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Triplet synchrony is an interesting state when the phases and the frequencies of three coupled
oscillators fulfill the conditions of a triplet locking, whereas every pair of systems remains
asynchronous. Experimental observation of triplet synchrony is firstly realized in three coupled
nonidentical mechanical metronomes. A more direct method based on the phase diagram is
proposed to observe and determine triplet synchronization. Our results show that the stable triplet
synchrony is observed in several intervals of the parameter space. Moreover, the experimental results
are verified according to the theoretical model of the coupled metronomes. The outcomes are useful
to understand the inner regimes of collective dynamics in coupled oscillators.

Coupled dynamical systems which exhibit rich collective behavior are widely explored in biological?,
mechanical® or electrical, synthetic genetic networks*. With increasing strength of interactions between
units, the whole coupled system may transit from some incoherent state to coherent ones, i.e. synchro-
nization®”’ and oscillation death®’. Based on the specific form of the coherent motion, various types of
synchronization, including complete synchronization®, phase synchronization®, partial phase synchro-
nization’, etc, are revealed in coupled oscillators. Since synchronization is one of the inner regimes of
collective dynamics and pattern formation'*-'?, it remains a topic of interest in numerous theoretical and
experimental studies and finds various applications.

Among, phase synchronization, defined as the locking of phases between interacting oscillators with
different natural frequencies, is strongly relevant to practical situation. Simply, two interacting oscillators
are deemed to be n:m phase synchronization if the following condition is fulfilled for t is larger than a
transient time T.

Inp,(t) — mp,(t)]| < C, (1)

where n and m are some integers and C is a rather small constant. Analyzing complex synchronization
patterns in multi-frequency systems have been deeply applied in various fields, especially widely in bio-
logical systems such as the interaction of respiratory, cardiac and brain activities'’. When considering a
large number of interacting oscillators with complex interacting network structure and random natural
frequency distribution, there are rich dynamics and patterns in the processes that the coupled system
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Figure 1. Experimental set up. (a) An overall view of the experimental system, including experiment
device, CCD camera and computer system. (b) Front view of the experimental system recorded by the CCD
camera, including the base, aluminum pipes, coupling board and metronomes. Several red wafers are pasted
to mark the positions of desired parts.

transits from incoherent states to full phase locking states with increasing coupling interactions. Before
reaching full phase locking state (any pair of coupling units satisfy the phase locking condition), the
system may become a partial phase synchronization regime’, i.e. some pairs or groups of oscillators are
phase locked while others are not which forms several synchronous clusters. To reveal all synchronous
states of a network efficiently, Kralemann et al.'* defined a synchronous index to detect a triplet synchro-
nization which is realized when triplets of interacting oscillators adjust their phases and frequencies so
that the following conditions are fulfilled for t is larger than a transient time T,

Ine, (1) + mep, (1) + Lo, (1) < C, (2)

where the integers n, m, I can be both positive and negative and C is a small constant. However in par-
allel, the conditions of the pair-wise synchrony equation (1) may not be satisfied for any pair of units.
Although, triplet synchronization is theoretically predicted and detected in oscillator networks from
observed data, it is expected to reveal various pattern formations of coupled oscillators and to contribute
to research in neuroscience based on the binding by-synchrony hypothesis'®. To our best knowledge, no
experimental observation on triplet synchronization has been observed so far. Experimental discussion
on the triplet synchronization is important for various applications, such as the interaction of different
brain regions, where oscillations with a hierarchy of frequencies are ubiquitous.

Coupled pendulums are deemed as a paradigmatic model of exploring the dynamics of coupled sys-
tems since the pioneering work of Huygens. Recently, many scientific teams carried out a variety of
experimental research work, such as Wu Ye et al.'® showed a relationship theoretically and experimentally
between the initial values and the friction damping force and the stable synchronous states of coupled
metronomes system. Oliveira et al.'” experimentally explored Huygens synchronization in two clocks
hanging from an aluminum rail fixed to a masonry wall. Hu et al.!® studied the synchronous behavior of
three coupled metronomes, discovering a variety of synchronous states and the envelope synchronization
phenomenon. Martens et al. found Chimera states in coupled metronome systems'®, etc?*?!. Therefore,
coupled pendulums are a promising candidate to observe triplet synchronization experimentally. We
set up here a coupled system with three globally coupled pendulums and apply the synchronous index
defined in Eq. (2) to observe the triplet synchronization.

