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Transverse Anderson localization 
of light near Dirac points of 
photonic nanostructures
Hanying Deng1,2, Xianfeng Chen1,2, Boris A. Malomed3, Nicolae C. Panoiu4 & Fangwei Ye1,2

We perform a comparative study of the Anderson localization of light beams in disordered layered 
photonic nanostructures that, in the limit of periodic layer distribution, possess either a Dirac 
point or a Bragg gap in the spectrum of the wavevectors. In particular, we demonstrate that the 
localization length of the Anderson modes increases when the width of the Bragg gap decreases, 
such that in the vanishingly small bandgap limit, namely when a Dirac point is formed, even 
extremely high levels of disorder are unable to localize the optical modes residing near the Dirac 
point. A comparative analysis of the key features of the propagation of Anderson modes formed 
in the Bragg gap or near the Dirac point is also presented. Our findings could provide valuable 
guidelines in assessing the influence of structural disorder on the functionality of a broad array of 
optical nanodevices.

Periodic photonic structures provide a versatile platform to control and engineer light-matter interaction 
as the photon dispersion in such patterned optical media can be designed to differ significantly from the 
optical wave dispersion in regular materials1. In particular, various exotic photonic bandstructures can 
be engineered, including frequency gaps, spectral domains with strong anisotropy, negative refraction, 
and Dirac-points (DPs). In the case of DPs, whose properties are at the center of this study, an upper 
and lower photonic bands are designed in such a way that they intersect at a single point, the frequency 
dispersion of the optical modes located in the vicinity of this point being linear. In condensed matter 
physics, the electronic counterpart of photonic DPs are at the origins of many remarkable properties of 
recently discovered materials, such as graphene and topological insulators2–6. Therefore, the ability to 
create, eliminate, and more generally manipulate DPs of photonic structures could have many important 
implications, both at basic science level as well as to photonic devices with new or improved functional-
ity. For example, photonic DPs provide an alternative, more convenient way to explore and understand 
DP-related physics, as photonic structures offer a versatile, easy to use platform for the experimental 
implementation of such physical systems7,8.

Generally speaking, photonic DPs can be divided into two broad classes according to how they form. 
The first class encompasses structural DPs9–14, the existence of these DPs being related to specific top-
ological and structural properties of the corresponding photonic lattice. In particular, these DPs are 
formed in honeycomb lattices regardless of the lattice parameters and can be viewed as the photonic 
analog of the electronic DPs of graphene and other two-dimensional (2D) materials. The second class 
of DPs includes the so-called accidental-degeneracy-induced DPs (ADIDPs)15–18. These DPs can appear 
in simple lattices such as square lattices when the lattice parameters (lattice constant, refractive index 
contrast) are finely tuned in such a way that at specific frequencies the effective permittivity and perme-
ability of the structure are zero16. Interestingly, it has been recently demonstrated that the band structure 
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of surface-plasmon polaritons (SPPs) formed in one-dimensional (1D) layered metallic-dielectric nanos-
tructures possesses ADIDPs19,20, provided that the spatial average of the permittivity of the lattice is zero. 
By incorporating graphene layers into such periodic nanostructures, electrically or optically tunable DPs 
have been shown as well21.

In reality, however, fabrication processes inherently introduce a certain level of structural disorder 
upon producing periodic structures, and thus it is important to investigate whether this disorder would 
destroy the DPs thus preventing the experimental observations of DP-related physics. The effects of 
disorder on the structural DPs have been investigated in the particular case of optical honeycomb wave-
guide lattices, the main finding being that the DP-associated chiral symmetry would be preserved or 
damaged, depending on the nature of the disorder22. However, the influence of disorder on the ADIDPs, 
which is the aim of the present report, has not been studied yet.

In this report, we perform a comparative study of the effect of structural disorder on optical prop-
erties of one-dimensional (1D) photonic nanostructures that, in the momentum space, possess either a 
DP or a Bragg gap (BG). We find that DPs are extremely robust against structural disorder, despite the 
fact that they are formed when an accidental degeneracy occurs. More specifically, the photonic modes 
of the disordered lattices located near DPs of the unperturbed ones remain delocalized even when the 
strength of disorder is as high as 80%. The photonic modes of nanostructures having BGs, on the other 
hand, are much more prone to mode localization. We have established these conclusions by performing 
both a detailed mode analysis and direct beam propagation simulations.

