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Eigencentrality based on 
dissimilarity measures reveals 
central nodes in complex networks
A. J. Alvarez-Socorro1,2, G. C. Herrera-Almarza1,2 & L. A. González-Díaz2

One of the most important problems in complex network’s theory is the location of the entities 
that are essential or have a main role within the network. For this purpose, the use of dissimilarity 
measures (specific to theory of classification and data mining) to enrich the centrality measures in 
complex networks is proposed. The centrality method used is the eigencentrality which is based on 
the heuristic that the centrality of a node depends on how central are the nodes in the immediate 
neighbourhood (like rich get richer phenomenon). This can be described by an eigenvalues problem, 
however the information of the neighbourhood and the connections between neighbours is not taken 
in account, neglecting their relevance when is one evaluates the centrality/importance/influence of 
a node. The contribution calculated by the dissimilarity measure is parameter independent, making 
the proposed method is also parameter independent. Finally, we perform a comparative study of our 
method versus other methods reported in the literature, obtaining more accurate and less expensive 
computational results in most cases.

A large number of systems from nature and others man-made can be described in terms of networks, 
composed by entities (or nodes) that interact through connections (or links). The topological and statisti-
cal properties of the nodes in a network (at microscopic level) tend to be highly heterogeneous, as can be 
seen by studying their degree distribution, clustering distribution and their degree-degree correlations1–3. 
On the other hand, there are also heterogeneities at mesoscopic and macroscopic levels, e.g., not all the 
networks have the same hierarchical structure, community structure or topology4–8. These heterogenei-
ties (at microscopic, mesoscopic and macroscopic levels) have repercussions in the importance of nodes 
and links in the network. For example, is well known that, in highly modular networks, nodes and links 
that connect modules or communities, i.e., nodes with neighboring nodes in different communities are 
more relevant (in terms of global communications) than nodes with neighborhoods fully included in 
the same community, and links with both extreme nodes in the same module are less relevant than 
links with extreme nodes in different communities, a fact that has been widely used precisely in the 
detection of community structures9. Thus, there exist nodes that are more important as a result of their 
position relative to other nodes of the network, giving us relevant information about the properties of 
the networks. This kind of nodes and links that have a special role in a network are called central with 
respect to a given role. Thus, one of the ways to address the problem of centrality define first (at least 
heuristically) the context in which we are talking about “centrality” and then build measures to quantify 
the definition of centrality used, as in the case of betweenness and closeness10. However, although there 
is no consensus on the concept of centrality (because as we mentioned it depends on the system under 
study and the context or heuristics behind the “centrality” to be measured), we can propose a definition 
of centrality that involves all existing definitions.
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Definition. Let G N E= ( , ) be a network and let  Rµ → +:  be a measure quantifying a desired 
property. We say that a node ∈i  has a μ-centrality k if μ(i) =  k. So that we can talk about closeness 
- centrality or betweenness - centrality. The reader can find the formula for betweenness and closeness 
measures in the materials and methods section, equations (11) and (12).

Among the applications of measures of centrality in complex networks we have: (i) in social networks, 
hubs are related to the most influential people on the network11–13, which is of interest to understand 
the individual and collective social processes and the information spreading in such networks13,14, (ii) 
in the protein-protein interaction networks of an organism, central nodes are related to the essential 
genes, i.e., those genes of an organism that are critical to their survival, which is of broad interest in the 
research and design of drugs to combat parasitic diseases15–18, (iii) in air or urban traffic networks, the 
central nodes are associated with optimal points for the spread of diseases, which are of great interest to 
effectively prevent and control the spread of diseases, putting at these points, checkpoints and vaccination 
campaigns19–21, among many other applications22–24. The centrality measures are an attempt to locate 
these nodes, and their goal is to assign a measure (or rank) to each node so that they can be sorted from 
highest to lowest centrality. Some of the heuristics and statistics used to define centrality are based on10:

1. How connected a node is,
2. How influential a node is in terms of its neighbourhood,
3. How easily a node can propagate an information,
4. How intermediary is a node as a connector between nodes in the network.

In this paper, we propose a new method for finding the centrality of a node in a given network, based 
on both the sum of the centralities of the nodes in its neighbourhood and on their dissimilarities. The 
neighbourhood of the node i will contribute more to its centrality in the measure in which the nodes of 
the neighbourhood are more dissimilar. In this work, we will consider that two nodes are dissimilar if 
they do not share neighbours between them (see Fig. 1).

Let R be a network and A its adjacency matrix, i.e., Aij =  1 if the link {i, j} is in the network and Aij =  0 
otherwise. This matrix indexes  .

