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Evolution of the statistical 
distribution in a topological defect 
network
Fei Xue1, Xueyun Wang2,†, Ion socolenco2, Yijia Gu1, Long-Qing Chen1 & Sang-
Wook Cheong2

The complex networks of numerous topological defects in hexagonal manganites are highly 
relevant to vastly different phenomena from the birth of our cosmos to superfluidity transition. The 
topological defects in hexagonal manganites form two types of domain networks: type-I without 
and type-II with electric self-poling. A combined phase-field simulations and experimental study 
shows that the frequencies of domains with N-sides, i.e. of N-gons, in a type-I network are fitted by 
a lognormal distribution, whereas those in type-II display a scale-free power-law distribution with 
exponent ∼2. A preferential attachment process that N-gons with a larger N have higher probability 
of coalescence is responsible for the emergence of the scale-free networks. Since the domain 
networks can be observed, analyzed, and manipulated at room temperature, hexagonal manganites 
provide a unique opportunity to explore how the statistical distribution of a topological defect 
network evolves with an external electric field.

A network (graph) is a representation of a set of objects (nodes) with connections between them1. A 
complex network is a network with non-trivial topological features, which are absent in simple networks 
such as regular lattices and classical random graphs2–4. The great majority of real-world networks, includ-
ing World Wide Web, the Internet, movie actor collaboration networks, neural networks and many oth-
ers, are complex networks3,5,6. Some complex networks demonstrate a scale-free power-law distribution 
of connections (degrees), which attract enormous attention due to the notable characteristics such as 
relative commonness of nodes with a degree that significantly exceeds the average and a small average 
distance (a small number of hops) between two nodes6,7.

Multiferroic hexagonal REMnO3 (RE, rare earths) exhibits fascinating topological defects produced 
from a structural phase transition well above room temperature8–13. The transition is manifested by a 
structural trimerization giving rise to three types of antiphase domains (α , β , γ ) with each exhibiting two 
possible directions of induced ferroelectric polarization (+ , –) along the c axis14,15. Therefore, there are a 
total of six types of antiphase and ferroelectric domains, the co-existence of which leads to the formation 
of topological defects, i.e. vortex lines in three dimensions (3D) or vortices/anti-vortices along the basal 
plane (2D)12,16,17. The vortices, anti-vortices, and domain walls form a complex network in 2D, which 
can be analyzed using the graph theory, a mathematical tool for analyzing the nature of connectivity1,17. 
In the graph theory, the vortex and anti-vortex cores are described as nodes, the domain walls as edges, 
and the domains as faces/regions. In the intriguing domain networks of REMnO3, all the nodes have 
six edges connected to them, and a domain is surrounded by N (an even integer) nodes/edges and thus 
called an N-gon. The domain network of vortices can be categorized into two types: type-I networks with 
statistically equal fractions of the six types of domains, and type-II networks with a preferred electric 
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polarization direction either along the positive (+ c) or negative (–c)17. Type-II networks result from 
poling by external electric fields or self-poling induced by chemical gradients, e.g. the concentration 
gradients of chemical defects18.

Numerical simulations based on phase-field methods can not only predict the domain patterns and 
topological distributions, but also their temporal evolutions as well as the detailed topological changes19,20. 
The simulation results allow us to efficiently perform statistical analysis on large datasets. Here both the 
simulations and experiments show that type-I networks are fitted by a lognormal N-gon distribution with 
the logarithms of its numbers normally distributed, in contrast to the scale-free power-law distribution 
in type-II networks. Detailed analysis based on the simulation results demonstrates that a preferential 
attachment process, i.e. a process that the N-gons with a larger N have higher probability to coalesce 
with other N-gons during transition from type-I to type-II networks, is responsible for the appearance 
of the power-law behavior.

First, the phase-field method20 is employed to simulate the temporal evolution of spatial domain 
patterns. The trimerization of the hexagonal REMnO3 is caused by the displacements of related oxygen 
atoms, which can be described by the magnitude Q and the azimuthal angle Φ 21. In the phase-field sim-
ulations, the polar coordinates Q and Φ  are transformed into Cartesian coordinates ( , )Q Qx y , where 
= Φ, = ΦQ Q Q Qcos sinx y . The trimerization induces a polarization Pz, a secondary order parame-

ter. Based on the hexagonal symmetry, the total free energy density is given by21–23
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are coefficients for the gradient energy terms, and Ez is an external electric field along the z direction. 
We employ YMnO3 as an example with all the parameters from first-principles calculations21. The 
phase-field equations are solved with the initial condition of zero plus a small random noise for the order 
parameter components24. Periodic boundary conditions are applied along the three directions. The sys-
tem size is ∆ × ∆ × ∆x x x4096 4096 1 (unless otherwise noted), and the grid spacing is ∆ = .x nm0 30 .