In this article, we try to experimentally observe the triplet synchrony with the aid of the synchronous
index. A model based on our experimental setup is built and analyzed to verify our experimental results.
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Experimental setup

Figure 1 shows the experiment platform which consists of three metronome units supported by a piece of
folded A4 paper on two aluminum pipes, a CCD (Charge Coupled Device) acquisition system connected
to a computer and software of LABVIEW. The metronomes in our experimental work are all the Taktell
Piccolino (Series 890) manufactured by Wittner GmbH & Co.KG in Germany. In order to improve the
accuracy and simplicity, the latest experimental system are ameliorated based on the previous system!$-%.,
An organic glass base of hollow cuboids shape is used to ensure that the system will not produce defor-
mation because of its own weight. Two aluminum pipes (with 39 mm inside diameter, 41 mm outside
diameter, and 100 mm length) are put on and perpendicular to the base. The aluminum pipes have a lot
of advantages, such as that their rolling friction and shape hardly change and they have lighter mass.

Since the total energy supplied by the metronome units is limited (last about 20 minutes), it is difficult
to realize synchronization if the coupling strength is not sufficient large. In order to enhance the effect
of coupling, the crux of the problem is to provide more energy or reduce unnecessary loss. Without
changing the structure of metronome, a paper-made platform was applied to substitute the coupling
board used in the previous works'®!®. A few pieces of A4 paper are folded as undulating shape so that
it is strong enough to support the metronomes. Thus, with the lightness of the coupling board, the
energy of the system will not waste too much of the kinetic energy of the coupling board. As a result,
the coupling strength is guaranteed strong enough to realize synchronization between metronomes on
the coupling board.

Three metronomes are put on the coupling board and a red wafer is pasted at the end of each pen-
dulum and on the coupling board to improve the accuracy of recognition for the CCD camera. Then the
motion of the pendulums and the coupling board can be conveniently recorded by tracing the center of
the red wafers. In order to get accurate data, a camera with a high frame rate is set up by which one can
record videos with a resolution of 720p (1280*720 pixels) and a frame rate of 30 frames per second. The
time series of the pendulum of each metronome are recorded by handling the videos.

In our experiments, the metronomes are numbered as 1 to 3 from left to right. By adjusting the
equivalent lengths of pendulums, we may change the frequency of the metronome slightly. (Noted that
there are some slight differences between the actual frequencies and the set values which are caused by
the instrumental errors (about 0.4%) in the mechanical structure of the metronomes. Therefore, we use
all measured values of frequencies other than nominal ones of the metronome).

To provide enough energy necessary for the coupling, we set a relatively high value of initial fre-
quency of metronomes as f;=160 beats per minute (BPM) and f,=176 BPM, while adjusting the value
of the initial frequency f; of the 3" metronome from 120BPM to 200 BPM and so 107 values of f; are
obtained. The time series for each initial frequency constellation are collected by the CCD camera, and
the corresponding phases are calculated with the aid of a computer.

Analysis Methods

The synchronous ratio and order parameter are both effective indicators verifying the synchronous
behavior of system. In the work of Kralemann et al.', the two indicators were combined and a special
synchronous index was proposed as shown in Eq. (3) and (4). The pair-wise synchronization indices can
be described as follows when two oscillators i and j are coupled:

