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Randomness determines practical 
security of BB84 quantum key 
distribution
Hong-Wei Li1,2,3, Zhen-Qiang Yin1,3, Shuang Wang1,3, Yong-Jun Qian1,3, Wei Chen1,3,  
Guang-Can Guo1,3 & Zheng-Fu Han1,3

Unconditional security of the BB84 quantum key distribution protocol has been proved by exploiting 
the fundamental laws of quantum mechanics, but the practical quantum key distribution system 
maybe hacked by considering the imperfect state preparation and measurement respectively. Until 
now, different attacking schemes have been proposed by utilizing imperfect devices, but the general 
security analysis model against all of the practical attacking schemes has not been proposed. Here, 
we demonstrate that the general practical attacking schemes can be divided into the Trojan horse 
attack, strong randomness attack and weak randomness attack respectively. We prove security of 
BB84 protocol under randomness attacking models, and these results can be applied to guarantee 
the security of the practical quantum key distribution system.

Quantum key distribution (QKD)1 is the art of sharing secret keys between two remote parties Alice and 
Bob, unconditional security of which is based on the fundamental laws of quantum mechanics. The detailed 
security analysis has been proved by applying the entanglement distillation and purification (EDP) tech-
nology2,3 and the von Neumann entropy theory4–6 respectively. However, unconditional security of the 
QKD protocol has an important assumption, which requires Alice and Bob have random input numbers 
to control the classical bit encoding and measurement bases selection, and it can be easily proved that the 
measurement outcomes will become unsafe if the input random numbers are controlled or known by the 
eavesdropper Eve. A pair of important elements in practical QKD system is the random preparation and 
measurement of quantum states. If these procedures are imperfect, which can be perceived as a kind of 
incomplete randomness, the deviation may be used to perform quantum attacking7. More generally, practi-
cal attacking schemes can be divided into three different types from the view point of system randomness.

The first type is the Trojan horse attack8, where the signal state combining with the Trojan horse 
state can be assumed to be high dimensional state modulation. Thus, Eve can measure one dimension of 
the modulated high dimensional state to get all of the secret key information without being discovered.

The second type is the strong randomness attack, where part of the input random numbers are totally 
controlled or known by the eavesdropper Eve. For example, the multi photon pulses generated by the 
practical weak coherent light source can be utilized by Eve to perform photon number splitting (PNS) 
attack9,10, if the multi photon encoding quantum states are assumed to be known by Eve. Another example 
is the detector blinding attack11,12, where Eve can easily mount the man-in-the-middle (MITM) attack by 
converting the avalanche photodiodes (APDs) into linear mode. The single photon detector has the count 
iff Bob’s bases selection is equal to Eve, thus the bases selection in Bob’s side are controlled by Eve. More 
recently, we proposed the probabilistic blinding attack model13, where Eve partly applies the blinding attack 
to avoid being catched by detecting the current parameter, thus part of the bases selection can be assumed 
to be controlled by Eve correspondingly. In the strong randomness attack model, the final secret key should 
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shrink Eve’s information from the multi-photon pulses to an arbitrary small value. To avoid the PNS attack, 
Gottesman-Lo-Lutkenhaus-Preskill (GLLP)14 To avoid the PNS attack, Gottesman-Lo-Lutkenhaus-Preskill 
(GLLP)14 formula combining with the decoy state method15–17 is used in practical QKD systems to elimi-
nate all of the multi photon pulse counting result, and ensure that only the single photon counting events 
can generate the final secret key. To avoid the probabilistic blinding attack, all blinding counting results 
should be eliminated, and only the non-blinding counting events can generate the final secret key. In the 
strong randomness attack model, the secret key rate18 formula should be modified to

≥ ( ) − ( ), ( )R pS a E fh Q 1

where p is the probability of getting valid counting result, which can’t be controlled by Eve. a is Alice’s 
measurement outcome, E is Eve’s auxiliary quantum system, S(a|E) =  S(a, E) −  S(E) is the conditional von 
Neumann entropy, Q is the practical quantum bit error rate, h(Q) =  − Qlog2Q −  (1 −  Q)log2(1 −  Q) is the 
classical Shannon entropy function, f ≥  1 is the error correction efficiency. If we prove security of BB84 
QKD protocol under the PNS attack, p and S(a|E) should be estimated by the single photon counting 
rate and the single photon error rate respectively14–17.

