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Metabolomics Identifies Biomarker 
Pattern for Early Diagnosis of 
Hepatocellular Carcinoma: from 
Diethylnitrosamine Treated Rats to 
Patients
Jun Zeng1, Xin Huang2, Lina Zhou1, Yexiong Tan3, Chunxiu Hu1, Xiaomei Wang4, Junqi Niu4, 
Hongyang Wang3, Xiaohui Lin2 & Peiyuan Yin1

Early diagnosis of hepatocellular carcinoma (HCC) remains challenging to date. Characteristic 
metabolic deregulations of HCC may enable novel biomarkers discovery for early diagnosis. A 
capillary electrophoresis-time of flight mass spectrometry (CE-TOF/MS)-based metabolomics 
approach was performed to discover and validate potential biomarkers for HCC from the 
diethylnitrosamine-induced rat hepatocarcinogenesis model to human subjects. Time series sera 
from the animal model were evaluated using multivariate and univariate analyses to reveal dynamic 
metabolic changes. Two independent human cohorts (populations I and II) containing 122 human 
serum specimens were enrolled for validations. A novel biomarker pattern of ratio creatine/betaine 
which reflects the balance of methylation was identified. This biomarker pattern achieved effective 
classification of pre-HCC and HCC stages in animal model. It was still effective in the diagnosis of 
HCC from high-risk patients with cirrhotic nodules, achieving AUC values of 0.865 and 0.905 for two 
validation cohorts, respectively. The diagnosis of small HCC from cirrhosis with an AUC of 0.928 
highlighted the potential for early diagnosis. This ratio biomarker can also improve the diagnostic 
performance of α-fetoprotein (AFP). This study demonstrates the efficacy of present strategy for 
biomarker discovery, and the potential of metabolomics approach to provide novel insights for 
disease study.

Hepatocellular carcinoma (HCC) is the most common liver neoplasm with high lethality (< 7% of a 
five-year survival rate)1. Most of the burden of HCC is in developing countries, especially in East Asia 
and Africa with high incidence (> 20 per 100,000 individuals)2,3. The majority of HCC cases develop 
from precancerous lesion of liver cirrhosis4,5. Thus screening of HCC at early stage is an effective strategy 
to decrease the high mortality. Due to the unapparent early symptoms of HCC, regular imageology (i.e., 
ultrasonography) and serology (α-fetoprotein, AFP) inspection are the major screening methods for 
HCC. The screening of HCC has improved survival rates of patients in the past thirty years, however, 
early and accurate diagnosis of HCC is still a great challenge until now6,7. Novel screening methods are 
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still intensively needed especially for the discrimination of patients with cirrhotic nodules and small 
malignant HCC8.

Apart from the changes of gene and protein, reprogrammed metabolism is one of important charac-
teristics of tumor cell9. Cancer cells reprogram their metabolism to meet the requirements of malignant 
proliferation and metastasis. The reprogrammed metabolism can then be analyzed to understand the 
process of carcinogenesis, and provide valuable clue to discovering potential metabolic biomarkers for 
early diagnosis. Metabolomics has been increasingly employed as an attractive platform to monitor and 
screen the reprogrammed metabolic profiling of tumor10–12.

To date, a series of studies about individual metabolites or their combination, such as serum γ -glutamyl 
dipeptides13, bile acids2, fatty acids14, sphingosines15 and urine carnitine16, have been reported to distin-
guish different forms of hepatic disease. These studies enrich the pool of potential biomarkers for future 
clinical application. It is worth noting that most of these potential biomarkers were found from typical 
populations such as HCC and non-HCC controls, reflecting the typical metabolic phenotypes of HCC 
cohort after the occurrence of tumors. However, few dynamic metabolic changes which indicate the 
process of carcinogenesis were evaluated. Thus early biomarkers with the tendency of tumorigenesis 
cannot be easily found from dozens of differential metabolites. Time series samples would be necessary 
for such dynamic metabolomics study, which would be possible to provide insight into the interfacial 
stage between precancerous cirrhosis and HCC, and further facilitate the screening of biomarkers for 
early diagnosis. However, it would be a hard work to collect sequencing samples from high-risk popu-
lations. Due to the similarity to histological and genetic features of patients17, animal models, such as 
diethylnitrosamine (DEN)-induced HCC model, are commonly used to imitate the process of stepwise 
hepatocarcinogenesis from cirrhosis5,18,19.