T = | < (0>, 3 (1) = ! 2 (3)

where ¢ (1), % (t) are the phases of the oscillators i and j respectively, # and m are integers, and <> is
average on the time t. The oscillators i and j are considered as being n:m synchronized when the value

of the pair-wise synchronization index ~,", (i) is equal to 1. Accordingly, when all three oscillators are
coupled, the triplet synchronization indices can be calculated by equation (4):

i(n m 1
PYnml |<7nml(t)>| f)/nml(t) =€ ( Lpl(t * w2<t>+ %(t))v (4)

where ¢, 23 (t) are the phases of the oscillators 1-3 respectively, #, m and [ are integers and <> is average
on the time t. Then the triplet synchronization indices Y pn.m, €an be calculated for all possible integers of
n, m, L. The state of the coupled system can be determined as the following cases. (1) If both the triplet
synchronization index v, ,; and all the pair-wise synchronization indices ’y("J> are approaching to 1, the
coupled system is in complete phase synchronization other than triplet synchronization. (2) If the triplet
synchronization index v, ,, is approaching to 1, while the pairwise synchronization indices are small,
the coupled system is in triplet synchronization. (3) If the triplet synchronization index v, ,, ; is equal to
0, at least two of the three phases are completely independent. o

Experimental Results

According to the recorded data of the swing angle ¢, (t) of the pendulums (the data is recorded after a
transient time T = 300seconds), we calculate all trlplet and pair-wise synchronization indices for all
m,n,l C [—Z,Z] (with Z=5 in our experiment) and record the maximal value of the indices as
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Figure 2. The distribution of synchronous indices in our experiments. (a) The distribution of the
experimental pair-wise synchronous index in Eq. (3). The pair-wise synchronous indices between units 1, 2,
1, 3 and 2, 3, which are depicted as red, blue, and green line respectively, VS. the frequency f; of the 3%
metronome. (b) The triplet synchronous indices in Eq. (4) maxy, ,; are shown as black line. The
synchronous parameters #, m, [ are labeled on the peaks of the corresponding frequencies.

max 1, ,; Of max 'y(”f) The maximal pair-wise synchronous indices between units (1, 2), (1, 3) and (2,
3) versus the frequency f; of the 3" metronome are presented in Fig. 2(a), which are depicted as blue,
red and green line respectively. For instance, when f;= 158 BPM or f; =176 BPM, there are two intervals
of f, € [158,159] BPM and f, € [171, 176] BPM, where the pair-wise indices 7(1 3) and 7<2 3) are
approx to 1 respectlvely Therefore, the coupled system is in pair-wise synchronous state between (1, 3)
and (2, 3) when 71,13) and 7171 ) is larger than 0.8 as mentioned in ref. 14. In Fig. 2 (b), the maximal
values of all triplet synchronous indices max v, ,; are shown as black line. It is obvious that there are
four intervals of f; where max ~,,,,; is approachlng 1, while the pair-wise indices of the corresponding
intervals of f; are small (approaching zero). Therefore, the system reaches the triplet synchrony in those
intervals of parameter f;. That is to say, any pair of metronomes is asynchronous but the whole system
of the three metronomes is in a triplet synchronous state when the parameter f; is in one of those four
intervals. The corresponding integer parameters n, m, [ are marked on the peaks of corresponding fre-
quencies f;.

Figure 3(a,b) present the time series of the swing angle ¢_(t) of the three metronomes when the cou-
pled system is in a pair-wise synchronization and a triplet synchronous state respectively. It is difficult to
figure out whether the pair-wise synchronization or the triplet synchronization is built between those
three coupled metronomes only by the time series of the swing angles. However, if we calculate the values
of 7("1 (t)and~y, ,(t) for a interval of time (8 seconds) respectively and dot them in the phase space of
Im (7, ,,.(t)) and Re(’ynm 4(1)) (or Im (’y,,’;,, (t)) and Re(’yn i) (1)), then the dots will distribute uni-
formly on a circle if no pair-wise synchronization (or triplet synchromzatlon) is built, i.e., v, , (or v, , )
is small, otherwise, the dots are in a centralized distribution.

