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Biomarker- and similarity 
coefficient-based approaches to 
bacterial mixture characterization 
using matrix-assisted laser 
desorption ionization time-of-flight 
mass spectrometry (MALDI-TOF MS)
Lin Zhang, Sonja Smart & Todd R Sandrin

MALDI-TOF MS profiling has been shown to be a rapid and reliable method to characterize pure 
cultures of bacteria. Currently, there is keen interest in using this technique to identify bacteria in 
mixtures. Promising results have been reported with two- or three-isolate model systems using 
biomarker-based approaches. In this work, we applied MALDI-TOF MS-based methods to a more 
complex model mixture containing six bacteria. We employed: 1) a biomarker-based approach that 
has previously been shown to be useful in identification of individual bacteria in pure cultures and 
simple mixtures and 2) a similarity coefficient-based approach that is routinely and nearly exclusively 
applied to identification of individual bacteria in pure cultures. Both strategies were developed and 
evaluated using blind-coded mixtures. With regard to the biomarker-based approach, results showed 
that most peaks in mixture spectra could be assigned to those found in spectra of each component 
bacterium; however, peaks shared by two isolates as well as peaks that could not be assigned to 
any individual component isolate were observed. For two-isolate blind-coded samples, bacteria were 
correctly identified using both similarity coefficient- and biomarker-based strategies, while for blind-
coded samples containing more than two isolates, bacteria were more effectively identified using a 
biomarker-based strategy.

Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) has 
been shown to facilitate rapid and accurate identification of bacteria isolated in clinical labs, food pro-
cessing, and many diverse environments. Reliable characterization at the genus, species, and in some 
cases, strain levels has been reported1. Peaks of biological molecules, typically proteins, which originate 
from cell surfaces, intracellular membranes and ribosomes, constitute fingerprints of the bacterium ana-
lyzed2. These unique fingerprints (mass spectra) are typically compared with spectra in databases by two 
approaches, biomarker- and similarity coefficient -based, for identification. In general, biomarkers are 
peaks identified in spectra, whose presence indicates the presence of certain species or strains. Similarity 
coefficient-based approaches measure the degree to which spectra (unknown vs. reference) are alike. One 
of the most commonly used similarity coefficients is the Pearson correlation coefficient2.

MALDI-TOF MS profiling has been most commonly used to characterize pure cultures. Accordingly, 
bacteria must be isolated in pure culture prior to analysis3. Isolation and cultivation are time-consuming 
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and may cause biased results. For example, isolation significantly lengthens the time required to complete 
diagnostic procedures in clinical labs. With regard to environmental bacteria, slow-growing environmen-
tal isolates may need several days to form colonies on agar plates4–6. Furthermore, isolation techniques 
and cultivation media have been shown to affect MALDI-based bacterial differentiation, especially at 
the strain level7,8. As a result, there has been considerable interest in applying rapid MALDI-based tech-
niques to characterize samples without pure culture isolation. Successes using direct characterization 
without pure culture isolation have been described with monomicrobial-contaminated blood samples, 
urine samples, milk, and plant tissues4,9–17.