In our previous report20, the DEN-induced rat hepatocarcinogenesis model was employed and ana-
lyzed by using liquid chromatography-mass spectrometry (LC-MS) to obtain time-related hydrophobic 
metabolic features and potential biomarkers. Our findings indicated that the metabolic deregulations in 
rat models are similar to patients, and it would be possible to discover potential biomarkers for early 
diagnosis. However, due to the limitation of the analysis method, polar metabolic profiling was seldom 
depicted in previous work about DEN-induced hepatocarcinogenesis model20. In recent years, since polar 
and ionic metabolites are well recognized for tumorigenesis, suppression and signaling10,11,21,22, more 
such metabolites should be concerned in subsequent studies.

Therefore, in this study, the DEN-induced HCC model was developed and analyzed using capillary 
electrophoresis-time of flight mass spectrometry (CE-TOF/MS)-based polar metabolomics approach. 
This present study aims to depict the the process of hepatocarcinogenesis, and extend the scope of 
potential biomarkers from novel perspective of polar metabolomics. Time series serum samples from 
DEN animal model were analyzed to evaluate the dynamic metabolic changes and discover biomarker 
candidates. Considering the differences between rats and human, and between chemical induction and 
viral infection, the potential biomarkers were further validated in two independent human cohorts. The 
efficacy of potential biomarkers for early diagnosis was evaluated by distinguishing high-risk populations 
of cirrhosis from HCC, especially small HCC.

Results
The scheme of metabolomics study on biomarker discovery and validation is given in Fig. 1A.

Histological characteristics of animal model.  As shown in Table S1, the comparison between 
model and control rats both at week 20 reveals that there were significant DEN-induced decrease in 
body weight and increase in relative weight of liver (p <  0.05). No significant difference was found in 
DEN group from week 14 to week 20 in the relative weight of liver.

Based on the histological results of our previous experiment (weeks 2–20)20, the liver carcinogenesis 
was found from week 14 to week 20 during modeling. In the modeling of this present study, histological 
examinations indicated that sacrificed DEN rats at week 14 exhibited characteristic histological changes 
of cirrhosis, except that only one rat was observed in developing liver tumor. Sacrificed DEN rats exhib-
ited progressive incidences of the liver tumor from week 16 to week 18. And all 7 DEN rats alive at the 
end of the study (week 20) were tumor-bearing. Typical histological microphotographs of normal liver, 
cirrhotic liver and tumor are shown in Fig. 1B–D. Histological sections verified that the DEN-induced 
hepatocarcinogenesis model was successfully produced in this study.

The metabolic deregulations of rat model.  Time-series sera from model and control animals were 
collected for metabolomics study. There were 184 polar metabolites measured from rat sera based on our 
metabolic profiling strategy of peak identification and refining21, including amino acids, polypeptides, 
amines, nucleosides, carbohydrates, organic acids and etc. The quality of acquired metabolic profiling 
was monitored by evaluating quality control samples (QCs) and confirmed to be satisfactory based on 
our published methods21 (Fig. S1).

Considering the histological results of the present and our previous modeling20, the serial serum set 
was divided into three stages: week 8 (the inflammation stage), weeks 10–14 (the cirrhosis stage) and 
weeks 16–20 (the HCC stage). The metabolic trajectories of DEN and control rats were depicted from 
weeks 8 to 20 based on PCA model (Fig.  2A). To determine the metabolic differences of these two 
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trajectories (models vs. controls), the Euclidean distance between the control and DEN groups at each 
time point was further calculated (Fig. 2B). The difference was most evident at week 12, one week after 
the last administration of DEN at week 11, indicating severe metabolic deregulations of model rats. The 
magnitude of metabolic changes in the HCC stage (weeks 16–20) was lower than those in the pre-HCC 
stage (weeks 8–14). Furthermore, a PLS-DA model was used to evaluate the characteristic changes among 
different stages without considering samples from interfacial stages (week 10 and week 16). Two types of 
metabolic disturbance, including DEN-induced changes and age-related changes, could be observed on 
the score plot along the first and second principal component directions, respectively (Fig. 2C).