Results and Discussion
The photonic lattice considered in this study is a binary periodic nanostructure composed of alternating 
layers of metallic and dielectric materials stacked along the x-axis, as depicted in Fig. 1(a). The electro-
magnetic field is assumed to propagate along the z-axis. To make our analysis more specific, we assume 
that the metallic and dielectric layers are made of silver and silicon, respectively. The permittivity of 
dielectric (silicon) is εd =  12.25. The complex permittivity of the metal (silver) is εm =  −125.39 +  2.84i 
at the wavelength of λ =  1550 nm23. Note that throughout the report, we have taken into account the 
metallic losses in the analysis. The photonic bands of the photonic lattice are obtained by using the 
transfer-matrix method (see Methods) and are given by the solutions of the following transcendental 
equation:
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where kx is the Bloch wave vector, kz the propagation wavevector of the Bloch wave, td, tm are the thick-
ness of dielectric and metallic layers, and Λ  =  td +  tm is the period of the unit cell. The wavevectors 
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Figure 1. (a) Schematic of the binary (metallic-dielectric) layered nanosctructure. (b) The photonic 
bandstructure of two periodic lattices, one having the thickness of the metallic layer, tm =  25 nm(blue/solid 
lines), and the other one with thickness tm =  45 nm (red/dashed lines). A Dirac point forms in the former 
and BG forms in the latter. The thickness of the silicon layer is td =  256 nm in both cases. Point “a” denotes 
the location of the Dirac point; points “b1” and “b2” denote the boundaries of the BG.
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dependence of kz =  kz(kx), which determines the spatial modal dispersion relation for the propagating 
modes at the particular frequency. The transmission bands for two different values of the thickness, tm, 
are shown in Fig. 1(b).

It has been reported that 1D DPs forms at the center of the Brillouin zone21, kx =  0, provided that the 
real part of the spatially averaged permittivity is equal to zero, namely ( )ε( ) = =ε ε+

+
Re Re 0t t

t t
d d m m

d m
. As 

shown in Fig.  1(b), for tm =  25 nm, the condition ε( ) =Re 0 holds, and indeed the two transmission 
bands touch in a single point, giving rise to a photonic DP at the position ( , ( )) = ( , . )Rek k k0 3 68x z 0 . 
For such a two-band configuration to occur, the thickness of the dielectric and metallic layers should be 
larger than certain critical values (for example, for tm =  25 nm, in order to support the two-band struc-
ture, the minimum thickness of dielectric layers is 199 nm). This kind of DP is of ADIDP nature, as it is 
removed once the averaged permittivity deviates from zero. Specifically, a BG opens when the averaged 
permittivity is shifted away from the zero value. For example, when tm =  45 nm, the photonic band struc-
ture of the binary lattice possesses a BG in the region where the DP existed (see the red curve in 
Fig. 1(b)).

We then gradually introduce disorder into the nanostructure by assuming a random fluctuation of the 
thickness of the dielectric components, namely, the thickness of the n-th silicon layer is set to δ= +t td

n
d n0 , 

where td0 is the average thickness (we take td0 =  256 nm here), and δn is a random value. We assume δn 
to be uniformly distributed in the interval of [− δ, δ], 0 <  δ <  td0. hence the level of disorder can be char-
acterized by the parameter, Δ  ≡  δ/td0.

Effect of the disorder on the eigenvalues of Anderson modes. We first compare the influence of 
disorder on the eigenvalues of the Anderson modes of the two distinct lattices, namely the DP-bearing 
lattice and the lattice that possesses a BG. In Fig.  2(a), we show the eigenvalue spectrum of these two 
periodic structures, one possessing a DP (at tm =  25 nm), whereas the other one being a regular lattice 
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Figure 2. (a) Eigenvalue spectra of the Bloch modes for a periodic lattice with tm =  25 nm (green line) and 
tm =  45 nm (brown line). The influence of disorder on the eigenvalue spectra of the two lattices are shown in 
(b,c), respectively. The results in (b,c) are obtained by ensemble-average over 50 disorder realizations.
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featuring a BG (at tm =  45 nm). In the plots, the modes are indexed according to the magnitude of their 
associated propagation constant (mode eigenvalue).

The modification of the eigenvalue spectra when disorder is gradually introduced in the two lattices 
is shown in Fig. 2(b,c), where the results are averaged over 50 randomly-perturbed configurations. In the 
case of the DP-bearing lattice, the eigenvalues of the eigenmodes at the top and bottom of the photonic 
bands experience significant shift, whereas the eigenvalues near the center of the band are only slightly 
affected by disorder. Remarkably, as Fig.  2(b) illustrates, even if the disorder strength is increased to 
Δ  =  80%, the relative variation of the eigenvalues located near the DP of the periodic lattice is extremely 
weak (less than 2%). In contrast, in the lattice that possesses a BG in its unperturbed limit, the variation 
of the eigenvalues upon the introduction of disorder shows a very different dynamics. Thus, the modes 
most affected by disorder are located at the bottom of the lower band and the larger the eigenvalues are 
the smaller their variation is. The eigenvalues belonging to the upper band, on the other hand, are hardly 
affected by disorder. Moreover, the corresponding bandgap gradually shrinks until it completely vanishes 
if the disorder strength is increased beyond a certain value. Of course, in such systems having a BG in 
their unperturbed limit, the vanishing of the bandgap at the strong disorder level does not imply the 
appearance of a disorder-induced DP, as the inequality, ε ≠ 0, remains unchanged for such systems. 
With a further increases of disorder, the upper band starts to be perturbed, too.

