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Mechanical origin of aftershocks
E. Lippiello1, F. Giacco1, W. Marzocchi2, C. Godano1 & L. de Arcangelis3

Aftershocks are the most striking evidence of earthquake interactions and the physical mechanisms 
at the origin of their occurrence are still intensively debated. Novel insights stem from recent 
results on the influence of the faulting style on the aftershock organisation in magnitude and time. 
Our study shows that the size of the aftershock zone depends on the fault geometry. We find that 
positive correlations among parameters controlling aftershock occurrence in time, energy and space 
are a stable feature of seismicity independently of magnitude range and geographic areas. We 
explain the ensemble of experimental findings by means of a description of the Earth Crust as an 
heterogeneous elastic medium coupled with a Maxwell viscoelastic asthenosphere. Our results show 
that heterogeneous stress distribution in an elastic layer combined with a coupling to a viscous flow 
are sufficient ingredients to describe the physics of aftershock triggering.

The first empirical law for aftershock organisation in time dates back to Omori1,2 and states that the 
number of aftershocks n(t) decays as a power law with the time t from the mainshock, ( ) ( + )−~n t t c p. 
Many explanations for the Omori law have been proposed3 but a complete understanding of its origin is 
still lacking. The improvement in data acquisition and elaboration has contributed to identify4 the 
dependence of the characteristic time c in the Omori law on the rake angle λ . This angle indicates the 
direction of slip on the fault plane and can be related to the local level of differential stress σD

5. In par-
ticular under some assumptions, such as that faulting follows Mohr-Coulomb theory, σD is larger for 
λ ∈ , [45 135 ] and smaller for λ ∈ − , − [ 135 45 ]. Within these hypotheses4–6, the rake angle can be, 
therefore, used to infer information on the differential stress acting on seismic faults, a quantity very 
difficult to measure directly. A similar dependence on λ  has been previously observed6 for the parameter 
b in the Gutenberg-Richter (GR) law7, stating that the number of magnitude m earthquakes, ( )N m , 
exponentially decreases with m, ( ) ∝ −N m 10 bm. These results offer new perspectives in earthquake-hazard 
analysis even if a precise physical interpretation of their origin is still lacking. Moreover, a clear identifi-
cation of the mechanisms responsible for the b and c dependence on the differential stress might also 
contribute to a better understanding of the physics behind aftershock triggering, an issue still debated 
and controversial8–10. In this letter we show that also the size of the aftershock area depends on λ  and 
we develop a coherent framework able to explain aftershock organisation in time, space and 
magnitude.

Results
We first consider experimental data from the Southern California region and restrict the study to inter-
mediate mainshock magnitudes ∈ . , .m [2 5 4 5]M . We identify aftershocks as events occurring within 
10 min and in a circle of radius 3.3 km centered in the mainshock epicenter (see Methods).

We then define La as the average main-aftershock epicentral distance normalized by the typical size 
of the aftershock area11 ( ) = . × .l m 0 01 10M

m0 5 M km. This choice, as shown in the Supplementary 
Information, ensures that the evaluation of La is not affected by variations of the b value. We evaluate La 
for all main-aftershock couples and finally stack sequences according to the rake angle λ  of the main-
shock in overlapping intervals of amplitude δλ = 5 . Only λ  intervals containing at least 5 main-aftershock 
couples are included in the study. We have verified that results are not significantly affected by the 
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interval value. We also evaluate the c-value for mainshock magnitudes ∈ . , .m [2 5 4 5]M . Details on the 
procedure to obtain b and c values are given in the Methods.

Results for the average value of c and La as function of λ  are plotted in Fig. 1. We also plot the depend-
ence of b on λ , following the same procedure of ref. 6 without discrimination between aftershocks and 
mainshocks. Parametric plots of c vs b and c vs La indicate (Fig. 2) a proportionality among these quan-
tities. This behaviour is also recovered for larger mainshocks and other geographic areas ( > .m 6 5M  main-
shocks from Southern California, Northern California, Japan, Alaska and ≥ .m 5 9M  earthquakes in 
Italy). Details on the considered data sets can be found in the Supplementary Information. For each 
sequence we separately evaluate b, c and La and average over all sequences. The parametric plots (Fig. 2) 
indicate good agreement with data for Southern California ( ≤ . )m 4 5M , supporting positive correlations 
among b, c and La as a stable feature of seismicity. We wish to stress that the observed behaviour is not 
a spurious effect related to aftershock incompleteness12,13 (see Supplementary Information).