Prior to univariate statistical test, metabolites with large measurement error (RSD of area in QC sam-
ples > 30%) were removed from the data set. A total of 115 significant differential metabolites (Wilcoxon 
Mann-Whitney test, p <  0.05) were refined from the comparisons between model and control groups at 
all 7 time points (i.e., the union of 7 comparisons, Table S5), which revealed that alanine, aspartate and 
glutamate metabolism, arginine, serine and threonine metabolism, valine, leucine and isoleucine bio-
synthesis, TCA cycle and so on were most relevantly disturbed due to the DEN-induced hepatocellular 
damage (Fig. 2D).

To further subtract the metabolic disturbance of model rats from the baseline level of controls (i.e., 
remove age-related changes), the contents of metabolites for each DEN sample were divided by the 
average of age-matched controls. The new conversion dataset with the relative contents of 115 screened 
significant differential metabolites was used for subsequent statistical study (Table S5).

Figure 1.  Study scheme and animal modeling. (A) Scheme of metabolomics study. (B-D) are typical 
microphotographs of normal, cirrhotic and HCC liver tissue (hematoxylin and eosin (H&E), original 
magnification × 20). Images drawn by Jun Zeng.
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Dynamic metabolomics changes associated with hepatocarcinogenesis.  Dynamic metabolo-
mics changes associated with hepatocarcinogenesis were analyzed based on the comparisons within DEN 
samples across seven time points.

Correlation network analysis was performed to reveal the progressive profiles of different classes of 
metabolites. At each time point, the Pearson correlation coefficient between metabolites was calculated 
using relative contents of differential metabolites (Table S5). As shown in Fig. 3, each point represents 

Figure 2.  Metabolic profiling and comparison between model and control rats. (A) Metabolic trajectories 
of control and DEN rats based on PCA. Each point represents the average score values of samples with 
standard error (SE). (B) Euclidean distance between control and DEN groups. (C) Metabolic changes of 
the animal model. This PLS-DA model passed cross validation without overfitting. (D) The most relevantly 
disturbed pathways.

Figure 3.  Correlation network analysis of carcinogenesis stages. (A,C–H) are correlation networks (weeks 
8–20). Each point represents one metabolite with the relative content of UV scaled. Each grey solid (or black 
dotted) line represents the positive (or negative) correlation with |Cij| >0.8. (B) The number of lines at each 
time point.
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one metabolite with unit variance (UV) scaling, and the line represents the correlation with |Cij| >  0.8. 
The number of lines evidently elevated during week 12 to 14 (cirrhosis stage), and subsequently mitigated 
from week 16 (early HCC stage), until week 20 (final HCC stage) with a re-increase (Fig. 3B). The results 
of lines reveal the increased correlation between metabolites from week 12, confirming the activated met-
abolic disturbance in the cirrhosis stage. Furthermore, from the perspective of “point”, it can be observed 
that different classes of metabolites exhibited different changing characteristics. Metabolites from central 
carbon metabolism showed a sharp decrease at week 12 (middle cirrhosis stage), and then elevated. Most 
of amino acids (such as pyruvate family, serine family, aspartate family and glutamate family), amines 
and metabolites from glycerolipid metabolism were subjected to increase from week 14 (final cirrho-
sis stage), and obtain the highest levels at week 20 (final HCC stage). Nucleosides, purines and pyri-
dines exhibited higher levels in the HCC stage. These changes indicate the progression of DEN-induced 
hepatocarcinogenesis.

Subsequently, two PLS-DA models were built using the conversion dataset to distinguish stages within 
DEN samples (Fig. S2A,B). Without considering samples from interfacial stages, the model I was used for 
the classification of inflammation (week 8), cirrhosis (weeks 12 to 14) and HCC (weeks 18 to 20) samples, 
while the model II was used for the categorization of pre-HCC (weeks 8–14) and HCC (weeks 18–20) 
samples. A clear separation could be observed among the three stages of inflammation, cirrhosis and 
HCC. More importantly, the separation between pre-HCC and HCC stages is also obviously represented. 
Then, a total of 76 metabolites were further refined with variable importance in the projection (VIP) 
value exceeding 1 for either PLS-DA model. These metabolites had the above statistical importance on 
the classification with a better reflection of metabolic trends regarding tumorigenesis.