Studies have also investigated use of MALDI to characterize simple mixtures (polymicrobial samples) 
without pure culture isolation18–21. These simple mixtures are model systems usually constructed by mix-
ing equal amounts of two or three bacteria18–21. Component bacteria in these model systems have been 
identified using a manner similar to a biomarker-based method, but those efforts have been limited. 
Specifically, only one biomarker peak of each component species was observed in the spectra of the 
mixtures when manually comparing the mixture spectra with the reference spectra of pure cultures9,22. 
In addition to model systems, clinical samples such as positive blood cultures and urine samples have 
also been studied. These clinical specimens usually contained two bacterial species occurring in varied 
ratios. Failure of identification of one or two species has been reported23,24, possibly due to the unequal 
representation of the two species in the mixture. It has been suggested that the bacterium in the mixture 
occurring at a lower concentration can be detected by MALDI only when its concentration is higher 
than 5% of the mixture18. These results suggest that uses of MALDI-TOF MS to directly characterize 
polymicrobial samples are more challenging than those involving pure culture isolations and monomi-
crobial samples. Recently, Mahe et al. successfully identified bacterial components using model systems 
containing two species. The identification procedure was to step-by-step subtract the individual peak 
profiles from mixture spectra and then compare remaining peaks to the routine databases, which used a 
biomarker-based approach21. This indicates that a routine database may be applicable for characterization 
of mixtures with appropriate characterization methods. To further explore the feasibility of using MALDI 
to characterize mixed samples, more complex model systems containing a broader ranges of species need 
to be investigated, as these model systems may better represent diversity commonly found in environ-
mental samples. Furthermore, similarity-coefficient based methods need to be thoroughly evaluated as 
they are routinely and effectively used for MALDI-based characterization of individual bacteria.

Here, we report using MALDI-TOF MS to characterize a more complex model mixture containing 
six environmental bacteria isolated from a unique cave environment (Kartchner Caverns, AZ, USA). 
Environmental isolates were chosen instead of more well-characterized, medically-relevant isolates to 
explore and develop strategies that might expand the utility of MALDI-based microbial fingerprinting 
to more diverse, less well-characterized mixtures of microorganisms. Each of these bacteria have been 
rigorously characterized individually using MALDI fingerprint-based methods previously25. The model 
mixture was constructed by mixing equal volumes of broth pure cultures with equal optical densities. 
Mass spectra of inactivated protein extracts were acquired for both pure cultures and the model mixture. 
Blind-coded mixture samples were constructed and tested for identification of bacteria from polymicro-
bial samples. Results suggest that MALDI-TOF MS fingerprint-based methods can be applied to identify 
component isolates based on mixture spectra and a database of isolates.

Results
Mass spectra. As expected, spectra of the model mixture were more complex than spectra of the indi-
vidual isolates that composed the mixture (Fig. 1; Table 1). More peaks were observed in the spectrum of 
the mixture than in the spectra of pure cultures. The spectrum of the mixture contained 135 ±  10 peaks, 
while the spectra of the pure cultures contained numbers of peaks ranging from 29 ±  3 for F14 to 63 ±  6 
for F8 (Table  1). With regard to the mass range, peaks in the spectrum of the model mixture ranged 
from 2,026 to 11,825 Da. This covered the entire mass ranges of the spectra of the six individual isolates, 
which were from 2,026 Da (the lowest mass observed in the spectra of isolates) for R8 to 11,822 Da (the 
highest mass observed in the spectra of isolates) for F14 (Table 1). All spectra had high reproducibility, 
ranging from 96.0 ±  2.4% for F8 to 99.7 ±  0.2% for F14 (Table 1).

Isolate representation in mixture mass spectra. Peaks in the replicate spectra of the model mix-
ture were matched to the peaks in the spectra of the six isolates (Table  2). Only peaks observed in all 
three replicates of each isolate were considered for matching. Some peaks in the spectra of the model 
mixture were shared by two isolates. For example, m/z 3,709 was shared by R4 and R8, and m/z 6,673 
was shared by F8 and R4 (Supplementary Table 1). No peaks were shared by more than two isolates. 
Shared peaks were counted for both isolates. The isolate R8 had highest number of peaks represented in 
the spectra of the model mixture, while M14 had the least (Table 1). Specifically, the order was R8 (35 
peaks) >  F8 (26 peaks) >  F14 (22 peaks) >  R4 (20 peaks) >  M15 (14 peaks) >  M14 (13 peaks) (Table 2).

