This phenomenon is potentially useful in quantum information storage 
and quantum information processing based on multi-species atoms.

Results
The model of two-species Bose-Einstein condensates.  Two-species BECs can be created by 
simultaneously confining different atomic species in the same magnetic trap, including those of two 
different kinds of atoms and those of the same atoms in two different hyperfine states. For instance, a 
strongly repelling two-species system of different species can be created using 41K-87Rb atoms in an 
optical lattice32. Another two-species BECs were experimentally realized in hyperfine spin states of 87Rb, 
|↑〉 ≡ | = , = 〉F m1 0f  and |↓〉 ≡ | = , = − 〉F m1 1f , which is called SO-coupled BECs and resulted from 
a pair of counterpropagating Raman beams coupling the atomic states35 ↑  and ↓ . In these systems, the 
inter- and intraspecies interaction strengths can be controlled by a magnetic Feshbach resonance or 
adjusting the angle between the Raman beams.

We start our study with the following coupled Gross-Pitaevskii equations (GPEs) describing the 
dynamics of the two-species BECs52–54
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Here Ψ ( )rj  denotes the condensate for species j (=  1, 2). The coefficient gi,j represents the interaction 
between two atoms from species i and j, which is defined as
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where ai,j is the intraspecies (i =  j) or interspecies (i ≠ j) scattering lengths and μi,j =  mimj/(mi +  mj) is the 
reduced mass of the atomic pair. The external potential ( )V rj  is generally a superposition of a harmonic 
trapping potential ( ),

V rH j  and the periodic optical lattice potential ( ),
V rL j , that is,
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where a is the lattice spacing. When the lattices are sufficiently deep, one can work in the tight-binding 
limit, and the condensate is well localized around potential minima. The condensate parameter can be 
written as
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where n ( =  1, …, M) is the index of the site and φ ( ),
rj n  accounts for the ground state of the correspond-

ingly isolated n-th potential. M is the number of lattice sites. |ψj,n(t)|2 represents the number of the j-th 
species atoms at the n-th lattice site. By inserting Eq. (6) into Eq. (1) and integrating out the spatial 
degree of freedom, one can obtain DNLSEs55,56:
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The total atomic population inside the optical lattice for each of the species 1 and 2 is 
ψ∑ | ( = )| = ( = ), t N t0 0n j n j

2 . Here the atomic distribution of each species over the entire lattice  
is normalized to unity: Nj(t =  0) =  1. The wave functions can be assumed as ψj,n =  Aj,n exp(iθj,n),  
where Aj,n and θj,n represent the amplitudes and the phases of species j at site n,  
respectively. In Eq. (7), the time has been re-scaled t →  [ħ/(2J)]t with the assumption 
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 being the tunneling rate between the 

nearest-neighbor sites. The intra- and interspecies interactions are described by the parameters 
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21 2 , respectively. Here, we focus on the repulsive 

cases, i.e., λj,j >  0 and λ1,2 >  0.

Formation of discrete breathers in two-species Bose-Einstein condensates.  The formation of 
DBs in two-species BECs (N1 =  N2) in open optical lattices can be investigated systematically by intro-
ducing the initial effective mean-field intra- and interspecies interactions per site as28,29
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It has been demonstrated that in single-species BECs if the initial effective mean-field interaction Λ  
is larger than a critical value Λ * ≈  0.472 (which is gained from Eq. (17) of ref. 28 when M =  81), because 
of self-localization mechanism, the stable DBs can be created in open optical lattices with boundary 
dissipation28,29. If Λ  is less than Λ *, DBs cannot be formed and atoms will decay. In two-species BECs, 
the DBs are still rooted from self-localization mechanism. If Λ 1,2 =  0, species 1 and 2 are independent 
and one can get the corresponding critical values Λ = Λ ≈ ., ,

⁎ ⁎ 0 4721 1 2 2 . If Λ 1,2 ≠ 0, species 1 and 2 are 
dependent, and for the special case Λ 1,1 =  Λ 2,2 =  0, one can analogize the BECs with species 1 and 2 to 
single-species BECs and its corresponding critical value is Λ ≈ .,

⁎ 0 4721 2 . Here and after, we assume the 
critical value is Λ b =  0.472. According to the difference of the parameters Λ 1,1 and Λ 2,2, the following 
investigation should be divided into three cases: (I) Λ 1,1 =  Λ 2,2 =  0.1 <  Λ b; (II) Λ 1,1 =  Λ 2,2 =  0.6 >  Λ b; (III) 
Λ 1,1 =  0.1 <  Λ b, and Λ 2,2 =  0.6 >  Λ b. In these three cases, the interspecies interaction Λ 1,2 will paly an 
important role and will impact strongly on the formation and dynamics of DBs for two-species BECs in 
open optical lattices.