These differential metabolites were subjected to HCA to further specialize the response trajectory 
across different stages. These metabolites were clustered into eight major groups according to the sim-
ilarity of response pattern (Fig.  4). The representative metabolites were selected from each cluster to 
present the trajectories associated with hepatocarcinogenesis. Besides the graded response trajectories, 
nonmonotonic response curves also existed due to the complexity of hepatocarcinogenesis.

Screening of biomarkers candidates from DEN animal model.  As shown in the Venn diagram 
(Fig. 5A), 76 metabolites associated with hepatocarcinogenesis were refined from the DEN-induced sig-
nificant metabolic changes (Table S5) based on the VIP values of PLS-DA models. To narrow down the 
scope of biomarker candidates, the intersection of 41 metabolites with VIP >  1 in both two models was 
finally retained from the multivariate screening.

Figure 4.  Metabolites clustering and response trajectory analysis. Defined metabolites were clustered 
based on the similarity of response pattern (right panel). Representative metabolites were selected from 
each cluster to present the response trajectory (left panel). Each point in the trajectory was presented as the 
average relative content ±  SE. The black * means the statistical significance between DEN group and age-
matched controls. The red # (or blue &) means the statistical significance between week 12 (or week 14) and 
the corresponding week. *,#,&0.01 <  p <  0.05, **0.001 <  p <  0.01 and ***p <  0.001.
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Then, univariate statistical analysis was performed to confirm the metabolic differences between 
HCC and pre-HCC stages. Considering the most evident metabolic disturbance at week 12 (the mid-
dle cirrhosis stage), metabolic profiling was firstly compared between typical samples from week 12 
and the other two HCC cohorts from week 18 and week 20, respectively. 34 metabolites significantly 
changed in both comparisons with − lgp >  1.3 (i.e., Wilcoxon Matched-Pairs Signed-Ranks test, p <  0.05, 
Fig. 5B,F). These metabolites were considered to be of representative differential characteristics between 
HCC and pre-HCC cirrhosis. The fold change of these 34 metabolites was subsequently taken into con-
sideration. Based on the volcano plots (Fig. 5B,F), 18 metabolites were further retained with |log2 fold 
change|>0.585 (i.e., fold change >  3/2 or fold change <  2/3).

Taken together, 8 metabolites were cross-selected based on the preliminary screening of multivariate 
and univariate analysis.

To examine the potential of these 8 metabolites for early HCC discrimination, especially distinguish-
ing borderline stages, the evaluation of statistical importance was moved forward to the comparison 
between week 14 (the final cirrhosis phase) and the other two early HCC cohorts of week 16 and week 
18, respectively. Finally, 5 metabolites including betaine, creatine, kynurenine, pipecolic acid and one 
unidentified metabolites (unknown 1) were confirmed with statistical significance (p <  0.05) for either 
comparison. They were regarded as biomarker candidates from the DEN animal model.

Preclinical validation and evaluation of potential biomarker.  External validations for high-risk 
populations of cirrhosis and HCC patients were performed to test the efficacy of 5 candidates discovered 
from animal experiment.

The result of population I (25 patients with cirrhosis and 22 patients with HCC) indicated the use-
fulness of betaine and creatine (cirrhosis vs. HCC, p <  0.05). Another population set (population II) 
consisting of 50 HCC patients (20 small HCC and 30 general HCC patients) and 25 cirrhosis patients in 
another batch was analyzed for further validation. The result of population II re-confirmed the statistical 
significance (p <  0.05) of these two metabolites when comparing cirrhosis with HCC, especially small 
HCC subjects.