The dependence of La on λ  leads to a better understanding of previous results on the c and b values4,6. 
Indeed, assuming that the fault area is proportional to the aftershock area, the seismic moment is pro-
portional to σ∆La

3 , where Δ σ is the stress drop due to the mainshock. Therefore, for a given mainshock 
magnitude mM (or seismic moment) a smaller value of La implies a larger Δ σ. Conversely, in regions 
where Δ σ is smaller, the same mM can be only recovered if the stored elastic energy is distributed over 
a wider area. In the latter case, it is more probable to find several unstable regions scattered in space. 
This leads to a larger fraction of small aftershocks (a larger b value) and a longer temporal delay for the 
relaxation of all instabilities (a larger c value). The above description, therefore, predicts positive corre-
lations among b, c and the spatial extent La of the aftershock area, experimentally observed. Since, under 
similar fault conditions, it is also reasonable to expect larger Δ σ in regions with larger σD, the above 
argument also provides an explanation for the dependence of measured quantities on λ .

In the following we will show that the experimental statistical features of aftershocks are recovered in 
a model for a single seismic fault. The model can be extended to describe more realistic fault networks 
including secondary faults and different orientations with respect to the mainshock fault. Off-fault after-
shocks can be expected in this case but their number would not be so relevant to affect the observed 
statistical results. The model implements three main ingredients. Ingredient 1 is the assumption that the 
fault plane is an elastic medium modelled as blocks interconnected by springs and subject to a stress with 
constant rate σ ext caused by the tectonic drive. More precisely we consider a tilted square lattice of spac-
ing a. As soon as the local stress σij exceeds the local static friction σij

th, the block slips and stress is 
distributed to nearest neighbor blocks with the dynamic friction coefficient μD set to zero. An earthquake 
is represented by the ensemble of subsequent slips and its magnitude can be obtained from the size S of 
the slipping region. Ingredient 2 is the introduction of a heterogeneous local friction14–16  assuming that 
σij

th follows a quenched Gaussian distribution with mean σA and standard deviation  
δσth = σ.0 3 A. Randomness is also present in stress drops δσ σ σ= −ij ij ij

new, where σij
new is randomly 
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Figure 1. Statistical parameters of aftershock occurrence depend on the faulting style. (Upper panel) The 
b value in the GR law as function of the rake angle λ is extrapolated from the results of Schorlemmer  
et al.6 for Southern California. Different colors correspond to the Aki Richards convention for faulting styles: 
normal (green), strike-slip (red), thrust (blue) faults. (Central Panel) The c value of the Omori law as a 
function of the rake angle is evaluated for the Southern California region. Results refer to mainshock 
magnitudes in the range [2.5:4.5] and aftershocks with magnitudes larger than 2.4. Data are in very good 
agreement with results by Narteau et al.4 in their Fig. 1b. (Lower Panel) The normalized size of the 
aftershock area La as a function of the rake angle λ  for the Southern California catalog. We have applied the 
same criterion as in the central panel to identify mainshocks and considered as aftershocks all events with 
≥ = .m m 2 4th  occurring within 3.3 km and 10 minutes after the mainshock occurrence.
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drawn, after each slip, from a Gaussian distribution of zero mean and standard deviation δσp = σ.0 6 A. 
The precise value of σA does not affect our results and the only free parameters are the standard devia-
tions in the stress drops and in the friction levels. The hypothesis of randomness in stress relaxation 
reflects the existence of asperities in the fault plane leading to irregular local slips with the possibility 
that more blocks are simultaneously unstable. An earthquake starts at the most unstable site and involves 
neighboring blocks. Unstable blocks not involved in the event keep their local stress value that will be, 
eventually, relaxed at subsequent times. Ingredient 3 is the postseismic relaxation caused by the coupling 
between the elastic lithosphere of thickness Hl with a Newton viscous asthenosphere of thickness Ha 
(Fig. 3). We neglect vertical variations of the local strain and carry out a force balance for a given element 
in the lithosphere as in ref. 17. Approximating the viscous flow in the asthenosphere as a linear Couette 
flow we obtain the following equation for the local stress evolution