One method known to find the centrality of the i-th node in a network25 is based on the following 
heuristic: “The centrality/relevance/influence of a node is proportional to the sum of centralities of its 
neighbours”. Mathematically, this can be written as

∑λ= , = , ,…,
( )=

c A c i n1 1 2
1

i
j

n

ij j
1

Figure 1. In the illustrated network, green and red node are dissimilar because they do not share 
neighbors between them. The red node reaches the blue nodes only through the green node and therefore 
its contribution to the centrality of red node is greater.
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where ci denotes the centrality of the i-th node and 1/λ is a constant of proportionality. This leads to the 
eigenvectors and eigenvalues problem:

λ= ( )Ac c 2

Assuming that λ =  λmax =  ρ(A) is the spectral radius of the adjacency matrix of the network, i.e., the 
largest eigenvalue, then by the Perron-Frobenius theorem26 there exists a unique nonnegative eigenvector 
c that satisfies the above equation, obtaining the well-known measure of eigencentrality25. Note that to 
know how central or influential the i-th node is in the network, we only need to know the value of the 
i-th entry of the vector c.

The advantages of this approach are: (i) uses local information because the centrality of a node 
depends explicitly on the centrality of its neighbours, (ii) uses the global information of the network 
through successive couplings (i.e., the centralities of the nodes in the neighbourhood of a node also 
depends on their neighbours, and so on), involving all network nodes in the centrality of a given node, 
(iii) one can analyse large networks quickly, since there are a variety of numerical methods for calculating 
eigenvalues and eigenvectors fairly efficiently27.

The main disadvantage of this approach lies precisely in its heuristics, since it assumes that all nodes 
in the neighbourhood of i-th node contribute equally to its centrality, which is in general false (see 
Fig. 1), leading to a poor ranking, as will be discussed in the results section. Therefore, it is necessary to 
reformulate this heuristic.

Contribution Centrality
To illustrate the essence of our method, consider the network of Fig. 1. For the red node, the informa-
tion, relevance or centrality that brings a particular gray node is poor, because the red node can access 
the rest of the gray nodes directly, without any intermediary (this is because they have almost the same 
neighbours). However, the green node is essential for red node, because without it, the red node could 
not access to the blue nodes. One way to quantify this is through a structural dissimilarity measure, e.g, 
Jaccard dissimilarity28, given by

∩
∪

= −
( ) ( )

( ) ( ) ( )

+ +

+ +D
V i V j
V i V j

1
3ij

that allows us to measure the difference between the neighbourhoods of two nodes i, j given. Other 
measures of structural and dynamical dissimilarities are discussed in the supplementary material. Thus, 
we can weigh the contribution made by each node j in the neighbourhood of a node i by

= ( )W A D 4ij ij ij

This allows us to propose the following heuristic: “the centrality of a node is proportional to the sum 
of the centralities of the nodes in its neighbourhood, weighed by their contributions.” Mathematically, 
that is

∑λ= , = , ,…,
( )=

c W c i n1 1 2
5

i
j

n

ij j
1

leading us to the eigenvalues - eigenvectors problem

λ= ( )W c c 6

where = W A D, and  is the coordinate to coordinate product of matrices A and D. Note that A and 
D are non-negative matrices, so we can use the Perron-Frobenius theorem to ensure that the above 
problem has a unique solution for λ =  λmax with c non-negative, allowing us to infer the centrality of 
each node in the network. Thus,

∑λ
= , = , ,…,

( )=

c W c i n1 1 2
7

i
max j

n

ij j
1

Results
Natural networks that have information about the centrality of the nodes are commonly used as bench-
marks29, because, to date, it has not reported a quantitative methodology to study the accuracy of central-
ity measures used in the detection of the most important nodes, since the concept of importance depends 
strongly on the system under study and the topological properties of the network considered. However, 
in order to have information on the runtime of our algorithm, a group of scale-free networks, Barabási - 
Albert type, with parameter k =  2, was studied, taking 21 logarithmically spaced values of N, 10 networks 
and then averaging runtime5. Analysed networks from Barabási-Albert model have a number of nodes 
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from 102 to 105 nodes. The computation time spent for the analysis of a network of 105 nodes proved to 
be a few minutes, as can be seen in the supplementary material.

Motivated by the fact that centrality measures have been used interchangeably to locate the most 
important nodes in a network12,22,23, although they measure different properties, we performed a com-
parative study between our measure and some of the most common centrality measures in different 
networks.

Florentine Marriages Network. This network was taken from30, it was constructed through data 
from historical documents on the social relations among renaissance Florentine families. In31 is provided 
evidence that support why the Medici were the most powerful family in the early fifteenth century in 
Florence.

Applying (7) to this network, we find that the most central node is associated with the Medici family. 
In Fig. 2, we note that there is a difference between the ranking produced by (7) and the other centrality 
measures, mainly emphasizing the difference between the results obtained with our method and those 
obtained with eigencentrality, although both measures have similar heuristics. In Fig. 3, the network is 
illustrated with the different centrality values produced by (7).

