
1Scientific RepoRts | 5:15474 | DOi: 10.1038/srep15474

www.nature.com/scientificreports

The influence of cancer tissue 
sampling on the identification of 
cancer characteristics
Hui Xu1, Xin Guo1, Qiang Sun2, Mengmeng Zhang1, Lishuang Qi1, Yang Li1, Libin Chen1, 
Yunyan Gu1, Zheng Guo1,3 & Wenyuan Zhao1

Cancer tissue sampling affects the identification of cancer characteristics. We aimed to clarify the 
source of differentially expressed genes (DEGs) in macro-dissected cancer tissue and develop a robust 
prognostic signature against the effects of tissue sampling. For estrogen receptor (ER)+ breast cancer 
patients, we identified DEGs in macro-dissected cancer tissues, malignant epithelial cells and stromal 
cells, defined as Macro-Dissected-DEGs, Epithelial-DEGs and Stromal-DEGs, respectively. Comparing 
Epithelial-DEGs to Stromal-DEGs (false discovery rate (FDR) < 10%), 86% of the overlapping genes 
exhibited consistent dysregulation (defined as Consistent-DEGs), and the other 14% of genes were 
dysregulated inconsistently (defined as Inconsistent-DEGs). The consistency score of dysregulation 
directions between Macro-Dissected-DEGs and Consistent-DEGs was 91% (P-value < 2.2 × 10−16, 
binomial test), whereas the score was only 52% between Macro-Dissected-DEGs and Inconsistent-
DEGs (P-value = 0.9, binomial test). Among the gene ontology (GO) terms significantly enriched 
in Macro-Dissected-DEGs (FDR < 10%), 18 immune-related terms were enriched in Inconsistent-
DEGs. DEGs associated with proliferation could reflect common changes of malignant epithelial and 
stromal cells; DEGs associated with immune functions are sensitive to the percentage of malignant 
epithelial cells in macro-dissected tissues. A prognostic signature which was insensitive to the cellular 
composition of macro-dissected tissues was developed and validated for ER+ breast patients.

Macro-dissected cancer tissues contain both carcinoma cells and stromal cells with distinct gene expres-
sion patterns1, and tissue sampling for gene expression profiling experiments commonly requires that 
the proportion of carcinoma cells is greater than certain threshold (e.g., 60%)2. However, because the 
proportions of carcinoma cells within distinct tumor locations of the same patient are quite different3, 
clinical sampling of macro-dissected cancer tissues could affect the identification of cancer characteris-
tics, including differentially expressed genes (DEGs) and prognostic signatures.

To avoid this uncertainty, several deconvolution algorithms have been proposed to decompose gene 
expression profiles of macro-dissected samples into cell type-specific subprofiles4,5, but the requirement 
of the prior identification of signature genes of pure cells and the measurement of the proportion of cell 
types limits their application6. Another method to tackle this problem involves laser capture microdissec-
tion (LCM) technology to acquire a homogeneous collection of thousands of cells that are used to gen-
erate cell type-specific gene expression profiles7. For example, several researchers have identified DEGs 
of malignant epithelial cells and stromal cells and analyzed their roles in breast cancer progression8,9. 
LCM-coupled microarray studies typically use an additional round of RNA amplification (linear amplifi-
cation) prior to microarray hybridization because LCM samples are generally too small to yield sufficient 
mRNA10–13. In some instances, RNA amplification introduces bias in the detection of gene expression 
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values14,15. However, several studies have provided evidence of a clear correlation between signal intensi-
ties resulting from non-amplified mRNA compared with amplified mRNA16 with no substantial impact 
on the identification of DEGs between two groups of LCM samples in the same amplification step17.

In this study of estrogen receptor (ER)+  breast cancer patients, we identified DEGs for macro-dissected 
cancer tissues, malignant epithelial cells and stromal cells, defined as Macro-Dissected-DEGs, 
Epithelial-DEGs and Stromal-DEGs, respectively, and compared them to reveal the cellular source of 
Macro-Dissected-DEGs. Then, we evaluated the correlation between expression measurements of DEGs 
identified in macro-dissected cancer tissues and the proportions of tumor cells in the tissues. Finally, we 
developed a prognostic signature based on the relative order of gene expression values that commonly 
occur in malignant epithelial cells and stromal cells compared with normal controls.