Let us consider the dissipation case with atoms initially distributed uniformly at each site with ran-
dom phases θj,n, which reads
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Here θj,n ∈  [0, 2π] is an arbitrary value. We assume that the boundary dissipation rates of lattices at sites 
1 and M are γ1 =  γ2 =  0.3 for both species.

The formation of DB in two-species BECs in open optical lattices with M =  81 for the three cases (I), 
(II), and (III) with different Λ 1,2 are shown in Fig. 1. In the first row, the color code shows |ψ1,n|2, which 
is normalized to 1 at t =  0 and describes the density of species 1. In the second and the third rows, the 
color codes show |ψ2,n|2 which is also normalized to 1 at t =  0 and describes the density of species 2, and 
|ψ1,n|2 +  |ψ2,n|2 describing the sum density of both species 1 and 2, respectively.

In Fig.  1(a1–a3), Λ 1,1 =  Λ 2,2 =  Λ 1,2 =  0.1 <  Λ b is very small, one can see that there is no DB in both 
species 1 and 2, and the atoms in the lattices get dissipated. That is, when both intra- and interspecies 
interactions are smaller than their critical values, no DBs can be formed. In Fig. 1(b1–b3), Λ 1,2 =  0.5 is a 
bit larger than the critical value Λ b, and one DB can be formed for each of species 1 and 2 and they are 
located in the same position, as shown in Fig. 1(b3). It can be called a symbiotic DB. In Fig. 1(c1–c3) 
with Λ 1,2 =  1 >  Λ b, a few DBs can be formed for each of species 1 and 2, and the locations of DBs for 
species 1 are the same as those for species 2. That is, if Λ 1,2 >  Λ b and Λ 1,1 =  Λ 2,2 <  Λ b, the properties of 
the two-species BECs are determined nearly by interspecies interactions Λ 1,2, not the intraspecies interac-
tions Λ 1,1 and Λ 2,2. Under this condition, the mixture of species 1 and 2 are analogous to single-species, 
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and hence its properties are similar to those of single-species BECs. Thus, one can see that the dynamical 
properties of species 1 and 2 are exactly the same, and the DBs of the two species always co-exist in the 
same positions, as shown in Fig. 1(b2–c3).

In Fig. 1(d1–d3), Λ 1,1 =  Λ 2,2 =  0.6 >  Λ b and Λ 1,2 =  0.1 <  Λ b. It is seen that the properties of the species 
1 and 2 are determined by their intraspecies interactions Λ 1,1 and Λ 2,2, but not interspecies interactions 
Λ 1,2. At this time, species 1 and 2 can be considered as two non-interacting species. Thus, one can see 
that one DB is formed in each of species 1 and 2. Different from those in Fig. 1(b1–b3), the two DBs of 
species 1 and 2 are not located at the same positions, as shown in Fig. 1(d3). In Fig. 1(e1–e3), Λ 1,2 =  0.5 
is larger a little than the critical value Λ b, and two DBs can be formed in each of species 1 and 2 and 
they are located at the different positions, as shown in 0.5(e3). That is, the formation process of DBs in 
species 1 and 2 are still independent. In both Fig. 1(f1–f3) Λ 1,2 =  1 >  Λ b, species 1 and 2 cannot be con-
sidered as the two independent species, and two or more strong DBs can be formed for each of species 
1 and 2 and they co-exist in the same positions. Moreover, when Λ 1,2 is large enough, the DB composed 
of only species 1 or 2 can prevent atoms of both species from dissipating out of the lattices, as shown 
in Fig. 1(f1–f3).

In Fig.  1(g1–g3) (Λ 1,2 =  0.1) and (h1–h3) (Λ 1,2 =  0.5), the formation processes of DBs in species 1 
are determined by the interspecies interactions Λ 1,2, while those in species 2 are determined by both the 
interspecies interactions Λ 1,2 and intraspecies interactions Λ 2,2. Thus, one can see that no DB is formed 
in species 1, as shown in Fig. 1(g1,h1), and one or more DBs can be formed in species 2, as shown in 
Fig.  1(g2,h2). In Fig.  1(i1–i3) with Λ 1,2 =  1 >  Λ b, due to the interplay of species 2, DBs can be formed 
not only in species 2 but also in species 1. The DBs of species 1 are weaker than those of species 2. That 
is, the formation of DBs of the two-species BECs is dominated by species 2, and the DBs of species 1 
are like appurtenances.