Zachary’s Karate Club Network. This network was taken from32 where the nodes are members of a 
university karate club, and the links represents the presence of ties among the members of the club. For 
our proposes, we take only the topology, without the weight of the links.

It is known that the most important nodes in this network are 34, 33 and 1, being 34 the president 
of the students’ club, 33 is the vice-president, and 1 the karate sensei, hired by the club. Applying our 
method to this network, we obtained the same result. In this sense, the contribution centrality provides 
a more suitable ranking to the importance of the nodes than closeness and betweenness because in this 
particular network the importance of a node is not directly related with this concepts. Note also that 33 
as vice president, inherits the role of 34 in his absence, so his importance in decision-making in the club 
and his direct connection to 34 makes him the second most important node according to our measure. 
In Fig. 4, we can see a clear difference between the ranking produced by the contribution centrality and 
other methods compared here. In Fig.  5, the network is illustrated with the different centrality values 
produced by (7).

Les Miserables Coappearances Network. Finally, we take the coappearances network of charac-
ters in Victor Hugo’s novel “Les Miserables” taken from33. The nodes represent characters and links that 
connect any pair of characters that appear in the same chapter of the book. We are staying only with the 
topology, ignoring the number of such coappearances.

In this network, the contribution centrality achieves again, a more suitable ranking than other central-
ity measures considered. Table 1 shows the first 10 nodes sorted by relevance according to different cen-
trality measures. We found that communicability and eigenvector centrality fail to detect Valjean as the 
most important node. For the centralities betweenness, closeness and degree, Valjean is detected as the 
main node, but they are not able to find the second most important node, which is undoubtedly Javert, 
co-protagonist and antagonist character Valjean in the novel. The information centrality produced good 
results in this case, however, has misclassified to Enjolras when placed over Marius and Cosette, which 
does not happen with the contribution centrality. Regarding the latter, it is also noted that Cosette does 
not appear in the top 10 major nodes in some centralities, for example, eigenvector, degree, communica-
bility, betweenness. Thus, the contribution centrality provides a much better ranking of the characters in 
the novel Les Miserables, than other methods, just taking the topological structure of the network, not 
the frequency of co-occurrences. In Fig. 6, the network is illustrated with the different centrality values 
produced by (7).

Discussion
In this paper, a general methodology that uses structural dissimilarity measures to enrich centrality 
methods in complex networks is proposed, illustrating this through eigencentrality method and Jaccard 
dissimilarity. The combination exploits local and global information network, contributing more to the 
centrality the most dissimilar neighbours of given node. Note the difference between the eigencentrality 
method and our method (see Table 1), indicating the important effect of the inclusion of dissimilarity 
measures as weight parameters when considering the contribution of the neighbors of a given node to 
its centrality. The eigencentrality method could not detect Valjean as the most important character in 
the novel Les Miserables, which our method achieved satisfactorily. Overall our measure of centrality 
behaved differently than the rest of the measures of centrality studied here, which can be clearly seen in 
Figs 2, 4 and 7. Although compared centrality measures measure different properties, all have been used 
for detection of the key nodes in the network under consideration12,22,23. In this sense, we compare the 
results obtained with different centrality measures in each network. Note that our measure tends to adapt 
well to local and global topological properties of networks studied in this work.

Our method can be extended directly to weighted and directed networks, considering, e.g, the 
Tanimoto coefficient34, since the only restriction imposed by our methodology is that the W matrix 
is non-negative to ensure existence and uniqueness of the non-negative eigenvector of centrality. The 
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method is quite simple and powerful. Analysis of networks of over a million nodes was achieved quickly, 
as can be seen in the supplementary material. Note that the coupling of the matrices A and D for the 
construction of W ends in some cases in a less dense matrix than A, since if two nodes have exactly the 
same neighbourhood, the contribution that one provides the other will be zero, eliminating the associ-
ated entry in the W matrix, accelerating the calculation of eigenvectors and reducing memory cost. The 
contribution centrality method can be applied to the development of recommender systems and search 
engines because metadata nodes (e.g, information from a web page, keywords, number of clicks, etc.) can 
be introduced into the dissimilarity measure, to obtain a ranking of the nodes is terms of its relevance, 
similar to Google PageRank35. Note that the strategy of introducing metadata nodes within dissimilarity 
measure is very general and does not depend on the type of system under study. Finally, the contribution 
centrality method was applied to social, biological, transport and artificial networks, obtaining in all 
cases excellent results, as shown in the supplementary material.

Figure 2. Distributions corresponding to the diverse measures of centrality of the Florentine marriages 
network. 
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Figure 3. Florentine marriages network. 

Figure 4. Distributions corresponding to the diverse centrality measures of the network of Zachary’s 
karate club. 
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Figure 5. Zachary’s karate club network. 