The effective width of Anderson modes. After gaining these valuable insights into the relations 
between the spectra of the Anderson modes, the topology of the band structure of the lattice, and the 
disorder strength, we look into the localization length of the Anderson modes. For this, we calculated 
the effective width of these modes by using the following definition,
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2 2  is the center of the mass of the mode and “〈 〉 ” stands for 
ensemble averaging over multiple realizations of randomness with the same level of disorder.

Figure  3 shows the effective width of the modes of the two structures, which contain a gradually 
increasing degree of structural disorder. The plots correspond to the DP-bearing (Fig.  3(a–d)) and 
BG-bearing (Fig.  3(g,h)) lattices. Consistent with the findings revealed by Figs  2(b), Figs  3(a–d) show 
that the modes with the smallest and largest eigenvalues firstly become localized, then the mode locali-
zation effect extends towards the central region of the spectrum. Remarkably, however, the modes at the 
central region of the spectrum, which correspond to the DP of the unperturbed lattice, remain delocal-
ized despite the fact that the disorder level is increased to a particularly large value (80% in Fig. 3(d)). 
As expected, a similar scenario is as well observed when the thickness of the dielectric and metallic 
components of the unit cell of the lattice are both perturbed (Fig. 3(e,f)). The spatial profile of the mode 
with the largest effective width is also shown in the inset of Fig. 3(d,f). Interestingly enough, we find that 
the widest mode has a propagation constant that is exactly equal to the propagation constant of the 
corresponding DP. This is a clear manifestation of an extreme robustness of such ADIDP against struc-
tural disorder, a phenomenon that can be understood by recalling that the condition for the formation 
of such ADIDPs is that the averaged permittivity is zero, namely, ε=0. Thus, in the unperturbed limit, if 
one has ε = =ε ε+

+
0t t
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, then in the disordered lattice the averaged permittivity remains zero as,
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where L is the total transverse length of the disordered lattice. Therefore, random structural fluctuations 
preserve the zero-epsilon condition and consequently the corresponding mode remains delocalized. By 
contrast, the width of the modes of BG-bearing lattice rapidly become localized as disorder is added to 
the photonic lattice. This is illustrated in Fig. 3(g,h), where the width of the modes corresponding to two 
different BG-bearing lattices are presented. In particular, one can see that even a small degree of disor-
der (Δ  =  20%) can localize almost all modes. Note that even the mode with the largest width is tightly 
localized when the disorder level is a mere 20%, as per the inset of Fig. 3(h); compare also the widths of 
the most delocalized modes for the three lattices, shown in the insets of Fig. 3(d,f,h).

We next investigate the relation between the bandgap-size and the degree of localization of Anderson 
modes. To this end, we show in Fig.  4(a) the eigenvalue spectra of a periodic lattice with tm =  25, 35, 
45, 55, 65 nm. As mentioned above, tm =  25 nm corresponds to a DP-bearing system with vanishing 
bandgap, and a BG with increasing width opens as the thickness of the metal tm increases, starting 
from tm =  25 nm. In Fig.  4(b) we present the effective widths of the eigenmodes of the corresponding 
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perturbed lattices, the disorder parameter being the same, Δ  =  30%. Note that since the thickness of the 
metal layers varies across these lattices, in their unperturbed limit they possess bandgaps with different 
sizes. The widest eigenmodes for these different lattices are presented in Fig. 4(c–f). These figures show 
that a wider bandgap leads to a stronger mode localization, which implies that, at the same strength of 
disorder, extended Bloch modes transform into more localized Anderson modes in photonic lattices with 
larger bandgap-size.