Selective Distillation of Ultracold Atomic Gas
From Fig. 1(f1–f3,i1–i3), one can see that the DBs of both species 1 and 2 can prevent the atoms from 
transferring through them when the interspecies interactions Λ 1,2 are large enough. However, Fig. 1(a1–a3)  
predicts that species 1 and 2 are independent of each other when the interspecies interaction Λ 1,2 is small 
or even vanish, that is, the DB of species j has an important effect on the transfer process of its own 
but not on the other species 3 −  j. With this interesting mechanism, we propose a theoretical scheme to 
selectively distill one species from the mixture of two-species BECs in optical lattices. In order to describe 
the principle of our scheme clearly, let us define two new parameters,
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Figure 1.  Formation of DBs of two-species BECs in open optical lattices with M = 81 sites. The color 
code shows |ψ1,n|2 (normalized to 1 at t =  0 for species 1), |ψ2,n|2 (normalized to 1 at t =  0 for species 
2), and |ψ1,n|2 +  |ψ2,n|2 in the first, the second, and the third rows, respectively. The initial condition is 
a homogeneously populated lattice with random phases at each site randomly drawn from [0, 2π]. The 
boundary dissipation rates at sites 1 and M are γ1 =  γ2 =  0.3. The other parameters are chosen as follows: 
Λ 1,2 =  0.1 <  Λ b for (a1–a3), (d1–d3), and (g1–g3); Λ 1,2 =  0.5 >  Λ b for (b1–b3), (e1–e3), and (h1–h3), and 
Λ 1,2 =  1 >  Λ b for (c1–c3), (f1–f3), and (i1–i3). (a–c) Λ 1,1 =  Λ 2,2 =  0.1; (d–f) Λ 1,1 =  Λ 2,2 =  0.6; (g–i) Λ 1,1 =  0.1 
and Λ 2,2 =  0.6.
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Rdj(t) describes the dominant species fraction of species j in the mixture of two-species BECs from the 
sites k1 to k2 in the optical lattice at time t, while Rpj(t) describes the relative proportion of the atoms 
in species j from the sites k1 to k2 in the mixture to all the atoms in the entire optical lattice. Here our 
investigation is mainly focused on two typical cases, i.e., initial condition selected randomly and moving 
symbiotic DB. It is worth noticing that we focus on the impact of DB on the dynamics of BECs, where 
the DB mainly occupies three sites and the effective interaction is Λ i,j =  λi,j/3. For convenience, we choose 
λi,j to describe the dynamics of two-species BECs below, and this parameter has been used in previous 
works31,57.

Selective distillation phenomenon in the chaos mixture of BECs.  Let us assume that the initial 
condition is chaos with random amplitudes and phases at sites 1 to 20 in optical lattices with M =  81, 
and the other sites are empty (that is, their amplitudes are zero). There is a pure DB of species 2 at the 
middle site of optical lattice. That is, the initial condition reads as
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Eq. (12) represents the initial condition selected randomly, and Aj,n and θj,n are arbitrary values. Eq. (13) 
represents the DB of species 2.

Using the initial condition and Eqs (8) and (9) with γ1 =  γ2 =  0, we simulate numerically the dynam-
ics of two-species BECs, shown in Fig.  2 with λ1,1 =  λ2,2 =  4. The color codes show |ψ1,n|2, |ψ2,n|2, and 
|ψ1,n|2 +  |ψ2,n|2 in the first, the second, and the third columns, respectively. In the fourth and fifth columns, 

Figure 2.  Selective distillation phenomenon in the chaos mixture of two-species BECs. The initial 
conditions are presented in Eqs (12) and (13). The color codes show |ψ1,n|2, |ψ2,n|2, and |ψ1,n|2 +  |ψ2,n|2 in 
the first, the second, and the third columns, respectively. In the fourth and fifth columns, the solid and 
dashed lines represent the Rdj(t) and the Rpj(t) of species 1 and 2 at sites ranging from 1 to 39, respectively. 
The dotted and dot-dashed lines represent the Rdj(t) and the relative proportions of species 1 and 2 at sites 
ranging from 43 to 81, respectively. They are obtained from Eqs (10) and (11). In all cases, λ1,1 =  λ2,2 =  4, 
λ1,2 =  0 in (a–e), and λ1,2 =  3 in (f–j).



www.nature.com/scientificreports/

6Scientific Reports | 5:17101 | DOI: 10.1038/srep17101

the different lines represent the Rdj(t) and Rpj(t) for species 1 and 2 at the different sites ranging from 1 
to 39 or from 43 to 81, respectively.