Considering that the spectra of pure cultures of each isolate contained different numbers of peaks 
in the mixture spectrum, a percentage of presence (PP) was calculated for each isolate to further quan-
tify representation of each isolate in the spectrum of the mixture (Table 2). Specifically, Eq. 1 was used 
to calculate PP for each isolate by dividing the number of peaks associated with that isolate that were 



www.nature.com/scientificreports/

3Scientific RepoRts | 5:15834 | DOi: 10.1038/srep15834

Figure 1. Representative mass spectra of six environmental isolates (F8, F14, M14, M15, R4, and R8) 
and the model mixture system (Mix). 

ID Bacteriaa Gram
Reproducibilityb 

(%)
Number 
of peaksc

Mass range (Da)c

Lowest 
mass

Highest 
mass

F8 Moraxella spp. - 96.0 ±  2.4 63 ±  6 2141 10002

F14 Exiguobacterium spp. + 99.7 ±  0.2 29 ±  3 2134 11822

M14 Kocuria spp. + 96.7 ±  2.5 38 ±  6 2188 9646

M15 Brevibacterium spp. + 98.3 ±  1.3 60 ±  2 2067 9909

R4 Aminobacter spp. - 98.6 ±  0.7 36 ±  3 2231 9639

R8 Curvibacter spp. - 98.8 ±  0.9 39 ±  1 2026 10846

Mix Mixture 99.6 ±  0.2 135 ±  10 2027 11825

Table 1.  Quality and reproducibility of mass spectra of individual bacteria and the model mixture. 
aBacteria were isolated from Kartchner Caverns, AZ, USA and identified using 16S rDNA sequencing25. 
bValues reported are the average correlation coefficients of 3 technical replicates ±  one standard deviation. 
cValues reported are the average values of 3 technical replicates ±  one standard deviation.

ID

Number of peaks observed 
in the mixture spectrum 

(Nm)
Percentage of presence 

(PP)a

F8 26 41.3

F14 22 75.9

M14 13 34.2

M15 14 23.3

R4 20 55.6

R8 35 89.7

Table 2.  Comparison of peaks in mass spectra of bacterial isolates and the mass spectrum of the model 
mixture. aPP =  [Number of peaks observed in the mixture spectrum (Nm)/Number of peaks observed in the 
spectra of the pure culture (Np)] * 100.
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observed in the spectrum of the mixture (Nm) by the number of peaks in the spectrum of the pure cul-
ture of that isolate (Np):

= ( / ) ∗ ( )PP N N 100 1m p

Nearly 90% of R8 peaks were present in the spectrum of the model mixture, while only 23.3% of 
M15 peaks were present in spectra of the model mixture. Specifically, the order is R8 (89.7%) >  F14 
(75.9%) >  R4 (55.6%) >  F8 (41.3%) >  M14 (34.2%) >  M15 (23.3%).

Interestingly, 13 peaks present in the spectrum of the model mixture did not belong to any of the indi-
vidual isolates, among which five peaks were not observed in any replicate spectrum of the pure cultures, 
while the other 8 peaks were shown in 1 or 2 replicate spectra of the pure cultures (Supplementary Table 
2). All of these “extra” peaks had intensities higher than 100 a.u. and lower than 500 a.u. except one peak 
m/z 6,897 (Supplementary Table 2), which reached 751 a.u (Supplementary Table 2).

Cluster analysis based on curve-based Pearson correlation coefficients suggested that the replicate 
spectra of the model mixture were more similar to the replicate spectra of R8 and F14 than to the spec-
tra of other isolates (Fig.  2a). This was also apparent using multidimensional scaling (MDS) analysis 
(Fig. 2b).

In silico synthesis of mixture mass spectra using mass spectra of pure cultures. A synthetic 
mixture spectrum (SMS) of the six-isolate model mixture was generated in silico using the spectra of pure 
cultures in the database to incorporate all 18 replicate spectra of the 6 isolates into a single spectrum. 
Peak positions were created in the SMS as described previously25 using position tolerance values that 
were calculated as follows:

= + ∗ / ( )mposition tolerance constant tolerance linear tolerance z 2

Constant tolerance equaled 1.9 and linear tolerance equaled 55025. Furthermore, a peak was only 
included in the SMS if more than 16% (3 out of 18 spectra) of the spectra exhibited peaks at the position. 
The intensity of each peak in SMS was reported as the averaged value of the intensities of peaks in the 
individual spectra of pure cultures.