With the aid of the phase space representation of Im(y, ,,,(t)) and Re(7,,,,(t)) (or Im (fy,f’;jq (1))

and Re ('yn 9)(t))) , it is convenient to observe whether the coupled metronomes are in triplet or pair-wise
synchronization. Figure 3(c-e) present the phase diagram of Im(fy,E m)( t)) and Re('y,f’;{)( t)) for (i, H=aQ,
2),(1,3),(2,3) respectively with f | = 174.45 BPM in experiment. Thedotsof(Re( (i) (1)), Im(%m (t)))
for (i, j)=(2, 3) distribute centrally on the circle, while those of (i, j)=(1, 3) and (1, 2) distribute
uniformly on the circle. Therefore, pair-wise synchronization is only built between metronomes 2 and 3,
which coincide well with the results presented in Fig. 2(a). However, the dots of
(Re(Vmi(t)), Im(y,,,,(t))) are also distributed uniformly on the circle. Hence, there is no triplet
synchronization between the coupled three metronomes, where the values of 1, m, I are determined when
the value of v, , ; is maximal. Meanwhile, we present the experimental results for f, = 191.13 BPM in
Fig. 3 (g-j) which are corresponding to that in Fig. 3 (c-f). Obviously, there is no pair-wise synchroni-
zation but a triplet synchronization with n:m:] = 1: —2:1. What should be mentioned is that there are
small amount of scatter dots in Fig. 3(e,j) which is caused by the sampling error of the CCD. As a result,
the amount of data shown on the circle is limited (here we present data of 8seconds) to observe the
collective dynamics clear. To exhibit the collective dynamics more efficiently and without being influ-
enced by the scatter dots caused by the sampling errors, the phase angle 6 of the dot on the circle is
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Figure 3. The time series of swing angle of three metronomes. The coupled system is in (a) pair-wise
synchronization for f, = 191.13 BPM and (b) trlplet synchronous state forf, = 174.45 BPM, respectively.
(c—e) The phase diagram of Im('yn’r{l)( t)) and Re (’Yn A ( )) for (i, j)=(1, 2), (1 3), (2, 3) respectively, (f) the
phase diagram of Im(y,, ,,,;(¢)) and Re('yn mi() for a period of 8seconds as shown in (a). (g-i) The phase
diagram of Im (~%J)()) and Re(~%J)(¢)), (j) the phase diagram of Im(v,,,,,,(t)) and Re(7,,,,,,(t)) with
n:m:l=1:—2:1, for a period of 8 seconds as shown in (b). '

Im (7,7, (1))
i ()]

phase locking can be judged according to the curve of the possibility density P (6) of corresponding
’Yridm (t). If the coupled system is in phase locking then the curve of corresponding P () has a peak oth-
erwise it will be uniformly distributed. Obviously, there is a peak of P (¢) around § = 7 for "] 23) and a

uniform distribution of P (6) for v, _, 5, %}*, 7,}”) as shown in Fig. 4 (a) when the coupled system is

in pair-wise synchronization as Fig. 3(a). However there is uniform distribution of P (¢) for ’71<21 ), ’71<11 2,
(1 %), and peaks of P (6) around § = 0, 7 for Y1.—2, as shown in Fig. 4 (b) when the coupled system is

1n trlplet synchronization as Fig. 3(b).

defined as ¢ (t) = a cos[ ] + ywm with u=0 if Re(ynm(t)) > 0 and u=1 otherwise. The

Theoretical model and numerical results. To reveal the observed triplet synchronization in the
experimental setup, a theoretical model derived from the experimental devices is analyzed***. The
experimental devices are abstracted from that in refs 26-29 as shown in Fig. 5 where several pendulums
with the same mass are coupled through a board, which can move horizontally. All pendulums are
swinging around the fixed point above and in a common upright plane. The length and swinging angles
of pendulums are denoted by /; and ¢,. Two aluminum pipes are set parallel under the coupling board
and thus the board can move horizontally. The displacement of the board is denoted by x; ¢, and k, are
damping and linear force respectively.
Without the damping and driving force, the Lagrange equation of the system is as follows:
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Figure 4. The phase distribution of the phase ¢ of (a) 71 (red hne) 71 1 (black line), 'yl il (green line),
1,45 (blue line) corresponding to Fig. 3(c-f), respectlvely (b) 71 ?) (red line), 7 (1,3) (green line), 71(21 3)
(blue line), v, _, , (black line) corresponding to Fig. 3(g-j).

e

Momentum

$

2 d 2 N 1
L= M 2y Z “—(x + I; sin ¢, )] l—t(li cos qSi)] } + Zmigl,- cos ¢, — Ekxxl, 5
i=1 5

and can be simplified into,

x-l—z

i=1

L= 2[M+Zm

i=1

mxl(b cos¢+—’l¢ + mygl; cos gb] kxxz, ®)

6
where M is the mass of the board, m;=1 is the mass of the pendulum, x is the displacement of the board
with x (0) = 0. /; and ¢, are the length and angle of the ith pendulum, g is the gravity. We define the
right direction as the posmve direction. In Huygens experiments, the coupling board was limited by
magnetic substance, and therefore the parameter k, is remained to repeat the earlier work and it is set
ask, = 0.5.