Index Contribution Betweenness Closeness Communicability Degree Eienvector Information

1 Valjean Valjean Valjean Gavroche Valjean Gavroche Valjean

2 Javert Myriel Marius Valjean Gavroche Valjean Javert

3 Gavroche Gavroche Thenardier Enjolras Marius Enjolras Marius

4 Thenardier Marius Javert Marius Javert Marius Gavroche

5 Marius Fantine Gavroche Bossuet Thenardier Bossuet Thenardier

6 Cosette Thenardier Enjolras Courfeyrac Fantine Courfeyrac Enjolras

7 Fantine Javert Cosette Bahorel Enjolras Bahorel Cosette

8 MmeThenardier MlleGillenormand Bossuet Joly Courfeyrac Joly MmeThenardier

9 Enjolras Enjolras Gueulemer Combeferre Bossuet Feuilly Bossuet

10 Claquesous Tholomyes Babet Feuilly Joly Combeferre Fantine

Table 1.  First 10 nodes sorted by relevance according to different measures of centrality in the network 
of co-occurrences of characters in the novel by Victor Hugo’s Les Miserables.

Figure 6. Les Miserables coappearances network. 
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Materials and Methods
In the following, G N E= ( , ) will denote a unweighted, undirected and connected network, with  = n 
nodes and  = m links and A will denote the adjacency matrix of the network  .

Degree Centrality. The degree centrality36 is the most simple centrality measure of all. Its heuristic is 
based on the idea that the most connected node is the most central. Hence, we can consider the centrality 
of a node i as proportional to the degree (or number of connections) of that node, i.e.,

( ) =
− ( )C i
k

n 1 8D
i

In terms of the adjacency matrix, we can write the above equation as

( ) =
∑
− ( )
=C i

A
n 1 9D

k
n

ik1

Eigenvector Centrality. The heuristic behind the eigencentrality measure25 is based on the key idea 
that the centrality of a node is proportional to the sum of centralities of its neighbourhood and therefore, 
a node connected to central nodes, will also be central. As explained in the introductory section of this 
paper, this heuristic leads us to calculate the centrality of a node i by an equation of the form

∑ ∑λ λ
= = , = , ,…, ,

( )∈ ( ) =

c c A c i n1 1 1 2
10

i
j N i

j
j

n

ij j
max max 1

where λmax is the largest eigenvalue of the adjacency matrix A. Note that the above equation leads directly 
to the eigenvector problem:

λ= ,Ac cmax

where c exist and it is positive as consequence of the Perron-Frobenius theorem26.

Betweenness Centrality. This is one of the most popular measures of centrality in the literature37 
and is based on the idea that nodes for which more information flows, will be higher values of centrality, 
under the assumption that the information always travels along the shortest paths connecting any two 
nodes in the network. Mathematically, this is

B
N
∑
γ

γ
( ) =

( )
,

( )
, ∈
≠

i
i

11j k

jk

jk
j k

where γjk is the number of shorter paths ranging from the node j to node k and γjk(i) is the number of 
shorter paths ranging from the node j to node k and passing through the node i.

Closeness Centrality. The heuristic principle behind this measure is based on the concept of close-
ness38. A node is central when it can reach any node in the network in few steps, i.e., is closer to all 
nodes. Thus, the node with higher centrality value will be one with the lowest average length of shortest 
paths, i.e.,

 ( ) =
−

∑ ( , )
( )

=
≠

i n
d i j

1

12j
n

1
j i

Figure 7. Distributions corresponding to the diverse measures of centrality of the Les Miserables 
coappearances network. 
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where d(i, j) is the shortest path distance between the nodes i and j. In the case where the network is 
unconnected, closeness centrality is calculated separately for each connected component is calculated 
separately.

Information Centrality. The information centrality39 is based on the study of how information flows 
between all pairs of nodes in the network. For a given node i, the information centrality is calculated 
through the harmonic mean of the combined paths information, for all nodes j in the network, mean-
ing by combined path between i and j the set of all paths joining this pair of nodes. Thus, we have 
mathematically

=
∑ ( )=

I n
I 13

i
j
n

ij1

The information of a path is defined as the inverse of its length. If paths that make up a combined 
path are independent (i.e not shared links) then the combined path information Iij is given by the sum 
of the information of the paths that compose it. Otherwise, it is necessary to calculate the matrix D(i, j) 
containing the number of links that share the paths in combined path and its information is given by 
= ∑ ( , ),

−I D i j[ ]ij r s rs
1 .

Communicability Centrality. The communicability centrality40,41, also called subgraph centrality 
exploit all closed paths of all lengths that start and end at a node i, having greater influence on the cen-
trality of node i paths with shorter length. Mathematically, the communicability of a node ∈i  is cal-
culated by the exponential of the adjacency matrix of the network as:

( ) = ( ) ( )i eCom 14A
ii
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