It was observed that betaine and creatine came from different clusters with opposite change trends 
during the process of hepatocarcinogenesis from cirrhosis to HCC (Fig. 4). In addition, these two metab-
olites were closely related in the pathway23. Therefore, the ratio of these two metabolites was calculated 
to develop a new biomarker pattern (i.e., ratio creatine/betaine). The statistical results of this new poten-
tial biomarker pattern were presented in Fig. 5. In the animal model, this ratio biomarker with relative 
content (i.e., normalization using the average of age-matched controls) can be observed with significant 

Figure 5.  Screening and validation of potential biomarkers. (A) Venn diagram. (B,F) are volcano plots 
for the comparisons of significant differential metabolites (Table S5). (C) The response trajectory of the 
biomarker pattern (i.e., ratio creatine/betaine). (D,E) are box plots of this ratio biomarker for population  
I and II.
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difference (p <  0.05) between cirrhosis and HCC from the early HCC phase (week 16, Fig. 5C). Similar 
change trend and statistical significance were also obtained from two independent human populations 
(p =  1.82E-05 for cirrhosis vs. HCC in population I and p =  2.21E-06 for cirrhosis vs. general HCC in 
population II, Fig. 5D,E). Notably, it is still effective for the discrimination of small HCC (p =  2.27E-06 
in population II, Fig. 5E).

The diagnostic potential of this biomarker pattern was then carefully evaluated based on the ROC 
curve with the AUC (area under the curve) value, the sensitivity and specificity at best cut-off points 
(Table 1, Fig. 6A,B,D–F). In the animal model, this ratio biomarker achieved an AUC value of 0.918 in 
the discrimination of weeks 8–14 (pre-HCC stage) and weeks 18–20 (HCC stage), and the sensitivity and 
specificity were 92.9% and 85.7%, respectively (Fig.  6A). When the borderline stage of week 16 (early 
HCC phase) was taken into consideration, 90.5% of samples from weeks 16–20 and 85.7% of samples 
from weeks 8–14 were correctly discriminated at the best cutoff point, with an AUC value of 0.895 
(Fig. 6B). Next, the evaluation was extended to the patients with HCC and the high-risk populations of 
cirrhosis. This ratio biomarker was effective in the diagnosis of human subjects with an AUC value of 
0.865 and 0.905 for populations I and II, respectively (Fig.  6D,E). The potential of early diagnosis was 
further highlighted for a more difficult diagnosis of small HCC from pre-cancer cirrhosis (population 
II), achieving an AUC value of 0.928 (Fig. 6F).

The diagnostic performance of this metabolic biomarker was compared with traditional AFP. When 
complete HCC samples (including small HCC and general HCC, population II) were subjected to the 
comparison, we found that the AUC result of this biomarker pattern (AUC =  0.905) was better than that 
of AFP (AUC =  0.672) (Fig. 6E). Similar comparison result for the diagnosis of small HCC and cirrhosis 
was also obtained (Fig. 6F). The combination of this metabolic biomarker and AFP achieved new AUC 
values of 0.920 for all HCC (Fig.  6E) and 0.941 for small HCC (Fig.  6F), which greatly improved the 
diagnostic performance of traditional AFP. The combinational use of them has the promising clinical 
potential to improve the diagnostic accuracy of HCC.

Discussion
Until now, early diagnosis of HCC is still a great challenge. Considering the fact that it is difficult to 
collect samples from HCC patients at a very early stage due to the fast development of tumorigenesis 
and challenging early discovery, the DEN animal model was employed to imitate the process of stepwise 
hepatocarcinogenesis. The strategy was demonstrated to be practical in our former study20. Here, the 
histological examination confirmed that the DEN-induced hepatocarcinogenesis model was successfully 
established. Then, time series sera from this animal model were analyzed to reveal the dynamic changes 
of polar metabolites during the hepatocarcinogenesis. Refined potential biomarkers were further vali-
dated in two human cohorts. The efficacy for early diagnosis was evaluated by distinguishing high-risk 
populations of cirrhosis from HCC, especially small HCC. This dynamic discovery strategy based on 
time series evaluation provided an opportunity to recognize the metabolic changes across tumorigenesis 
process, especially to focus on the interfacial stage between precancerous cirrhosis and HCC, which 
greatly facilitated the screening of potential biomarkers for early diagnosis.