With the effects of damping and driving force, which is caused by the escapement mechanism of the
metronomes, the dynamic equation of the coupled system can be solved:

m,l,-2<'f>i + m;xl; cos ¢, + C¢,¢i +mgl;sin ¢, =Mp, i=1,2,3 (7)
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Figure 6. The distributions of synchronous 1nd1ces in numerical simulation. (a) The distributions of pair-
wise synchronous indices, and the max*yn( p 2, A ’Yn " 3 and fy ) are plotted by red, blue and green curves
respectively. There are two sections where the pairwise 1nd1ces are greater, around the frequencies of

f , =~ 160 BPM and f , =~ 176 BPM, and it shows that the metronomes (1, 3) or (2, 3) of the system are
pair-wise synchronous respectively and synchronous parameters are n = m = L. (b) The triplet synchronous
indices, plotted by the black curve. There are 5 sections where max v, ,,; is approaching 1 (larger than 0.8),
i.e. the system reaches triplet synchrony, and the synchronous ratios are labeled on the peak of the
corresponding frequencies. (c¢) The distribution of the largest three of Lyapunov exponents. When the third
largest Lyapunov exponent )\, is negative, the system is phase-locked.

3

%+ ok + kx + Y (mlig, cos ¢, — m,-liqﬁi2 sin ¢,) =0, ®
i=1

wherei =1, 2, 3, ¢, = 0.01 is the damping of each pendulum, and ¢, is the damping of the coupling

board. M, is the dr1v1ng force. When the rod of the pendulum swings cross zero and the angle is less
than ~, = 5°, the driving force is produced as follows:

s

i=1

0.075m, 0< ¢, <7y ¢, >0
Mp, = 1-0.075m, —Yy < $,<0, ¢, <0,
0 otherwise 9)

The fourth order Runge-Kutta method is applied and the interval time is set as At = 0.001 in our sim-
ulations. Exceptionally, setting At = 0.0001 is helpful to solve the problems about Lyapunov exponent.
At the time t = 0, the initial velocities of all objects and displacement of the coupling board are set as
zero, and the initial values of the swinging angles are set randomly. The coupled system will go into stable
states usually after 300 seconds of transient time.
While 51mulat1ng equations (7) and (8) numerically, we fix the parameters as follows, m; = 1.0,