The third type is the weak randomness attack, where the input random numbers are partly controlled 
by Eve19. Such as the wavelength dependence of the beam splitter will introduce the wavelength attack20, 
where Eve can apply different wavelengths to control Bob’s bases selection. Since the practical beam splitter 
maybe has partial wavelength correlation, that is the coupling ratio can’t reach 0 and 1 with two different 
wavelengths, thus Eve can only partly control Bob’s bases selection. Another example is the time shift 
attack21, where Eve controls the APDs detection efficiency by controlling the photon arriving time, thus Eve 
has the advantage to guess the measurement outcomes. Since the practical time shift attack will introduce 
nonzero error rate, the classical bit encoding can be assumed to be partly known by Eve correspondingly.

Now, the Trojan horse attack can be avoided by applying the dimension filter (such as the wavelength fil-
ter) before the state modulation and measurement, which can be utilized to prevent Eve’s Trojan horse light. 
The strong randomness attacking model has also been analyzed by applying the strict post processing tech-
nology, where we only need to precisely estimate p and S(a|E). However, the weak randomness attacking 
model has not been analyzed until now. In this work, we prove security of the practical QKD system with 
weak input random numbers, which can affect the classical bit encoding and bases selection respectively. 
We give two security analysis models, the first model is based on the one-step post processing, where all of 
the measurement outcomes should integrally apply error correction and privacy amplification. While the 
second model is based on the two-step post processing, where the measurement outcomes can be divided 
into two sets with different measurement bases, then the two sets should apply error correction and privacy 
amplification individually. If we only consider the bit encoding weak randomness, two distinct methods can 
get the same secret key rate. But, if we consider the bases selection weak randomness, the analysis result 
shows that the two post processing method can generate much more secret key. Our analysis model can be 
applied in numerous attacking schemes, such as the wavelength attack and the time shift attack. Combining 
with the previous three attacking models, security of the practical QKD system can be evaluated.

BB84 QKD Protocol with Weak Randomness
In the BB84 protocol, there are two binary input bits x1 and x0 in Alice’s side, which can be used to select 
the state preparation bases and encoding classical bits respectively. While the state measurement side Bob 
needs one binary input bit y to select the measurement basis. After the quantum state preparation and 
measurement, Alice and Bob should apply the bases sifting process to save the same bases case (x1 =  y). 
Thus, in the security analysis model, the input randomness can be divided into two sets, the first set can 
be used to decide the encoding classical bit selection x0, while the second set can be used to decide the 
encoding and decoding bases selection x1 (or y). Since Alice and Bob should publicly compare x1 and 
y to save the same value, we can only consider Eve has partial knowledge about the bases selection x1 
before the state measurement, the security analysis model can be simplified correspondingly. Thus we can 
only assume weak random numbers x0 and x1 to control the encoding classical bit and bases selection 
respectively, the detailed analysis model is given in Fig. 1.

In the weak randomness model, the weak random numbers x0 and x1 can be controlled by two dif-
ferent sets of hidden variables λ0 and λ1 as the following equations,

∑

∑
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where λ0 and λ1 are hidden variables controlled by Eve, p(x0 =  0) is the probability that Alice encodes 
classical bit 0, while p(x0 =  1) =  1 −  p(x0 =  0) is the probability that Alice encodes classical bit 1. Similarly, 
p(x1 =  0) is the probability that Alice applies the rectilinear encoding basis, p(x1 =  1) =  1 −  p(x1 =  0) is 
the probability that Alice applies the diagonal encoding basis. Note that two sets of hidden variables λ0 
and λ1 should satisfy ∑ = ∑ =λ λ= =p p 1i i j j0 1

. However, even if the practical experimental realization 
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can observe ( ) =p x0
1
2
 and ( ) =p x1

1
2
 respectively, we still can’t guarantee 

λ λ( = ) = ( = ) =p x i p x j0 0 1 1
1
2
 for arbitrary hidden variables λ0 =  i and λ1 =  j. Thus, the aforemen-

tioned security analysis model based on perfect random input numbers can’t be satisfied directly, we need 
to estimate the randomness deviation for arbitrary hidden variables. The practical weak randomness 
model is given by