σ σ∂ ( )

∂
=
∂ ( )

∂ ( )

t

t
D

t

x 1
ij ij

2

2

with the diffusion coefficient η= ( / )D Y H Hl a
17,18 expressed in terms of the lithospheric Young modulus 

Y and the asthenospheric viscosity η. Model parameters and further details can be found in the Methods.
In Supplementary Fig. 5 we plot the temporal evolution of a typical synthetic catalog. Aftershock 

sequences with patterns very similar to experimental data are clearly visible and the GR law, with a 
realistic value b =  1.1, is recovered under the assumption of local stress conservation. In order to identify 
the mechanisms for aftershock production we monitor the response of the system to a shear stress per-

turbation of the form ( )σ∆ ( ) = ∆ +
−

−


 

r 1r r
R0

2
c

0
, where r c is the fault center, in absence of external 

stress rate σ( = ) 0ext . Starting from an initially stable configuration and applying this stress perturbation, 
the excess of stress is relaxed via a mainshock whose magnitude is tuned by Δ 0 and R0. In the simplest 
version of the model (only ingredient 1) all the external stress is relaxed by the mainshock and after-
shocks are not produced. The introduction of spatial heterogeneities (ingredient 2) leads to blocks that, 
not involved in the energy redistribution process during the main event, are still unstable after the main-
shock occurrence. These blocks relax their energy at subsequent times and, as a consequence, aftershocks 
are triggered. Their activity is substantially constant in time and abruptly stops after a time delay c 

Figure 2. Positive correlations among statistical parameters of aftershock occurrence. (Left panel) 
Parametric plot of the c value as a function of b. Black pluses are obtained for mainshocks with magnitude 
in the range [2.5:4.5] for the Southern California by λ  inversion of data in Fig. 1 (upper and central panel) 
vertically shifted by a factor 28. Open red squares are results for aftershocks triggered by > .m 6 5m  
mainshocks averaged over other geographic areas. In this case only aftershocks with magnitude 

δ≥ −m m mM , where mM is the mainshock magnitude and δm =  4.5, are included in the analysis. The 
continuous blue line is the functional form of c vs b obtained from simulations of the numerical model 
(Fig. 4). The linear fit α= ( − )c b bb min  with = .b 0 6min  gives similar αb for the tree data sets, 
α = ( . ± . ) × , ( . ± . ) × , ( . ± . ) ×sec sec sec2 2 0 2 10 2 4 0 3 10 2 3 0 2 10b

4 4 4 , respectively. Results are obtained 
considering b-intervals of fixed amplitude ∈ , + .b b b[ 0 05]0 0  where b0 ranges from 0.5 to 1.3 in steps of 
0.01. For each value of b0 the average value of all c values corresponding to the given interval is then 
considered. (Right panel) The same as in the left panel for the parametric plot of c vs La. For each main-
aftershock distance δr we evaluate δ= / ( )L r l ma M  and group La in intervals , + .L L[ 0 05]a a  where La ranges 
from 0.1 to 0.65 in steps of 0.01. We plot the average c inside each La interval. The αL obtained as best fit of 
the relation α=c LL a is very similar for the tree data sets, α = ( . ± . ) × , ( . ± . ) × ,sec sec2 4 0 2 10 2 4 0 3 101