vy = /36, ¢>l ¢2 =0, x=%=0, M =30 and ¢y, = 0.01. In order to compare them w1th our
experimental results, we firstly fix the frequencies of two metronomes as /i=160BPM and fj=176 BPM,
and adjust f; from 120 to 200 BPM gradually. The length of the pendulum can be determined according
to the equation of /; ~ ¢ (60/7 f, )2. Then the pair-wise synchronous indices and the triplet synchronous
indices can be calculated respectlvely according to the recorded time series of ¢, , .. The total time of the
recorded time series of phase are 500 seconds after a transient time T'=300 seconds The results are not
concerned with the length of the time interval. For example, the results of 2000 seconds and of 5000 sec-
onds are the same as that of 500seconds. For each value of f;, we determine the maximal synchronous
index among all possible sets of n, m (or n, m, 1) in a range of [—Z, Z] with Z=5. If the value of
max 7, ,,; > 0.8, and the maximal value of v, , is small, then that triplet synchronization is built up
between the coupled metronomes. Figure 6(a) shows the distributions of pair-wise synchronous indices,
and the max*y(lmz) Y (13) and ,y(z ) are plotted by red, blue and green curves respectively. There are two
intervals of parameter f3 where the pair-wise indices are approaching to 1, around the frequencies of
f.=~ , ~ 160 BPM and f, ~ , ~ 176 BPM. Therefore, the metronomes (1, 3) or (2, 3) of coupled system are
in a pair-wise synchronous state respectively with the synchronous parameters # = m = 1. Accordingly,
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the maximal value of triplet synchronous indices are presented in Fig. 6(b) and plotted by black curve.
There are 5 intervals of f; where max v, ,,; > 0.8, with the parameters n,m,] as marked on the corre-
sponding intervals (such as —2:1:1 indicates that the synchronous parametersaren = —2,m = 1,1 =1
which realize the maximal value of the triplet index for given f;). However, the n:m pair-wise synchro-
nous are excluded only in the range of [—Z, Z] with Z=5 for the sake of consistent with the experimen-
tal one. It is necessary to exclude higher order of n:m pair-wise synchronous. Therefore, we calculate and
record the maxima of the pairwise synchronous index for all possible n:m in the interval of [—100, 100]
with parameter f; being in stage when the the maximal value of the triplet indices are above 0.8. The
maximal pairwise synchronous index is 7((915’3275) = 0.41 which is less than 0.8. Even larger range of n, m,
for example, [—300, 300], the maximal pairwise synchronous indices are not larger than those when m
and n are in the range of [—100, 100]. Therefore, we may deduced that triplet synchronization is stable
for given range of m and n. However, it is a time-consuming work for even larger range of n, m.

The largest three Lyapunov exponents are an effectively indicator of phase synchronization between
the coupled system. Since the metronome is a mechanical system which is driven by discontinuous force
from a spring, the standard algorithm does not work for the discontinuous dynamical equation. Thus the
largest three of them, ), , 5, are calculated based on the algorithm introduced in refs 30,31. To exclude
the effects of statistical fluctuation, 20000 seconds of time series are recorded to calculate the Lyapunov
exponents. The Lyapunov exponents are stable when the time increases from 10000 seconds to 20000 sec-
onds. In Fig. 6 (c), the largest three Lyapunov exponents are presented for different values of f . Phase
synchronization is characterized by a negative value of the third largest Lyapunov exponent A;. In the
intervals of triplet or pair-wise synchrony, two of the largest three exponents are zero and the other one
is negative and it shows that the system is quasi-periodic at these moments. In other frequencies, none
of the three exponents are negative and at least two of them are approaching to zero, so the system is in
high dimensional quasi-periodic or chaotic state.

To compare the numerical results with the experimental ones, we recorded the time series of the
coupled metronomes’ angle for f;=192BPM and f;= 1752 BPM, respectively. We also cannot determine
whether the coupled system is in triplet or pair-wise synchrony only from the time series. However, the
phase space diagram of Im (v, ;(£) ) and Re (Y, 1(t)) (or Im (7,7 (£) ) and Re (7,%3)(£))) present clear
relationships between the coupled metronomes. Obviously, when the value f;= 192 BPM, pair-wise syn-
chronization is built between metronomes 2 and 3, since the dots are collected in a small range on the
circle as shown in Fig. 7(e). However, there is no triplet synchronization between the three coupled
metronomes, since the dots are distribute uniformly on the circle as shown in Fig. 7(f) when n, m, [ has
value (—1:5:—4) when ~y, ., is maximal. When the value f, = 175 BPM, there is no pair-wise synchro-
nization between the metronomes 1,2, 1,3, and 2,3, since the dots distribute uniformly on the circle as
shown in Fig. 7(g-i). However, triplet synchronization with n:m:l =1:-2:1 is built between them as
shown in Fig. 7(j).