The SMS and the corresponding mixture spectrum acquired using the six-isolate model mixture (des-
ignated as the acquired mixture spectrum, AMS, appeared similar (Fig.  3). The AMS contained 145 
peaks, while the SMS contained 195 peaks, indicating that some peaks of component isolates were not 
detectable when characterizing a mixture of them. The similarity between these two spectra was 68.6%. 
When preliminarily applying smoothing to spectra, results showed that with 0.5% smoothing, the sim-
ilarity (Pearson correlation coefficient) between the AMS and SMS increased from 68.6% to 75.7%, and 
the similarity further increased to 79.6% with 1% smoothing. This suggests that minor smoothing of 
spectra may affect the similarity between AMS and SMS. Investigation regarding such spectrum process-
ing parameters may be needed for further optimization of complex mixture analysis using SMS-based 
similarity coefficient methods.

Figure 2.  Cluster analysis (a) and multidimensional scaling (MDS) (b) for spectra of six environmental 
isolates and the model mixture system.
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Identification of blind-coded mixtures. Blind-coded model mixtures were constructed by mixing 
equal volumes of each cell suspension in a single microcentrifuge tube (Table 3). Spectra of blind-coded 
mixtures were acquired using the same methods that were used for pure cultures and the six-isolate 
model mixture system. Before analyzing spectra of the blind-coded samples, isolate-specific peaks 
(potential biomarkers) were selected based on the peak-matching results, and only peaks with intensities 

Figure 3. A comparison of spectra of the model mixture (acquired mixture spectrum) and the 
summarized spectra using spectra of pure cultures (synthetic mixture spectrum). 

ID Composition
Smoothing 

(%)

Similarity 
coefficient 

(%)a

Multiple 
identification 

results (Yes/No)b
Species 

identified

A F8, R4 0 90.0 No R8, R4

B F14, R8 0 92.9 No F14, R8

C F14, M15 − c − − − 

D M14, M15, R8 0.5 69.8 No M14, M15, R8

E F8, F14, M14, M15 1 74.4 Yes F8, F14, M14, 
M15

71.7 F8, F14, M14, 
M15, R4

69.9 F8, F14, M14, 
M15, R4, R8

F F8, F14, M14, M15, 
R4 0.5 71.1 Yes F8, F14, M14, 

M15, R4, R8

74.3 F8, F14, M14, 
M15

75.1 F8, F14, M14, 
M15, R4

G F8, F14, M14, M15, 
R4, R8 0.5 74.5 No F8, F14, M14, 

M15, R4, R8

Table 3.  Identification of blind-coded mixture samples based on comparison of the similarity 
coefficients between acquired spectra and synthetic spectra. aSimilarity coefficient was calculated using 
the Pearson correlation coefficient with various levels of smoothing (0–1%). bIdentification results were 
reported when similarity coefficients reached 68.6%. cSimilarity coefficient did not reach 68.6% even with 1% 
smoothing.
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higher than 500 a.u. were considered. In addition, SMS of blind-coded samples were constructed by 
summarizing the spectra of pure cultures using the composition of blind-coded samples.