In the absence of an external electric field, the phase-field simulation generates a type-I network with 
six domains around a vortex or anti-vortex, as shown in Fig.  1. Isolated domains exist as inclusions 
embedded in another domain, e.g. β− within α+domains17. The presence of the isolated domains reflects 
the six degenerate energy minima in the free energy landscape, in contrast to the continuous symmetry 

Figure 1.  Domain patterns of a type-I network from a phase-field simulation. For better visualization, 
only 1/4 of the whole domain structure is shown. Different domains are denoted by different colors. The 
color wheel at lower right corner displays the arrangement of the six types of domains around a vortex.
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in the X-Y model25. From the phase-field simulations, the isolated domains are created during 
vortex-antivortex annihilations as shown in Fig.  2(a–c) and as demonstrated by Movie-I (system size 
∆ × ∆ × ∆x x x1024 1024 1 ) in the supplementary materials.

Another consequence of the six-fold energy degeneracy is the connected domain networks and the 
statistical distribution of the N-gons. Experimentally we perform N-gon analysis on three REMnO3 sam-
ples, all grown using the standard flux method with the details given in earlier reports17,26. Large-region 
optical images are taken after chemical etching (for details, see supplementary materials), and the results 
from N-gon analysis are summarized in Fig. 3(a–c). As shown in Fig. 3(a), the type-I networks can be 
approximated by a lognormal distribution µ σ

σ π

−( − ) /
~

N
N

exp[ ln 2 ]
2

2 2

, where μ and σ are the mean and stand-
ard deviation of the corresponding normal distribution (for details of statistical analysis, see 

Figure 2.  Topological condensation of vortex-antivortex pairs and domain wall pairs. (a–c) Annihilation 
of vortex-antivortex pairs from phase-field simulations, three zoomed snapshots of Movie-I. The brown and 
deep blue domains are two isolated gons resulting from the annihilation. (d) Schematics of a dual graph. The 
eight domains in the original graph correspond to eight nodes in the dual graph. The vortex-antivortex pair 
in the original graph corresponds to two 6-gons in the dual graph. (e) and (f) Schematics of annihilation 
and creation of domain wall pairs. The wall-pair V1V2 and V3V4 in (e) is replaced by the wall-pair V1V4 and 
V2V3 in (f), accompanied by the splitting of a red N-gon and coalescing of two deep blue N-gons.
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supplementary information). According to the graph theory1, the dual graph of a graph is a graph that 
has a node corresponding to a face of the original graph, and an edge joining two neighboring faces of 
the original graph. As shown in Fig. 2(d), in the dual graph of a type-I network, all the faces are 6-gons  
(see supplementary Fig. S6 for a dual graph of large-range domain patterns). When a node has N con-
nections to other nodes, it is also called that the node has a degree of N1. The lognormal distribution of 
the N-gons in type-I networks indicates that the corresponding dual graph shows a lognormal degree 
distribution, which is also observed in other networks such as protein interaction networks27.

On the other hand, a type-II network is better approximated by a power-law distribution ( /N1 2), as 
shown in Fig. 3(c). Note that the average side of the N-gons following a power-law ξ−N  distribution is 
given by = ∑ /∑ξ ξ

=
∞ −

=
∞ −N N NN N2

1
2 , which is convergent with ξ > 2 and divergent with ξ< ≤1 2, 

since ∑ ξ
=
∞ −NN 2  is convergent with ξ > 1 and divergent with ξ ≤ 1. Therefore, ξ = 2 is the critical expo-

nent below which N  is divergent. The underlying mechanism of the critical behavior needs further 
investigation.

Since there exists a self-poling effect near the surfaces of REMnO3 crystals due to the concentration 
gradient of oxygen content, the surfaces often show type-II networks with type-I networks inside17,28. The 
surfaces of REMnO3 crystals annealed to ensure uniform oxygen content throughout the crystals tend 
to exhibit type-I patterns. However, we have infrequently observed an intermediate state between type-I 
and type-II networks, as shown in Fig. 3(b).