In Fig.  2(a–e), λ1,2 =  0, which means these two species are independent of each other. If the DB is 
composed of only species 2, it has effect only on the dynamics of species 2, but not on that of species 1. 
As shown in Fig. 2(a–c), the part composed of species 1 in chaos can transmit through the DB without 
any hindrance, but the part composed of species 2 in chaos has been blocked by the DB. The change 
of the Rdj(t) of the two species is shown in Fig. 2(d). When t =  0, Rdj(t =  0) at the sites 1–39 are 50%, 
shown with the solid and dashed lines, respectively. At sites 43–81, since a small number of atoms of the 
DB can move to this area, there is only species 2, no species 1, that is, the Rdj(t) of species 1 and 2 are 
0 and 1, respectively, shown with the dotted and dash-dotted lines in Fig. 2(d) at the beginning (t ~ 0), 
respectively. Subsequently, the Rdj(t) change with time t. After 24 time steps, the chaos extends to the DB, 
and then a part of species 1 transmits through it. At sites 43–81, the Rd(t) of species 1 first increases and 
then approaches the stable value of nearly 100%, but that of species 2 is nearly 0. In other words, species 
1 with a high Rd1(t) is extracted from the chaos at the sites 1–39 when λ1,2 is far smaller than the critical 
value. We call this phenomenon the distillation of ultracold atomic gas.

To show this distillation phenomenon explicitly, we calculate the Rpj(t) of species 1 and 2 at the two 
different areas (one is composed of the sites from 1 to 39 and the other from 43 to 81), shown in Fig. 2(e). 
When t =  0, Rpj(t =  0) of species 1 and 2 at sites 1–39 in the mixture are 50%, shown with the solid 
and dashed lines, respectively, and Rpj(t) at sites 43–81 are 0, shown with the dotted and dash-dotted 
lines, respectively. After 24 time steps, Rp2(t) at sites 1–39 and 43–81 are constant, and Rp1(t) at sites 
1–39 decrease and that at sites 43–81 can increase to 21.6%. That is, at most 21.6% of species 1 can be 
distilled from the mixture, and Rp1(t) at sites 43–81 (the dotted line) can represent the efficiency of this 
distillation.

When λ1,2 =  3, one can see that both species 1 and 2 are prevented by the DB and cannot transmit 
through it, as shown in Fig. 2(f–h). In Fig. 2(i), the Rdj(t) of species 1 and 2 at sites 43–81 are also nearly 
100% and 0 at last, respectively. However, Rp1(t) at sites 43–81 is about 1%, that is, the number of atoms 
that transmit through the DB is very small due to the blocking of the DB, and species 1 is not effectively 
distilled. Thus, the DB plays a role of inhibitting the transmission of both species 1 and 2 when λ1,2 is 
much larger than the critical value.

From the discussion above, one can see that the distillation for the chaos depends strongly on the 
species of DB and the value of λ1,2. The former decides which species will be distilled, and the latter 
can control the efficiency of distillation. Therefore, by adjusting the interspecies interaction λ1,2, one can 
make one species transmit through the DB and the other be blocked, and increase the dominant species 
fraction of the ultracold atoms in the former. We call this the selective distillation phenomenon for the 
ultracold atoms in the mixture of two-species BECs.

Selective distillation phenomenon in the mixture of moving symbiotic DB.  Let us assume that 
a symbiotic DB of two-species BECs moves to a pure DB composed of species 2 which is represented by 
Eq. (13). The initial condition for the moving symbiotic DB reads as








( = ) = ( = ) = . ,

( = ) = ( = ) = . . ( )

, ,

, ,

A t A t
A t A t

0 0 0 2
0 0 0 33 14

j j

j j

1 4

2 3

The dynamics of the moving DB under DNLSE with three given interspecies interactions λ1,2 is shown 
in Fig. 3 with γ1 =  γ2 =  0 and λ1,1 =  λ2,2 =  4.