Simulation of the light beam propagation in disordered lattices. Direct numerical simulations 
of light beams propagating in the disordered lattices investigated in this work, performed by solving 
numerically the 3D Maxwell equations governing the beams dynamics, corroborate the findings reported 
above regarding the mode properties. Figure  5 illustrates how an input TM-polarized Gaussian beam 
evolves in the lattice that in its unperturbed limit possesses a DP (Fig. 5(a–d) and in BG-bearing lattice 
(Fig. 5(e–h)). Thus, a light beam continuously broadens in the transverse direction upon its propagation 
in the DP-bearing structures, despite the fact that large disorder is added into the lattice (40% in Fig. 5, 
left panels). By contrast, in the BG-bearing lattice, a relatively much weaker disorder level could already 
arrest the beam transverse diffraction, leading to Anderson localization (Fig. 5, right panels).

The variation of the effective width of the light beam vs. propagation distance in three lattices char-
acterized by different size of the bandgap is shown in Fig. 5(i). The level of disorder introduced in the 
lattices is 40%, 60% and 80%, respectively, for tm =  25 nm (DP-bearing structure), as well as 20% for the 
structures with tm =  30 nm and tm =  40 nm. It can be clearly seen in this figure that, despite significant 
disorder, the light beams propagating in DP-bearing system (tm =  25 nm) undergo a much stronger wave 
diffraction. By contrast, even when a much weaker disorder is considered, BG-bearing systems (tm =  30, 
40 nm) display a significantly reduced beam diffraction, the beam broadening being nearly halted for the 
structure with tm =  40 nm.

Conclusions
In summary, using both the mode analysis and direct beam propagation simulations, we have stud-
ied the influences of the structural disorder on properties of the Dirac point in one-dimensional 
metallic-dielectric nanostructures, and compared it with that of the Bragg-gap-bearing nanostructures. 
We have demonstrated that the Dirac point is extremely robust against disorder added to the systems, 
in the sense that even a very large level of disorder (80%) is unable to localize modes residing near the 
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Figure 3. The dependence of the width of the Anderson modes on the disorder level, calculated for 
the DP-bearing system (a–f), and for the BG system (g,h). In (e,f), both dielectric and metallic layers are 
assumed to be disordered. Insets in (d,f,h) show the profiles of the most delocalized Anderson modes. The 
gray region in (g,h) indicate the bandgap of the eigenvalue spectra of the unperturbed lattices.
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Dirac point. The dependence of the localization of Anderson modes on the size of the bandgap has 
also been explored, and it has been found that photonic modes of lattices with increasing bandgap-size 
in the unperturbed limit are more prone to disorder-induced localization. The extreme robustness of 
Dirac points found in this report points out the feasibility of the experimental observations of the rich 
DP-related physics. On the other hand, however, our findings points out that localizing modes near the 
Dirac point of the photonic lattice becomes even more critical, in contrast to the localization of the Dirac 
fermions in the graphene sheet24–27. Finally, we should mention that, while the results reported here were 
derived in the case of one-dimensional photonic structures, the finding of extreme robustness of Dirac 
points applies to higher-dimensional structures as well because the existence condition for the Dirac 
points, namely, the average permittivity is zero, is independent of system dimensionality.

Methods
The transfer matrix method (TMM). We use the transfer matrix method (TMM)28 to obtain the 
photonic bandstructure of the ideal periodic photonic lattice Eq. (1). Thus, the electromagnetic field at 
two positions x and x +  Δ x in the same layer is related via a transfer matrix19,20:
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Figure 4. The influence of the size of the bandgap on the localization of Anderson modes. (a) Eigenvalue 
spectrums of the ideal periodic lattice with tm =  25, 35, 45, 55, 65 nm. Inset: The variation of the bandgap-
size with tm. (b) The effective width of Anderson modes when the disorder level is 30%, determined for 
different values of the thickness tm. (c–f) The profiles of the broadest Anderson modes.
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where ω ε µ= ( / ) −k c kj j j z
2 2 , j =  d, m. Here, d and m stand for the silicon (dielectric) and silver 

(metal), respectively. For a TM-polarized wave, ( )µ ε θ µ ε= 
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According to the Bloch theorem, the electric and magnetic components of an electromagnetic mode 
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On the other hand, the TMM leads to:
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Mode analysis and beam propagation. The eigenmodes of the disordered photonic lattices and 
the optical beam propagation are numerically investigated by solving the 3D Maxwell equations using 
the finite element method, as implemented in COMSOL Multiphysics 4.4. The mode solver of COMSOL 
is used to find the eigenmodes, with the simulation domain being surrounded by scattering boundary 
conditions (SBCs). The frequency domain solver of COMSOL is used to simulate the optical beam prop-
agation. A TM-polarized Gaussian beam with an x-component of electric filed, Ex(x) =  exp(− x2/(3λ)2), 
is used as the profile of the optical beam at the input facet of the optical superlattice. Appropriate SBCs 
were used to emulate open boundaries.
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