To reveal the underlying mechanism for the different statistical distributions in the type-I and type-II 
networks, we performed phase-field simulations of domain pattern formation and the N-gon analy-
sis of predicted domain patterns generated with or without an applied electric field of 1200 kV·cm−1 
(the magnitude of the electric field in the simulation is larger than the experimental saturation field of 
~400 kV·cm−1 in P-E loops29). During the domain evolution under an applied electric field, it is assumed 
that the vortex cores are pinned by defects and have zero mobility. It should be noted that the mobility of 
the vortex and anti-vortex cores are temperature-dependent, although all the coefficients in equation (1) 
are assumed to be independent of temperature. At high temperatures, the vortex and anti-vortex cores 

Figure 3.  N-gon statistical analysis of experimental and phase-field simulation results. (a) A lognormal 
distribution within a type-I network in YbMnO3. (b) An intermediate network in an ErMnO3 crystal. (c) A 
power-law behavior within a type-II network in YMnO3. (d) A lognormal distribution of the type-I network 
without an electric field. (e) The N-gon distribution of the domain structures at an intermediate simulation 
time under an electric field. (f) A power-law distribution of the type-II network under an electric field. 
The data in (d–f) are average of nine parallel simulations with different random noises, and the error bars 
indicate the standard deviations.
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are expected to be mobile, which is the case of Fig. 2(a–c). However, at room temperature, according to 
experimental observations, the mobility of the vortex and anti-vortex cores is very low28,29.

The results from the N-gon analysis of domain structures predicted by phase-field simulation are 
shown in Fig. 3(d–f). The dependence of the frequencies of the N-gons versus N agrees well with that 
obtained from experiments shown in Fig.  3(a–c). A type-I network from the phase-field simulation 
without electric fields exhibits a lognormal distribution, as shown in Fig. 3(d). Under the electric field, 
the slope of the curve corresponding to the electric-field-favored domains becomes smaller, whereas that 
corresponding to the electric-field-unfavored domains becomes larger, as shown in Fig.  3(e). Finally a 
type-II network is obtained, and the N-gon distribution of the three types of domains favored by the elec-
tric field exhibits a power-law distribution as shown in Fig. 3(f). The phase-field simulations on YMnO3 
show the same statistical behaviors with the three REMnO3 samples with different elements in the RE 
sites and different system sizes. This indicates that the statistical behavior of the connected networks is 
intrinsic and universal for all REMnO3 systems and is independent of the specific details of a system.

To examine the domain evolution process under an electric field, domain structures at three different 
times from a phase-field simulation are shown in Fig. 4 (b–d). Compared with the initial domain struc-
tures in Fig. 4(a), the pink, red, and brown regions (α β γ, ,+ + +and domains, which are unfavored by 
the applied electric field) in Fig.  4(b–c) shrink, and eventually become narrow 2-gons in Fig.  4(d). 
Movie-II (system size ∆ × ∆ × ∆x x x1024 1024 1 ) of the supplementary materials demonstrates the 
annihilation and creation of domain wall pairs, which are shown to be responsible for the appearance of 
isolated 4-gons17,28.

With the vortex cores fixed, the transition from type-I to type-II networks is caused by the annihila-
tion and creation of domain wall pairs28. As shown in Fig. 2(e,f), when a domain wall pair is annihilated, 
a corresponding domain wall pair is created, resulting in the equal numbers of annihilated and created 
domain wall pairs. Interestingly, the gradient energy may increase due to the increase of the domain wall 
length, which gives rise to an energy barrier for the transition. For example, as shown in the inset of 
Fig. 4(c), the total length of the octopus-shaped domain walls (boundaries of the red domain) is longer 
than that of the initial domain walls indicated by dashed lines. The energy barrier may impede the anni-
hilation of some domain wall pairs, giving rise to a coercive electric field. The value of the coercive field 
depends on the distance between the vortex and anti-vortex cores, i.e. the vortex density (for details, see 
supplementary information). The coercive field explains the existence of the 4-gons, 6-gons, and 8-gons 