In Fig. 3(a–e), λ1,2 =  0. When the symbiotic DB moves to the stable DB, the part composed of species 
1 of this moving DB can transmit through the stable DB without any hindrance, but that of species 2 is 
reflected by the stable DB, as shown in Fig. 3(a–c). The Rdj(t) and Rpj(t) of these two species are shown 
in Fig.  3(d,e), respectively. When t =  0, Rdj(t) and Rpj(t) of the two species in this symbiotic DB are 
nearly 50%, as shown in Fig. 3(d,e) with the solid and dashed lines, respectively. After 169 time steps, 
this symbiotic DB arrives at the stable DB and then collides with it. From Fig.  3(c), one can see that 
the transmitted part is composed of species 1. Accordingly, Rd(t) and Rp(t) of species 1 at sites 43–81 
is increased to nearly 100% and 48.8%, shown in Fig. 3(d,e) with the dotted lines, respectively. That is, 
species 1 is distilled from the symbiotic DB with a high efficiency.

When λ1,2 =  0.2, the dynamics of the moving symbiotic DB is shown in Fig.  3(f–j). Different from 
Fig. 3(a–e), the part composed of species 1 of this symbiotic DB does not transmit through the stable 
DB but mixes with it, and the part composed of species 2 is reflected, as shown in Fig.  3(f–h). Their 
Rdj(t) and Rpj(t) are presented in Fig. 3(i,j), respectively. One can find that the Rd(t) of species 1 at sites 
43–81 increases suddenly to a relatively stable value at time t =  200. During this time, Rp(t) of species 1 
at sites 43–81 increases to 10%.

When λ1,2 =  0.35, the dynamics of the moving symbiotic DB is shown in Fig. 3(k–p). In the part com-
posed of species 1 of this DB, some is mixed with the stable DB and the other part is reflected, as shown 
in Fig. 3(k), which is a new phenomenon and not yet understood so far. The part composed of species 
2 of this moving DB is reflected by the stable DB. Their Rdj(t) and Rpj(t) are presented in Fig. 3(o,m), 
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respectively. One can find that the Rd(t) of the species 1 at sites 43–81 is lower than that in Fig. 3(d–i), 
and Rp1(t) is 2%, shown with dotted lines in Fig. 3(m).

The dynamics of the symbiotic DB shows that there is also a selective distillation phenomenon in the 
transport for the moving atoms in two-species BECs with a DB. One can selectively distil one species 
from the moving symbiotic DB and control its Rdj(t) by adjusting the interspecies interaction λ1,2.

Certainly, there exist some atoms including species 1 and 2 escaping out of the symbiotic DB and 
spreading freely to the stable DB. Since the stable DB can prevent the atoms from species 2 but not 1, 
after 47 time steps, the Rdj(t) of species 1 and 2 change suddenly, shown in Fig. 3(d,i,o).

Selective distillation for controlling the Rdj(t) of two-species BECs.  It is interesting to control 
the Rdj(t) of two-species BECs in open optical lattices with a stable symbiotic DB by using selective 
distillation (here γ1 =  γ2 =  0.3). As shown in the section of results before, when Λ 1,1 =  0 and Λ 2,2 >  Λ b, 
species 1 will decay completely and the DB can be created in species 2 if Λ 1,2 =  0. However, if Λ 1,2 is large, 
these two species can be co-localized at the same location. That is, Λ 1,2 plays an important role in the 
dynamics of the mixture, which means that one can control the Rdj(t) of the mixture of the two-species 
BECs by manipulating the corresponding interspecies interaction.

Let us assume that this mixture is initially a stable symbiotic DB, where the Rdj(t) of the two species 
are 50%, and this mixture locates at the middle site in optical lattices with M =  81. It can be described as

( )
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where j (= 1, 2) represents the two different species. By varying λ1,2 every 200 time steps, the dynamics 
of the system is shown in Fig. 4. The white dotted lines label the time that λ1,2 starts to vary. Figure 4(d) 
describes the Rdj(t) change of species 1 and 2.