λ ε

λ ε

( = ) − ≤ ,
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where ε ε≤ , ≤0 0 1
1
2
, ε0 =  0 (ε1 =  0) is the perfect random number case, which means that Eve has no 

prior knowledge about the classical bit selection (bases selection). While ε =0
1
2
 ( )ε =1

1
2

 means Eve 
previously knows the classical bit selection (bases selection), in which case Alice and Bob can’t generate 
any secret key even if they can observe ( ) =p x0

1
2
 ( )( ) =p x1

1
2

.

One-Step Post Processing Method
By considering the given hidden variable λ0 =  i, we apply the EDP technology to illustrate the practical 
state preparation as the following equation,

ϕ λ λ= ( = | = ) + ( = | = ) , ( )λ = p x i p x i0 00 1 11 4i 0 0 0 0
0

where Alice encoding the classical bit 0 with probability p(x0 =  0|λ0 =  i), and encoding the classical bit 
1 with probability p(x0 =  1|λ0 =  i) =  1 −  p(x0 =  0|λ0 =  i). By considering the given hidden variable λ1 =  j, 
Alice prepares the quantum state in the rectilinear basis with probability p(x1 =  0|λ1 =  j), and prepares 
the quantum state in the diagonal basis with probability p(x1 =  1|λ1 =  j) =  1 −  p(x1 =  0|λ1 =  j), thus the 
final quantum state preparation under the Pauli quantum channel is

∑ρ λ ϕ ϕ

λ ϕ ϕ

= ( = | = ) ⊗ ⊗
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where u, v ∈  {0, 1}, ( )=
−

H 1 1
1 1

1
2

 is the Hadmard matrix, ∑ =, ,q 1u v u v
, q0,0 is the probability that 

Eve applies identity operation ( )=I 1 0
0 1

, q0,1 is the probability that Eve applies phase error operation 

( )=
−

Z 1 0
0 1

, q1,0 is the probability that Eve applies bit error operation ( )=X 0 1
1 0

, q1,1 is the proba-
bility that Eve applies bit phase error operation XZ. Since Alice’s state preparation is restricted in the two 
dimensional Hilbert space, we can prove the final secret key rate under the Pauli quantum channel. Thus, 
the quantum bit error rate and phase error rate introduced by Eve can be respectively given by

Figure 1. Weak randomness QKD model, where x0 decides the encoding classical bit, x1 decides the 
encoding bases selection, y decides the measurement bases selection. In the weak randomness QKD 
model, Eve has the advantage to guess the classical bit encoding x0 and the basis selection x1.
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For arbitrary hidden variable λ0 =  i and λ1 =  j, upper bound of the phase error rate ,ephase
i j  can be 

estimated by applying the bit error rate ,ebit
i j  and the randomness deviation parameters,
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where we apply q00 +  q11 ≤  1, q01 +  q10 ≤  1 and ∑ =, ,q 1u v u v
 in the previous calculation. By applying the 

EDP technology, the final secret key rate with given hidden variables λ0 =  i and λ1 =  j is

( ) δ≥ − − ( ) ≥ − ( + ) − ( ). ( )
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In the practical experimental realization, we can only observe the practical quantum bit error rate 
= ∑ λ λ, = =

,e p p ebit i j i j bit
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0 1
, the final secret key rate with given quantum bit error rate ebit can be given by
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where we apply the concavity property of the Shannon entropy function in the previous calculation. By 
implementing the security analysis result, we calculate the secret key rate R with given randomness 
deviation parameters 0 and 1 in Fig. 2. The calculation result demonstrates that the bases selection weak 
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randomness decrease the final secret key rate more obviously comparing with the classical bit encoding 
weak randomness.

Two-Step Post Processing Method
In the previous weak randomness model, the input random numbers maybe controlled by the hidden 
variables λ0 and λ1. Since there are two different bases selection (diagonal basis and rectilinear basis) 
and two different classical bit encoding (0 and 1), we can simply assume λ0 and λ1 have two different 
values {0, 1} respectively.