Exposure to DEN has been reported to accumulate extra reactive oxygen species (ROS) in hepatic 
cells24,25. The balance between ROS production and cell antioxidant capability was disturbed, resulting 
in oxidative stress and DNA damage, ultimately triggering liver carcinogenesis25,26. The oxidative stress 
may inflict damages to the metabolism of hepatic cells. Pathway analysis has revealed that due to the 
DEN-induced hepatocellular damage, several metabolic pathways including alanine, aspartate and gluta-
mate metabolism, arginine, serine and threonine metabolism, valine, leucine and isoleucine biosynthesis, 
TCA cycle and so on were most relevantly disturbed (Fig. 2D). It can be observed that different classes 
of metabolites exhibited various patterns with the progression of hepatocarcinogenesis. Obviously, most 
amino acids (such as pyruvate family, serine family, aspartate family and glutamate family), amines and 
metabolites from glycerolipid metabolism were subjected to increase from the final cirrhosis stage (week 
14), and obtain the highest levels at the final HCC stage (week 20). From the perspective of variation 
amplitude, the summaries of trajectories for samples (Fig.  2B) and metabolites (Fig.  4B) suggested the 
more vigorous metabolic disturbance for the pre-cancer cirrhosis stage. The relatively low metabolic 

AUC
Standard 

Error Sensitivity Specificity

Animal model
(8W–14W) vs.(18W–20W) 0.918 0.044 0.929 0.857

(8W–14W) vs.(16W–20W) 0.895 0.052 0.905 0.857

Population I Cirrhosis vs. HCC 0.865 0.052 0.864 0.760

Population II
Cirrhosis vs.(Small HCC & 

General HCC) 0.905 0.034 0.760 1.000

Cirrhosis vs. Small HCC 0.928 0.046 0.800 1.000

Table 1.   The results of ROC analysis.
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disturbance for cancer stage may attribute to the reduction of antioxidant activity in DEN-exposed 
groups25. With the increase of abnormal cell (i.e. preneoplastic and neoplastic cell), the expression of 
antioxidant gene may deregulate, decreasing the antioxidant reactions of liver to defense to excessive 
ROS production25.

Although the metabolic profiles could clearly separate HCC and cirrhosis, it is still not feasible to use 
the complex metabolomics data matrix in the clinic. Thus we tried to refine biomarker patterns out of 
hundreds of differential metabolites. The discovery of biomarker candidates from serial sera consisted of 
a two-step comparison: i) background subtraction. To revel characteristics associated with DEN-induced 
hepatic injury, 115 differential metabolites with statistical significance (p <  0.05) were firstly acquired 
based on the comparison between model and age-matched control rats. To reduce the influence of age 
for stepwise metabolic changes, the contents of metabolites from each DEN sample were then normalized 
using the average of controls at the same age (i.e., the relative content). ii) Metabolic characteristics filtra-
tion. These differential metabolites were further explored based on the comparison within DEN samples 
across seven time points, in order to pick up characteristics associated with stepwise hepatocarcino-
genesis. A comprehensive workflow was employed to determinate potential biomarkers, including the 
visualization of trajectories for samples (Fig. 2A) and metabolites (Fig. 4), multivariate screening for the 
classification of different disease status, stepwise univariate judgment for the discrimination of important 
stages and external validation in high-risk human cohorts. Two metabolites (betaine and creatine) were 
defined as biomarker candidates.

Metabolic pathway analysis indicated that betaine plays an essential role in the maintenance of hepatic 
methyl balance27. As an important methyl donor, betaine participates in the formation of methionine, 
subsequently S-Adenosylmethionine (SAM). SAM donates the methyl group to substrates via numerous 
methyltransferases, and one of the important transmethylation reactions is the methylation of guani-
doacetic acid to form creatine28 (Fig.  6C). Betaine and creatine are representative methyl donor and 
acceptor, respectively. During the process of hepatocarcinogenesis from cirrhosis to HCC, these two 
metabolites came from different clusters (Fig. 4) of trajectories with opposite change trends. The signifi-
cant change of ratio creatine/betaine across the hepatocarcinogenesis process may indicate the disruption 
of hepatic methyl balance, demonstrating the biological implication of this potential biomarker pattern. 
As it is reported, the methyl balance is of great significance in supporting normal liver function, and 
the imbalance is associated with abnormal DNA synthesis, aberrant methylation reactions, or oxidative 
stress23. Therefore, the ratio of creatine/betaine was combined as candidate biomarker pattern for the 
early diagnosis of HCC. This potential biomarker pattern may has the advantages of amplifying the 
metabolic difference for discrimination, improving the diagnostic performance, simplifying the practical 
application and indicating the change of related metabolic pathway.