For identification of the blind-coded mixtures, two strategies were applied: similarity coefficient-based 
and biomarker-based. The similarity coefficient-based strategy compared the replicate AMS of a 
blind-coded sample with the SMS of all blind-coded samples. The similarity coefficient was calculated 
using the Pearson correlation coefficient with 0% smoothing. An identification of the constituent species 
in each mixture was made when the similarity coefficient between AMS and SMS exceeded 68.6%. If 
no similarity coefficients reached 68.6%, 0.5% to 1% smoothing was applied. Table 3 shows the identi-
fication results using the similarity coefficient-based strategy. High similarity (~90%) was achieved for 
sample A and B, which each contained two isolates, while the similarity coefficient for sample C which 
also contained two isolates did not reach 68.6% even with 1% smoothing. Interestingly, using the 68.6% 
threshold value, multiple identification results were reported for samples E and F, which contained four 
and five isolates, respectively; however, correct identification was still achieved for these two samples with 
the highest similarity coefficient in the corresponding group of multiple results (Table 3).

A biomarker-based strategy was used to manually identify biomarkers for each isolate in the AMS 
of blind-coded samples (Table 4). Initially, to postulate the existence of an isolate in the sample, at least 
one potential biomarker peak of the isolate needed to be found in the spectra of the blind-coded sam-
ple. Further optimization was used to remove the isolate with only one biomarker peak shown from the 
initial identification results, since “shared peaks” were observed in mixture spectra (Supplementary Table 
2). In contrast to the identification made using similarity coefficients, sample C was correctly identified 
using potential biomarkers; however, M15 in sample D could not be correctly identified because no 
potential biomarker peaks higher than 500 a.u. were observed in spectra of the mixtures.

Discussion
In this study, MALDI-TOF mass spectra of a model mixture consisting of six environmental isolates 
were acquired and compared with mass spectra of each isolate composing the mixture. Results indicate 
that the mixture spectra are more complex than spectra of pure cultures in terms of number of peaks 
and mass range (Table 1). For example, mixture spectra contained 2 to 4 times more peaks than spectra 
of pure cultures, and the mass range of the mixture spectra covered the entire mass ranges of spectra 
of pure cultures. Most peaks in the mixture spectra could be assigned to each individual bacterium, but 
both shared and extra (mixture-specific) peaks were also present in the mixture spectra. “Shared” peaks 
are those that could be assigned to two isolates. The appearance of “shared” peaks has been reported 
previously, in which a more simple model mixture containing only two isolates was used26. Interestingly, 
though our model mixture was more complex than the two-isolate model system, there was no peak 
shared by more than two isolates. Mixture-specific peaks were those that could not be assigned to any 
individual bacterium. This rather curious phenomenon has also been observed previously when using a 
two-isolate model mixture, in which two mixture-specific peaks were observed26. In our six-isolate model 
mixture, more mixture-specific peaks were observed. Some were observed in only one or two replicate 
spectra, indicating that such peaks may result from bacteria cell extract components with inconsistent 
presence; however, five mixture-specific peaks in the spectra of the six-isolate model mixture were not 
observed in any replicate spectra of the pure cultures (Supplementary Table 2). These five peaks may 
be generated by reactions catalyzed by enzymes which were released from cells when extracting pro-
teins. We hypothesize that complex samples which contain more than six bacterial isolates may contain 
even more mixture-specific peaks. We are further exploring whether the pattern and/or appearance of 
mixture-specific peaks can be used as representative biomarkers for bacterial mixtures.

ID Composition
Number of Biomarkers 
found for each speciesa

Species identified 
initially

Species identified 
after optimization

A F8, R4 F8(11); M14(1); R4(6) F8, M14, R4, F8, R4

B F14, R8 F14(8); R8(8) F14, R8 F14, R8

C F14, M15 F14(6); M15(2); R8(1) F14, M15, R8 F14, M15

D M14, M15, R8 F8(1); F14(2); M14(5); R8(8); F8, F14, R8, M14 F14, R8, M14

E F8, F14, M14, 
M15

F8(12); F14(6); M14(5); 
M15(9);

F8, F14, M14, 
M15 F8, F14, M14, M15

F F8, F14, M14, 
M15, R4

F8(13); F14(8); M14(5); 
M15(6); R4(6); R8(2);