4 4  
( . ± . ) × sec2 3 0 2 104 , respectively.
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depending on the spatial extent of the perturbed region (R0). Viscoelastic relaxation (ingredient 3) leads 
to aftershock activity continuing after c. In this case the aftershock number decreases as a power law of 
time with an exponent close to p =  1.1 (Fig.  4a) in very good agreement with the Omori law of real 
seismic data. In Fig. 5 we investigate the influence on our results of the two free parameters: the standard 
deviations of the local friction distribution (δσth) and the standard deviation in the value of the local 
stress after the stress-drop (δσp). The variance δσth can be related to the number of asperities as well as 
to their size distribution within the fault. In our study we consider mainshocks with magnitude m =  6.3 
and plot the number of events with m >  3.5 as a function of time from the mainshock for different 
choices of δσp (left panel) and δσth (right panel). We observe that results are substantially unaffected by 
δσp whereas different values of δσth lead to different results. More precisely, we observe that for 
δσ σ= .0 1th A, aftershocks follow the Omori decay up to a given time when their number abruptly 

Figure 3. Schematic representation of the model for a seismic fault. The fault plane is an elastic layer of 
blocks connected by springs under a constant drive in the x direction. The plane is visco-elastically coupled 
to the Asthenosphere underneath according to the Maxwell rheology model. (Drawn by F.G.).

Figure 4. Statistics of aftershock sequences in the numerical model. (Left panel) The temporal decay of 
the number of aftershocks after a mainshock with magnitude = .m 6 7M  in the numerical model. Different 
colors correspond to different values of the initial shear stress σ σ σ σ σ∆ = . , . , . , . , .0 38 0 42 0 45 0 49 0 59A A A A A0  
from right to left. Each curve is obtained by averaging over 10 different initial random configurations. Data 
exhibit different characteristic time scales c (indicated as coloured vertical arrows) for the onset of the power 
law decay for different Δ 0. The orange dashed line indicates the Omori power law decay with an exponent 
p =  1.1. In the inset the parametric plot of c vs the size of the aftershock area La. (Right panel) The 
magnitude distribution for aftershocks following a mainshock with magnitude = .m 6 7M . We adopt the 
same colour code of the left panel. The cyan dashed line indicates the exponential decay ( ) ∝ − .N m 10 m1 1  
obtained in the whole numerical catalog. In the inset the parametric plot of b vs the size of the aftershock 
area La.
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decreases to zero and the power law regime is no longer observed. On the other hand, for large values 
of δσth a constant, roughly stationary, ( background) seismic activity is superimposed to the aftershock 
decay rate. In this case the power law decay regime reduces to less than one decade before approaching 
the constant background rate with a quite stable exponent p. We have also explored the influence of 
different values of μD >  0 which only affects the level of the background rate, becoming larger for larger 
μD. Conversely, the aftershocks decay is not affected by μD and the Omori parameters p and c are μD 
independent.

We wish to stress that many spring-block models, based on ingredients 1 and 2, have been proposed 
in the literature even implementing more complex, time dependent or state dependent, friction laws19–23. 
Even if these models exhibit non-trivial temporal patterns, they are not able to reproduce aftershock 
occurrence in agreement with experimental data. This observation, together with our findings (Figs  4 
and 5), of numerical aftershocks following the Omori law, confirm previous results concerning the cen-
tral role of viscous coupling (ingredient 3) for aftershock triggering19,24–26. Similar results can be also 
recovered by the Jagla model27–29 where δσij is constant, the friction thresholds σij

th are randomly updated 
after each slip and a different equation for stress relaxation is implemented.

To explore the role of the level of differential stress in the aftershock organisation, we analyse different 
values of ∆ σ, ∈ . , .[0 38 0 59] A0 , keeping the mainshock magnitude = .m 6 7M  fixed. As a consequence, 
the value of R0 is changed accordingly, with larger Δ 0 corresponding to smaller R0. In Fig. 4a we plot the 
number of events ( − )n t t0  with > .m 3 5 as function of time from the mainshock. Each curve is obtained 
by averaging over 10 different initial random configurations. The Omori law is observed for each value 
of Δ 0 and the c value (indicated by vertical arrows) decreases for increasing stress levels (larger Δ 0). We 
also find that the b value in the GR law is a decreasing function of Δ 0 (Fig. 4b), leading to positive cor-
relations between the parameters c and b. Fig. 4 also indicates that larger c values correspond to larger 
values of R0, predicting a positive correlation between c and the size of the aftershock area La. The par-
ametric plots (insets of Fig.  4) reproduce the same linear trends observed in experimental data and 
therefore, by assuming a given relationship between Δ 0 and λ , the experimental results in Fig.  1 are 
reproduced by the numerical model. The agreement between experimental and numerical results indi-
cates that the heterogeneous stress distribution in an elastic layer combined with a viscous coupling are 
necessary and sufficient ingredients to describe aftershock occurrence.