Figure 6.  Evaluation of potential biomarker. (A,B,D–F) are ROC curves. Diagnostic potential was 
evaluated based on binary logistic regression. (C) Metabolism of betaine and creatine. Arg, arginine; Gly, 
glycine; Met, methionine; SAM, S-adenosylmethionine; SAH, S-adenosylhomocysteine; Hcy, homocysteine; 
DMG, dimethylglycine.
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The diagnostic potential of this biomarker pattern was also evaluated. In animal model, this bio-
marker pattern can achieve effective classification of pre-HCC and HCC stages (Fig. 6A,B). Subsequently, 
the evaluation was extended to the human subjects. This ratio biomarker was still effective in the diagno-
sis of high-risk subjects with cirrhotic nodules and malignant HCC (Fig. 6D,E). Especially, the diagnosis 
of small HCC from pre-cancer cirrhosis with an AUC value of 0.928 indicated the potential for early 
diagnosis (Fig.  6F). Moreover, this biomarker pattern greatly improved the diagnostic performance of 
traditional AFP. The combinational use of them has the promising clinical potential to improve the diag-
nostic accuracy of HCC. More studies are still needed for further large-scale validation.

In summary, the discovery of biomarkers for early diagnosis started with the study of the DEN-induced 
stepwise hepatocarcinogenesis model, and then extended to the validation in typical human populations. 
Small HCC subjects were also particularly enrolled to evaluate the potential of early diagnosis. Compared 
with previous reports of typical populations2,13, this dynamic metabolomics study of the stepwise hepa-
tocarcinogenesis process would prefer to the screening of early metabolic features for HCC. Besides, 
this CE-TOF/MS-based metabolomics study supplements the knowledge about hepatocarcinogenesis, 
and extend the scope of potential biomarkers from the novel perspective of polar metabolomics. This 
study identified a novel ratio biomarker pattern of creatine/betaine, which related with the disruption 
of hepatic methyl balance of HCC individuals. This ratio biomarker achieves effective classification of 
the disease stage in animal model, and was also evaluated as a good tool in diagnosing patients with 
pre-cancer cirrhosis and HCC, especially small HCC. Furthermore, this ratio biomarker can greatly 
improve the diagnostic performance of traditional AFP, indicating the potential of the combinational 
use of them to improve the diagnostic accuracy of HCC. The presented strategy for biomarker discovery 
refined and simplified the usage of complex metabolomics data. And the measurement of the ratio of 
two metabolites would be practical for validations and future clinical applications.

Methods
Animals and DEN treatment.  The animal experiment was conducted at Dalian Medical University 
(Dalian, China), complying with the national guidelines for the care and use of laboratory animal. 
All animal experiment were approved the experimental animal ethics committee of Dalian Medical 
University. A total of 55 male Sprague-Dawley rats were enrolled at the age of 42 days. Scheme of the 
animal experiment is given in Fig. 1A.

Rat hepatocarcinogenesis model was established as our previous report20. Briefly, week 0 was defined 
as the starting time point of animal experiment. Then, after two weeks of adaptive inhabitation, all rats 
were randomly divided into two groups: control group (n =  10) and model group (n =  45). From week 2 
to week 11, model rats were administrated with DEN (70 mg/kg body weight) via intraperitoneal injec-
tion once a week, while control rats received saline injections of equivalent volumes. 14 rats from the 
model group died during the administration. Standard commercial laboratory rat chow was used and 
water was freely available in the animal experiment.