F8, F14, M14, 
M15, R4, R8

F8, F14, M14, M15, 
R4, R8

G F8, F14, M14, 
M15. R4, R8

F8(11); F14(8 M14(6);); 
M15(6); R4(5); R8(8)

F8, F14, M14, 
M15. R4, R8

F8, F14, M14, M15. 
R4, R8

Table 4.  Identification of blind-coded mixture samples based on potential biomarker peaks. aValues in 
parentheses are the number of potential biomarker peaks found for each species in the blind-coded samples.
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Prior work has shown that varying amounts of individual bacteria in mixtures affects the representa-
tion of component bacteria in mixture spectra18. For this reason, we chose to use a single concentration 
of each bacterium to be able to directly and rigorously compare two different approaches to mixture 
characterization. Though the six-isolate model mixture was constructed using equal O.D. for each iso-
late, the numbers of peaks observed and the percentage of peak presence (PP) in the mixture spectra 
were different for each isolate. This indicates that some isolates may be disproportionately represented 
when profiling mixture samples using MALDI, as has been suggested previously26. This may be due to 
several reasons. For example, although the O.D. was adjusted to be equal, the cell number may have 
varied, resulting in an unequal concentration of released proteins for each isolate. The protein extraction 
protocol may yield more proteins for some isolates (e.g. Gram negative species) than others (e.g. Gram 
positive species). All of these factors may contribute to the reduced representation of a particular isolate 
in a mixture spectrum.

Cluster analysis showed that, generally, the profiles of mixture samples were more similar to the iso-
late which has higher percentage of peak presence in the mixture spectra than isolates with lower values 
of this metric. In contrast, the similarity trend was not consistent with the order of number of peaks rep-
resented in the mixture spectra. This is reasonable, because higher percentage of peak presence suggests 
more information about the isolate is contained in the mixture mass profiles. This indicates that, though 
the exact bacterial composition in mixture samples cannot be elucidated only by cluster analysis of mix-
ture spectra and spectra of pure cultures, the species with mass profiles showing the highest similarity 
to those of mixture samples are very likely members of the mixture samples. Accordingly, further work 
to explore this technique as a screening method for rapid detection of predominant species in mixture 
samples is warranted.

With regard to identifying bacteria in mixtures, some previous studies have shown that species-specific 
peaks (potential biomarkers) of component bacteria can be observed in mixture spectra when using 
simple mixture model systems. The component bacteria can be identified based on identification of 
biomarker peaks, and usually, only one biomarker peak is investigated. In contrast, we observed shared 
peaks when using a considerably more complex model mixture. This suggests that the identification of 
bacteria from mass spectra of mixtures should not rely on a single biomarker peak of the isolates of inter-
est. Sophisticated algorithms which examined the whole mass profiles of bacteria have been developed 
to automatically identify bacteria from mixture model systems21. Though effective, these algorithms are 
complex and not used routinely in clinical and environmental microbiology labs.

In summary, we employed two strategies, similarity coefficient- and biomarker-based strategies, to 
identify bacteria using mixture mass spectra and a database containing spectra of pure cultures. Since 
our model mixture was constructed using an equal OD for each component species, we hypothesized 
that mixture spectra may be generated by in silico synthesis of spectra of pure cultures. The SMS of the 
six-isolate model mixture showed 68.6% similarity to the AMS, and preliminarily data processing using 
a common smoothing algorithm further increased the similarity coefficients. Smoothing removes noise 
peaks in the spectra. Thus, the fact that smoothing increased the similarity between the SMS and the 
AMS indicates that low intensity peaks of each species may contribute less than high intensity peaks to 
the mass profiles of mixture samples. By comparing the AMS of blind-coded samples with various SMS, 
generally, high similarity was observed for samples containing two species. For samples containing more 
than two species, multiple results were observed, but the highest similarity coefficient in these multiple 
results reflected the correct composition of the mixture.