From Fig. 4(a), one can clearly find that when 0 <  t <  200 and λ1,2 =  3, the density of species 1 is sta-
ble. The Rdj(t) of species 1 and 2 near to be 50%, as shown in the area from t =  0 to t =  200 in Fig. 4(d). 
From t =  200 to t =  400, λ1,2 turns to be 0.7. The density of species 1 decreases suddenly to another stable 
value. Accordingly, the Rdj(t) of species 1 (2) decreases (increases) suddenly to another stable value, as 

Figure 3.  Selective distillation phenomenon of a moving symbiotic DB in two-species BECs. The initial 
conditions are presented in Eqs (13) and (14). The color codes show |ψ1,n|2, |ψ2,n|2, and |ψ1,n|2 +  |ψ2,n|2 in 
the first, the second, and the third columns, respectively. In the fourth and fifth columns, the solid and 
dashed lines represent the Rdj(t) and Rpj(t) of species 1 and 2 at sites ranging from 1 to 39, respectively. The 
dotted and dot-dashed lines represent the Rdj(t) and Rpj(t) of species 1 and 2 at sites ranging from 43 to 81, 
respectively. They are obtained from Eqs (10) and (11). In all cases, λ1,1 =  λ2,2 =  4, Λ 1,2 =  0 in (a–e), λ1,2 =  0.2 
in (f–j), and λ1,2 =  0.35 in (k–p).
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shown in the area from t =  200 to t =  400 in Fig. 4(d). Similarly, from t =  400 to t =  600, λ1,2 becomes 
much smaller to be 0.3. During this time, the density of species 1 continues to decrease, and the Rdj(t) of 
species 1 (2) decreases (increases) suddenly to a different stable value, as shown in the area from t =  400 
to t =  600 in Fig. 4(d). At t =  600, λ1,2 decreases to zero, and species 1 will decay completely. Accordingly, 
the Rdj(t) of species 1 decreases to 0, and that of species 2 increases to 100%, as shown in the area from 
t =  600 to t =  800 in Fig. 4(d). In the entire process, species 2 does not change and is always localized, as 
shown in Fig. 4(b). The sum density of both species 1 and 2 has been presented in Fig. 4(c). It predicts 
that each λ1,2 corresponds to a specific Rdj(t) of this mixture. Consequently, the Rdj(t) of the two-species 
BECs mixture can be controlled by adjusting λ1,2.

We systemically calculate numerically the correspondence relationship between the Rdj(t) and λ1,2, 
shown in Fig. 5. It is obtained in the similar way used in Fig. 4, where λ1,2 varies a time every 200 time 
steps. It is worth noting that we had calculated Rdj(t) of the DB for different values of λ2, and the results 
show that they have no obvious difference. It is obvious that there is a selective distillation phenomenon 
in the dynamics of a stable symbiotic DB of two-species BECs.

Methods
To investigate the formation of two-species BECs in an open optical lattice, we supplement the standard 
DNLSEs with a local dissipation at the two edges of the lattice. They are given by
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Figure 4.  Selective distillation phenomenon of a stable symbiotic DB in two-species BECs. The color 
codes show |ψ1,n|2 (normalized to 1 at t =  0 for species 1), |ψ2,n|2 (normalized to 1 at t =  0 for species 1), and 
|ψ1,n|2 +  |ψ2,n|2 in (a–c), respectively. The white dotted lines predict that, at the time λ1,2 starts to vary. (d) 
The changing of Rdj(t) for this two species with time. Its values refer to the symbiotic DB and are gained 
from Eq. (12), where k1 =  40 and k2 =  42. The solid and dotted lines represent the Rdj(t) of species 1 and 2, 
respectively. Here, λ1,2 =  3, 0.7, 0.3, and 0 in the ranges from the time steps 0–200, 200–400, 400–600 and 
600–800, respectively. λ1,1 =  0 and λ2,2 =  9 at all time.
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where δn,1 and δn,M are delta functions. γj describes the atom loss from the boundary of the optical 
lattices. The optical lattices with leaking edges can be realized experimentally by separating continuous 
microwave or Raman lasers, where γj can be estimated within a mean-field approximation27,58.

Conclusion
We have numerically investigated the formation of DBs in two-species BECs by DNLSEs in open opti-
cal lattices, and found that there is a selective distillation phenomenon in the mixture of two-species 
BECs. The coupling of intra- and interspecies interaction can lead to the existence of pure single-species 
DBs and symbiotic DBs (i.e., the two single-species DBs localized together in the same sites), whose 
formation can be controlled by varying their interactions in the two-species BECs. In this way, one can 
selectively distil one species from the mixture of two-species BECs, including the mixture of initial con-
dition selected randomly, that of moving symbiotic DBs, and that of a stable symbiotic DB, and can even 
control the dominant specie fraction by adjusting the interspecies interaction in optical lattices. Maybe 
our selective distillation of ultracold atomic gas is useful in quantum information storage and quantum 
information processing based on multi-species atoms.
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