Another approach to verify the motion states is via Poincare maps which are got by recording the
values of ¢, and ¢, when ¢;=0 as shown in Fig. 8. The Poincare map (in Fig. 8(a), f; = 175BPM) is a
horizontal line with small variation in the parameter space of ¢, versus ¢, when ¢;=0. Hence, it is
confirmed this way that the coupled system built pair-wise synchronization only between metronomes 2
and 3 while there is no pair-wise synchronous between ¢, and ¢,. As a result, ¢, influences the pair-wise
synchronization between ¢, and ¢, which leads to a small modulation or perturbation. However, the
Poincare map (in Fig. 8(b) f, = 175BPM) shows that both phases ¢, and ¢, vary from zero to 27 and
remain in a functional relationship [n¢, (t) + m¢,(t)| < Cwith n:m = 1:—2 when ¢;=0. Hence, there
is no pair-wise synchronization between ¢, and ég,, ¢, and ¢; according to the fact that ¢, and ¢, vary
from zero to 27 when ¢, = 0. If the coupled metronome system is triplet synchronous with n:m:/=1:-2:1,
then |ng, (t) + mo,(t) + 1¢,(t)| < C.If $;=0, it comes to the result of [n¢, (t) + me,(t)| < C with
n:m = 1:—2 as shown the Poincare map in Fig. 8(b).

Comparing Figs 2 and 6, it is obvious that the numerical analyses are consistent with our experimen-
tal results and the theoretical model is effective to describe the experimental process. However, it should
be mentioned that there are some differences between them. Firstly, there are 5 intervals of triplet syn-
chrony, in numerical results but only 4 of them are observed in our experiments. By checking our exper-
imental results carefully, we find that there is a smaller peak at the frequency of f, = 125 BPM, and its
maximum value is less than 0.8. Next, the sections of pair-wise synchrony, which are observed in our
experiments, are smaller than the simulated ones, especially at the frequency of f, ~ 160 BPM. A rea-
sonable explanation is that the interval of adjacent frequencies cannot be adjusted as small enough as the
width of the peak in the experiments, thus the exact values of f; corresponding to the peak of the index
cannot be observed. This can be explained as that the results are almost the same when f; is larger, but
the synchronous sections are much more narrow in the experiments when f; is smaller. A possible reason
is, due to the escapement mechanism of the metronomes, that the lower frequencies cause less energy in
unit time and the coupling effect is decreased. To verify the reason of the difference as described above
and explore the universal rule of this behavior, the distributions of more extensive and various parameter
spaces are discussed.
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Figure 7. Numerical results of the time series of metronomes’ swing angles. The coupled system is in (a)
pair-wise synchronization for f, = 192 BPM and (b) triplet synchronous state for f, = 175 BPM,
respectively. (c-e) The phase d1agram of Im(y,f’;{)( t)) and Re(% ) (1)) for (i, j) = (1, 2) (1,3),(2,3)
respectively, (f) the phase diagram of Im(~,, ,,,(t)) and Re(7,, ., l( )) with n:m:l=—1: 5 —4 for a period of

t =192 — 200 s as shown in (a). (g-i) The phase diagram of Im( )( t)) and Re('yn A ( )), (j) the phase
diagram of Im(, ,, ;(t)) and Re(,, ,, ;(t)) with m:m:l=1:—2:1, for a period of t = 192—200 s as shown

in (b).

Since the mass of the coupling board affects the strength of the coupling, it is necessary to investigate
the effect of the mass of the coupling board on the synchronous index. As shown in Fig. 9(a), the ordinate
denotes M, the mass of the board, and the abscissa denote f;, the frequency of the 3rd metronome. We
find that the system shows extremely complex phenomena when the mass is small. With the increasing
of the mass, only a few sections are maintained. When the mass is about 30, system will work as our
theoretical analysis predicts. The frequency difference Af is fixed as Af = f, — f, = 16 BPM, as shown
in Fig. 9(b) (the ordinate denotes f,), and third one will influence the synchronous index. In addition, if
the frequency of the 1st metronome is fixed as f, = 160 BPM, we observe a relationship between f, and f;
in Fig. 9(c).

Therefore, the distribution of the synchronous index is related to the frequencies of all metronomes.
When the frequency differences are large enough, the behavior of the system depends on the coupling
strength. We set the parameters in order to make the phenomena more clear and intuitive.

Let us consider the synchronization indices based on the parameter spaces of f, and f; by fixing the
value of f; = 160 BPM. The results indicate that there are rich dynamics as the complete synchronization
(white area), the triplet synchrony (black area), the pairwise synchrony (wine area) and unlocked states
(light gray area) as shown in Fig. 10. Obviously, the probability for triplet synchrony is the smallest in
the parameter spaces of f, and f;.