With regard to the biomarker-based strategy, our results showed that with limited numbers of bio-
marker peaks, for example, only one or two biomarker peaks, misidentification may occur. This highlights 
the need to further examine the threshold number of peaks to be examined when using biomarker-based 
strategies to identify individual bacteria in mixtures. Furthermore, these two strategies may perform 
differently with the same sample. For example, sample C could not be identified using the similarity 
coefficient-based strategy, while correct identification of constituent bacteria was obtained using the 
biomarker-based strategy. In contrast, only the similarity-coefficient-based strategy facilitated reliable 
identification of members of the mixture in sample D.

Overall, our results suggest that MALDI-TOF MS fingerprint-based methods have promise to identify 
bacteria in complex mixtures using mixture spectra and a database containing spectra of pure cultures. 
While neither approach imposed additional computational costs (i.e., calculation of relevant similarity 
coefficients and construction of SMS were nearly instantaneous in the software we employed), both iden-
tification strategies may need to be examined and optimized prior to application to particular mixtures to 
maximize performance. Accordingly, investigation of additional mixtures from other environments and 
of non-model mixtures in which variability is inherently higher is needed to further elucidate and opti-
mize the use of this technique to rapidly characterize complex bacterial mixtures. In particular, polymi-
crobial blood cultures that pose challenges for existing workflows and products (e.g., Bruker’s Sepsityper) 
may be more readily, rapidly, and reliably characterized using such optimized strategies.

Materials and Methods
Reagents. Acetonitrile (≥ 99.7%) was purchased from Alfa Aesar (Ward Hill, MA, USA). Trifluoroacetic 
acid (≥ 99.5%) and α -cyano-4-hydroxycinnamic acid (CHCA) (≥ 97%) were purchased from ACROS 
(Fair Lawn, NJ, USA). Formic acid (≥ 88.0%) and MALDI calibrants were purchased from Sigma-Aldrich 
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(St. Louis, MO, USA). Absolute ethanol was purchased from Thermo Fisher Scientific (Waltham, MS, 
USA). R2A agar was purchased from Carolina Biological Supply Company (Burlington, NC, USA).

Bacteria, media, and construction of the model mixture. Bacteria used in this study were iso-
lated from Kartchner Caverns, AZ, USA and stored as freezer stocks (50:50 R2B bacterial culture:glyc-
erol) at − 80 °C (Table 1). All six bacteria were identified using 16S rRNA gene sequencing to the genus 
level25. R2A plates were streaked from freezer stocks and incubated at room temperature for 2–3 days. A 
single colony from an R2A plate was used to inoculate R2B broth. All R2B broth cultures were incubated 
at room temperature on an orbital shaker at 200 rpm for 40 h. After incubation, the optical density of 
each broth was adjusted to 1.0 at 600 nm. A model mixture containing all six bacteria was made by 
mixing equal volumes of each cell suspension (O.D.600 =  1) into a single sterile microcentrifuge tube.

Sample preparation. All cell suspensions (O.D.600 =  1) and the model mixture system were prepared 
for MALDI analysis using a protein extraction sample preparation method as previously described27. 
Briefly, for each sample, 1 mL (O.D.600 =  1) was centrifuged at 17,000 ×  g for 5 minutes, and the super-
natant was decanted. The cell pellet was inactivated by resuspension and incubation for 1 h in 300 μ l of 
sterile dd H2O and 900 μ l of absolute ethanol. Then, cells were subjected to centrifugation at 17,000 ×  g 
for 5 minutes, and the supernatant was decanted. The resulting pellet was mixed with 25 μ L of 70% 
formic acid and 25 μ L of acetonitrile, and then centrifuged for 5 minutes at 17,000 ×  g. A 1 μ L aliquot 
of the resulting supernatant was immediately spotted onto a MSP 96 polished steel target plate (Bruker 
Daltonics; Billerica, MA, USA) in triplicate. After air drying for 15 minutes, 1 mL of CHCA matrix solu-
tion (CHCA in 50% acetonitrile/2.5% trifluoroacetic acid) was applied on top of each spot, and allowed 
to air dry for additional 15 minutes.