To monitor the progress of stepwise hepatocarcinogenesis, 8 rats from the model group were sac-
rificed for histological examination every 2 weeks from week 14 to week 20. In week 20, all surviving 
rats (n =  7 for model group and n =  10 for control group) were finally sacrificed. Collected liver tissues 
were weighted (Table S1), and then fixed in 10% buffered formalin for histopathology examination. A 
time-serial sera set, including 7 rats from model group and 10 rats from control group, was collected 
once every 2 weeks from week 8 to week 20. All 119 rat serum specimens from 7 time points were stored 
immediately at − 80 °C.

Human specimens.  A total of 122 human serum specimens were enrolled under fasting condition 
with written informed consent. The study protocol was reviewed and approved by the institutional 
reviewer board of Eastern Hepatobiliary Surgery Institute, the Second Military Medical University, 
Shanghai, China. The experiment was carried out in accordance with the approved guidelines.

The first population set (population I) includes 22 patients with HCC and 25 patients with cirrhosis. 
Another 50 HCC patients and 25 cirrhosis patients consist of the second population set (population II). 
All HCC samples were collected from the National Liver Tissue Bank in the Second Military Medical 
University (Shanghai, China) with histopathologically diagnosed after tumor excision. The second val-
idation population contains 20 small HCC subjects, who only have a solitary nodule within 3 cm in 
diameter, or subjects that have at most two nodules with the sum of two diameters smaller than 3 cm21. 
Cirrhosis subjects were recruited from the Dalian Sixth People’s Hospital (Dalian, China) and the First 
Hospital of Jilin University (Changchun, China). Detailed clinical information was presented in supple-
mentary Tables S2 and S3.

To control the possible interference of sampling, in-house standard protocol was formulated and fol-
lowed based on our previous study about the collection and storage of clinical samples29. All sera were 
stored immediately at − 80 °C.

Quality control samples were used to verify the quality of metabolomics analysis. QCs were prepared 
by mixing same volume of each serum sample, and extracted as real samples.

Metabolic profiling.  Serum metabolic profiling was acquired using a CE-TOF/MS system (Agilent, 
USA) as our reported method21. The CE-TOF/MS analysis was operated using cation-positive (CP) 
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mode and anion-negative (AN) mode, respectively. Instrumental details were described in supporting 
information.

Data Processing and Statistics.  Original data pretreatment methods were described in our previ-
ous report21. Briefly, procedures such as peak feature extraction, migration time correction, smoothing 
and alignment, were performed via the software of Qualitative analysis (B.04.00, Agilent), Quantitative 
Analysis (B.04.00, Agilent) and MethodMarker (Human Metabolome Technologies, Inc., HMT, Japan). 
To facilitate peak identification, about 500 metabolite standards were pre-analyzed by our collaborator 
(HMT, Japan). Then, acquired data were identified and refined based on the 80% rule to export a peak 
table.

Before statistical analysis, we performed the normalization for each sample using multiple inter-
nal standards, i.e., internal standard was selected independently for each metabolite to obtain the least 
RSD of response in all QCs. Then, data were exported to the software of SIMCA-P (Umetrics, Sweden) 
to develop multivariate statistical models with unit variance (UV) scaling. These visualization mod-
els include the principal component analysis (PCA) and the partial least squares discriminant analysis 
(PLS-DA). Response permutation test with 200 iterations was conducted to guard against the PLS-DA 
model overfitting. Wilcoxon Mann-Whitney test and Wilcoxon Matched-Pairs Signed-Ranks test were 
performed for univariate significance analysis using Multi Experiment Viewer (MeV) software (Version 
4.8.1, http://www.tm4.org) and an in-house developed Matlab program (MathWorks, USA). Pathway 
analysis was employed on the MetaboAnalyst (http://www.metaboanalyst.ca) to identify the most rele-
vant pathways involved in the conditions under study. To visualize the evolutionary profiles, the corre-
lation network analysis using cytoscape software (http://www.cytoscape.org) and the hierarchical cluster 
analysis (HCA) using MeV software were performed. Finally, to evaluate the discriminatory capability 
of potential biomarkers, receiver operating characteristic curve (ROC) was exploited using the SPSS 
Statistics software (SPSS Inc., USA).
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