Methods
Mainshocks and aftershocks identification. We apply a space-time window criterion to discrimi-
nate between mainshocks and aftershocks8: An event is identified as a mainshock if a larger earthquake 
does not occur in the previous y days and within a distance L. In addition, a larger earthquake must not 
occur in the selected area in the following y2 days. We use typical values L =  100 km, y =  3 and y2 =  0.5. 
Aftershocks are all events with magnitude larger than ma =  2.4 occurring in the subsequent time interval 
∈ ,t t t[ ]1 2  and within a circle of radius R from the mainshock epicenter. The sets of parameters t1, t2 and 

R are listed in Table 2 of the Supplementary Information.
For each sequence the c value is obtained by means of a maximum likelihood maximization routine 

keeping p =  1.1 fixed for all sequences. We finally average c over all sequences belonging to a given λ  
interval. In the case of large mainshocks > .m 5 9M , the c value is obtained keeping p =  1.1 fixed for all 
sequences and considering only aftershocks with magnitude δ> −m mM m, with δ = .4 5m . Only 
sequences with at least 200 aftershocks have been included in the study. Results for different choices of 

Figure 5. The role of model parameters. (Left panel) The distribution of the aftershock number as a 
function of the time from the mainshock for different values of δσp. (Right panel) The distribution of the 
aftershock number as a function of the time from the mainshock for different values of δσth.
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δm are discussed in the Supplementary Information. The b value is obtained by means of the maximum 
likelihood estimation30 =

( )

< > − + .
b

log e

m m 0 05th

10  with = .m 2 6th . In all cases, other parameter values provide 
similar results.

The spring-block model. We represent the fault plane as an elastic medium made by blocks on a 
tilted square lattice of spacing a interconnected by springs. Blocks are under the action of a uniform 
tectonic drive σ ext in the x-direction, and are coupled to a Maxwell viscoelastic layer (Fig.  3). In the 
hypothesis that the slip is much smaller than a and that the stress redistribution after the slip is instan-
taneous, the system evolution can be expressed only in terms of σij. The simulation proceeds as follows: 
We randomly assign a quenched threshold σij

th and initial condition σ ( = )t 0ij , at each site. Local stresses 
are then updated according to Eq.(1) whose discretized form, including the tectonic drive, reads

σ τ σ σ τ τ
σ σ σ

( + ) = ( ) + +
( ) + ( ) − ( )

.
( )

+ −
t t D

t t t

a

2
2ij ij ext

i j i j ij1 1
2

If at some time t one or more sites are unstable ( )σ σ( ) >tij ij
th , the stress at the site with the largest 

values of σ σ( ) −tij ij
th is updated to a random value, each time extracted from a Gaussian distribution. 

The relaxed stress δσ ij is uniformly distributed to the four ( ′, ′)i j  nearest neighbor blocks 
σ σ δσ( ) → ( ) + ( / )′ ′ ′ ′t t 1 4i j i j ij, obeying local stress conservation. If at least one of these blocks is unsta-
ble, a further stress relaxation occurs and the process is iterated. The redistribution of stress stops as soon 
as no further nearest neighbor block is unstable. The whole process is considered instantaneous and 
afterwards the temporal evolution is iterated according to Eq.(2). The magnitude of an earthquake occur-
ring at time t is evaluated from the number of blocks Nb that simultaneously slip via the empirical rela-
tion = ( / ) +m lo g N m2 3 b10 0. We fix = .m 2 70  and according to the empirical relationship31 between 
the magnitude and the rupture area, this corresponds to fixing the lattice spacing to = .a 0 22 Km. 
Implementing typical values19 for η, , ,Y H Hl a one has . /~D m sec0 75 2  and therefore we fix the time 
step of numerical integration τ = =−a D sec70002 1 . Stress is expressed in units of the average value σA 
whose value is irrelevant.
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