Mass spectra acquisition. MALDI-TOF MS analyses were performed using a Bruker Microflex LRF 
MALDI-TOF mass spectrometer (Bruker Daltonics; Billerica, MA, USA) equipped with a nitrogen laser 
(337 nm) under the control of FlexControl software (version 3.0; Bruker Daltonics; Billerica, MA, USA). 
Mass spectra were manually collected in positive linear mode within a mass range from 2 to 20 kDa. Ion 
source voltages 1 and 2 were set at 20 and 18.15 kV, respectively. The lens voltage was set to 9.05 kV. Each 
spectrum was obtained by accumulation of 500 laser shots in 100 shot increments. Mass calibration was 
performed using a standard calibrant mixture including Adrenocorticotropic Hormone (ACTH)_clip(1-
17) (human) (2093 Da), ACTH_clip (18-39) (human) (2464 Da), insulin oxidized B (bovine) (3495 Da), 
insulin (bovine) (5731 Da), cytochrome_C (equine) (12362 Da) and myoglobin (16952 Da).

Data analysis. Raw mass spectra were exported as. txt files using FlexAnalysis software (version 3.0; 
Bruker Daltonics; Billerica, MA, USA) and imported into BioNumerics 7.1 software (Applied Maths, 
Sint-Martens-Latem, Belgium). The raw spectra were preprocessed using the default preprocessing tem-
plates in the BioNumerics 7.1 software, which include baseline subtraction using a rolling disc algorithm, 
continuous wavelet transformation noise estimation, and Kaiser window smoothing. Each peak with a 
signal to noise ratio of at least 10 was annotated.

All subsequent data analyses were conducted in BioNumerics 7.1 software (Applied Maths, 
Sint-Martens-Latem, Belgium). For each species, triplicate technical replicate spectra were summarized 
in a composite spectrum using a similarity filter of 95%. Curve-based cluster analysis including all repli-
cates of spectra of pure cultures and the model mixture was performed by calculating pairwise Pearson 
product-moment correlation coefficients, and a dendrogram was constructed using the unweighted pair 
group method with arithmetic averages (UPGMA). Multidimensional scaling (MDS) was used to visual-
ize further the similarity of the mass spectra. Peaks in spectra of pure cultures were matched to identify 
characteristic peaks for each bacterium using constant and linearly varying tolerance values of 2 m/z 
and 550 ppm, respectively25. A characteristic peak was manually selected for the species when this peak 
appeared in all of the three replicate spectra of the bacterium.

A synthetic mixture mass spectrum (SMS) was constructed by summarizing all of the 18 processed 
spectra of the pure cultures with a similarity filter of 0.5%. The intensity of each point in the synthetic 
spectrum was calculated by averaging the respective signal intensities in all the mass spectra. The simi-
larity of the synthetic mixture spectrum was compared to the acquired mixture spectra (AMS) using the 
Pearson product-moment correlation coefficient.

Identification of blind-coded samples. Blind-coded mixtures were constructed by mixing bacterial 
cell suspensions (O.D.600 =  1) into sterile microcentrifuge tubes (Table 3). Mass spectra of the blind-coded 
mixtures were acquired and pre-processed as described above. Potential biomarkers for each species 
were identified based on peak matching results and only peaks with intensities higher than 500 a.u. 
were considered. Synthetic mixture spectra were constructed by summarizing spectra of pure cultures. 
Species in blind-coded mixture samples were identified by comparing the acquired mixture spectra of 
the blind-coded samples to the synthetic mixture spectra (similarity coefficient-based) and by identifying 
species-specific peaks (potential biomarkers) in the acquired mixture spectra (biomarker-based).
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