To sum up, it is obviously that a very tiny difference in the value of parameters in the model system
may lead to a deviation from the synchronization states. In consequence, taking inevitable instrumental
error into account, the numerical analyses can be considered to be consistent with our experimental
results as well as in the theoretical model. Based on the method of synchronous index, the triplet syn-
chrony is observed in the experimental system of coupled metronomes.
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Figure 8. A Poincare map of system Eq. (7) (8). (a) For fixing ¢, = 0 and f;=175BPM, ¢, keeps constantly
with small fluctuation as ¢, increases. There is pairwise synchronization between metronomes 2 and 3 while
without pairwise synchronization between metronomes 1 and 2. (b) For fixing ¢, = 0 and f,;=192BPM, both
¢, and ¢, keep increasing from zero to 27 simultaneously, remaining, however, in a functional relationship
|ngy(t) + mo,(t)| < C with n:m=1:—2, this is an example of a triplet-synchronous state.
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Figure 9. The parameter spaces of the synchronous indices Eq. (4) of system Eq. (8). The different colors
denote the value of indices. (a) The effect of the mass of coupling board vs f;, fixing fij=160BPM and
fi=176 BPM. (b) The effect of frequencies of the first two metronomes and the third one, by fixing

Af=f, — f, = 16 BPM. (c) The effect of the frequencies of the 2nd and 3rd metronomes, by fixing
fi=160BPM.
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Figure 10. The distribution of synchronous index of system in the frequency space. When f,=160 BPM,
white areas denote the complete synchronization of system, black ones denote the triplet synchronization.
Wine ones denote the pair-wise synchrony and light gray ones are unlocked states.

Discussion

In this paper, according to the theory of synchronization, an oscillation system of coupled metronomes
was set up and triplet synchrony is discovered in a real experiment. By establishing the theoretical model
and simulating the system numerically, we obtain consistent findings in experiments as well as theoretical
models. By expanding the parameter spaces, we uncover more abundant nonlinear dynamic behaviors
of coupled metronomes. It has been validated that the method of synchronous index is a useful tool to
study experimental systems. Moreover, we propose a more direct method to determine triplet synchro-
nization and pair-wise synchronization by a phase space representation of Im(y,, ,,;(t) ) and Re (v, ,,,,(t))
(or Im (~,%)(t)) and Re (Wn(',{,)(t) )). This approach can be used as a basis for applications and to detect
such synchronization in various fields such as engineering, neuroscience, biology, etc. The discovery of
triplet synchrony in our experimental system will help us to explore the physical mechanism of complex
synchronization patterns in other real systems as well. It is hoped to play a role of guidance and con-
struction in complicated synchronization behaviors in future.

Methods

Experiments. For the convenience of CCD acquisition, the bobs of the pendulums are pasted with
red wafers respectively. The model of the metronome is Series 890 by DE Taktell with a mass (94g). Its
energy is supplied by a hand wound spring. The frequency of the metronome can be adjusted by chang-
ing the position of the mass on the pendulum bob, which denotes that the equivalent pendulum length
is changed. The standard settings of the metronome’s frequency range from 40 ticks per minute (largo) to
208 ticks per minute (prestissimo), but not limited to the scale. The supporting folded A4 paper is light
(4.366 g), since the pendulum bob’s swing direction is perpendicular to the aluminum pipes axes, a bidi-
rectional coupling between the metronomes is generated via the folded paper, which has a tuning impact
on the metronomes. Two parallel aluminum pipes (with inner (external) diameter 39 mm (41 mm)) sup-
port the folded A4 paper. Under the aluminum pipes there is a horizontal adjustment equipment.

Simulations. The equations (1) and (2) are solved by the 4th-order Runge-Kutta method with a time
step of 0.0001. The following parameters remain unchanged in the next parts of numerical calculation.
We fixed the parameters m;, = m, = 1.0, vy = 7/36, q'ﬁl = 42)2 =0, x =% =0, M = 30 (calculated
according to the experimental data) and ¢ 4, = 0.01.
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