In the practical experimental realization, we can only observe the classical bit encoding probability 
λ λ( ) = ( = ) + ( = )λ λ= =p x p p x p p x0 10 0 0 0 1 0 00 0

, but ( ) =p x0
1
2
 can’t guarantee λ( = )=p x 00 0  

λ( = ) =p x 10 0
1
2
, the detailed classical bit deviation model is given in Fig. 3.

Similarly, we can also only observe the bases selection probability λ( ) = ( = )+λ =p x p p x 01 0 1 11
 

λ( = )λ =p p x 11 1 11
, but the observed probability ( ) =p x1

1
2
 can’t guarantee λ λ( = ) = ( = )p x p x0 11 1 1 1  

= 1
2
, the detailed bases selection deviation model is given in Fig. 4.

The practical quantum state preparation is given by
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Figure 2. Secret key rate with different quantum bit error rate value, where the blue solid line is no 
randomness deviation case, the green dash line is considering  .= 0 10  and  = 01 , the red dotted line is 
considering  = 00  and  .= 0 11  with two-step post processing method, the red dash dotted line is 
considering  = 00  and  .= 0 11  with one-step post processing method. Comparing with the one-step post 
processing method, two-step post processing method can generate much more secret key with given basis 
selection randomness deviation, this is because we can get more precious phase error estimation in the two-
step post processing method.

Figure 3. The classical bit encoding x0 is controlled by the hidden variable λ0, different λ0 values have 
different classical bit encoding probability p(x0|λ0). 
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For given hidden variables λ0 and λ1, the difference between the phase error rate in the rectilinear 
basis and bit error rate in the diagonal basis can be given by
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Similarly, the difference between λe p 11
 and λeb 01

 is

Figure 4. The basis selection deviation is controlled by the hidden variable λ1, different λ1 value 
has different basis selection probability p(x1|λ1). For given hidden variable λ1 =  0, eb00 and eb01 are bit 
error rates introduced in the rectilinear basis and diagonal basis, while ep00 and ep01 are phase error rates 
introduced in the rectilinear basis and diagonal basis respectively. For given hidden variable λ1 =  1, eb10 and 
eb11 are bit error rates introduced in the rectilinear basis and diagonal basis, while ep10 and ep11 are phase 
error rates introduced in the rectilinear basis and diagonal basis respectively.
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The probability of getting the rectilinear basis and diagonal basis measurement outcomes in Bob’s side 
can be respectively given by
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The bit error rate in the rectilinear basis and diagonal basis can be respectively given by
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By applying the two-step post processing method with the two different bases measurement out-
comes, the final secret key rate can be given by

( ) ( )≥ − ( ) − ( ) + − ( ) − ( ) , ( )R p h e h e p h e h e1 1 20rec recbit recpha dia diabit diapha

where the first part is the secret key generated by the rectilinear basis, while the second part is the secret 
key generated by the diagonal basis. The corresponding secret key rate R with different quantum bit error 
rate values is given in Fig. 2, the calculation is based on the nonlinear optimization method with given 
quantum bit error rate, the detailed explanation is in the methods. To explain our analysis result, we 
compare the two analysis methods by considering the wavelength attack has the coupling ratio 0.4 and 
0.6 with different wavelengths. If the observed quantum bit error rate is 0.02, one-step post processing 
method can generate the secret key rate 0.0984, while the two-step post processing method can generate 
the secret key rate 0.6642.

Methods
By considering Eve’s arbitrary attacking scheme, the final secret key rate with two different bases can be 
calculated with the following optimization method
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where Q is the quantum bit error rate estimated in the practical experimental realization, = =p prec dia
1
2
 

are the bases selection probability observed in the practical experimental realization.
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Conclusion
In this work, security of BB84 QKD protocol against the strong randomness attack and the weak ran-
domness attack have been analyzed, which satisfies several practical attacking schemes, such as the 
photon number splitting attack, detector blinding attack, wavelength attack and time shift attack. We 
demonstrate that security of the practical QKD system can be evaluated by respectively considering the 
Trojan horse attack, the strong randomness attack and the weak randomness attack, and the three attack-
ing models can be employed to build the practical QKD system security standardization in the future.
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