Figure 4.  Transition from type-I to type-II networks under an electric field of 1200 kV·cm−1. (a) Initial 
domain patterns; (b–d) Domain patterns at three different simulation time steps. The inset of (c) shows 
an enlarged area, where the dashed line is the initial domain wall position in (a). (e) Average coalescence 
occurrence of the domains favored by the electric field as a function of N of N-gons. The red dots are 
averages of 5 parallel simulations starting different random noises, and the dashed line is drawn as a guide 
to the eye.



www.nature.com/scientificreports/

6Scientific Reports | 5:17057 | DOI: 10.1038/srep17057

of electric-field-unfavored domains in Fig.  3(f), even though the magnitude of the electric field in the 
simulation is 3 times larger than the experimental saturation field (The system size in the phase-field 
simulation is µ µ. × .m m1 23 1 23 , and the vortex density is higher than that of the experimental samples). 
The existence of the few 4-gons, 6-gons, and 8-gons will hardly change the above power-law distribution. 
It should be noted that the origin of the energy barrier is the topological deformation due to the domain 
wall movement, which is distinct from the conventional energy barrier during phase transitions.

Accompanied with the annihilation of a domain wall pair are two processes related to the N-gons: (1) 
an electric-field-favored p-gon and q-gon coalesce into a (p+ q)-gon, and (2) an electric-field-unfavored 
t-gon splits into a m-gon and k-gon with = + , ≥ , ≥t m k m k2 2, as shown in Fig. 2(e,f). The two 
processes keep repeating until equilibrium is reached. Note that the coalescence processes only happen 
among the same type of domains.

Since the vortex cores surrounding an electric-field-favored N-gon in type-I networks are subsets of 
those surrounding the corresponding N-gon in type-II networks, the occurrence of coalescence can be 
easily abstracted from the simulation results. Fig. 4(e) shows that the average coalescence occurrence is 
linearly dependent on N of N-gons. This indicates that the N-gons with a larger N have higher probabil-
ity to grow, similar to a preferential attachment process. A preferential attachment process is a process 
that during the growth (adding nodes and corresponding connections to the network) of a network, the 
probability that an existing node builds connection with the new nodes is dependent on the degree of 
the existing node. It is shown that growth and preferential attachments are two fundamental mechanisms 
responsible for the scale-free feature in a complex network30. However, during the procedure described 
above, N-gons coalesce and split in the original graph, with the corresponding nodes merging and split-
ting in the dual graph, which are different operations from the network growth. Here we demonstrate 
that a coalescing and splitting process of N-gons with preferential attachments leads to a transition from 
lognormal to scale-free networks in the domain networks of hexagonal manganites.

The large variance of large N in Fig. 4(e) is due to the small numbers of corresponding N-gons, which 
indicates that N is not the only factor that affects the coalescence of a specific N-gon. Since an N-gon 
can only coalesce with the same type of N-gons (proper N-gons), the environment, i.e. the number of 
proper N-gons that are topologically close to it, determines the evolution of the N-gon. Other descriptors 
about the environment may be needed to determine the fate of a specific N-gon. However, statistically 
more proper N-gons are potentially close to an N-gon with a larger N, and the value of N is a critical 
factor for the coalescence process. Simplified simulations only maintaining the information of frequen-
cies of N-gons show that a process with preferential attachments results in a power-law distribution, 
whereas that without preferential attachments maintains the lognormal distribution (see supplementary 
information).

Preferential attachment processes are similar to “proportionate growth”, and some natural processes 
following proportionate growth results in a lognormal distribution, so called “Gibrat’s law”31. In general, 
a process following Gibrat’s law gives rise to a lognormal or power-law distribution, depending on more 
specific details about the stochastic growth process32,33. In the situation of domain networks in hexagonal 
manganites, the lognormal distribution in type-I networks implies that preferential attachments may also 
exist in the coarsening process shown in Movie I.

In summary, we investigate the evolution of the statistical distribution of the N-gons in the domain 
networks of hexagonal manganites with electric fields using both phase-field simulations and experimen-
tal measurements. Lognormal- and power-law distributions are fitted for two types of domain networks, 
respectively. Preferential attachments (behaviors that the N-gons with a larger N have higher probability 
to coalesce with other N-gons) are shown to be responsible for the emergence of the power-law distri-
bution. Our unique results provide new insights into understanding the kinetics and mechanism for the 
formation of different types of complex networks.
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