Results
Comparing Macro-Dissected-DEGs with Epithelial-DEGs and Stromal-DEGs. Using the 
Rankprod algorithm (see Methods), with 10% FDR control, we extracted DEGs in macro-dissected 
ER+  breast cancer tissues compared with normal controls from three datasets (M-Data1, M-Data2 and 
M-Data3, as described in Table 1), respectively. Pairwise comparisons of the three lists of DEGs showed 
that every two of the DEG lists were significantly overlapped (P-value <  1.0 ×  10−12, hypergeometric 
test, see Methods the equation (1)). In addition, the dysregulation consistency scores of the overlapping 
DEGs of every two DEG lists, defined as the frequency of the overlapping DEGs that showed consistent 
up- or down-regulation in the two DEG lists, were 83–97%, which were all significantly higher than what 
expected by chance according to the binomial test (see Methods the equation (2), P-value <  2.2 ×  10−16, 
Table S1). These results indicated that the DEGs identified in three independent datasets were signifi-
cantly reproducible. We extracted DEGs that were dysregulated in the same directions in at least two of 
the three datasets to construct a list of DEGs that we defined as Macro-Dissected-DEGs.

Using the Rankprod algorithm18, with 10% FDR control, we identified two lists of DEGs in malig-
nant epithelial cells compared with normal epithelial cells from two datasets of LCM samples for ER+  
breast cancer (Lcm-Data1 and Lcm-Data2, as described in Table1), respectively. The two lists of DEGs 
contained 547 overlapping DEGs (P-value <  2.2 ×  10−16, hypergeometric test), among which 97% were 
dysregulated in the same direction in the two lists. This result indicates that the DEGs of epithelial cells in 
two independent datasets were significantly reproducible (P-value <  2.2 ×  10−16, binomial test, Table S1). 
Given that we could only identify a portion of DEGs in each dataset due to the small sample size19, we 
combined the two lists of DEGs of epithelial cells, deleted DEGs dysregulated in opposite directions, and 
defined these genes as Epithelial-DEGs. For DEGs identified from the two LCM datasets from stromal 
cells, 77 DEGs overlapped between the two lists of DEGs (P-value <  2.2 ×  10−16, hypergeometric test), 
among which 92% were dysregulated in the same direction (P-value <  2.2 ×  10−16, binomial test, Table 
S1). Similarly, we integrated the two lists of DEGs of stromal cells, deleted DEGs dysregulated in opposite 
directions, and defined these genes as Stromal-DEGs.

Among the 1251 overlapping genes between Epithelial-DEGs and Stromal-DEGs, 86.2% exhibited con-
sistent dysregulation directions (defined as Consistent-DEGs), and the remaining 13.8% were dysregu-
lated in opposite directions (defined as Inconsistent-DEGs). Then, we compared the Consistent-DEGs and 

Dataset

Sample size

EndPoint
GEO accession 

ID PlatformCancer Normal

Lcm-Data1 30 22 — GSE14548 U133_X3P

Lcm-Data2 30 10 — GSE10797 HG-U133A_2

M-data1 28 34 — GSE10780 HG-U133_Plus_2

M-data2 19 27 — GSE10810 HG-U133_Plus_2

M-data3 67 17 — GSE42568 HG-U133_Plus_2

TCGA-Data 376 55 — — AgilentG4502A_07

Sur-Data1 134 — RFS GSE7390 HG-U133A

Sur-Data2 85 — RFS GSE6532 HG-U133A

Sur-Data3 209 — RFS GSE2034 HG-U133A

Sur-Data4 119 — DFS GSE4922 HG-U133A

Table 1.  Summary of the ten datasets analyzed in this study. Note: Lcm-Data indicates the laser capture 
microdissection datasets; M-data indicates macro-dissected breast cancer datasets; Sur-Data indicates breast 
cancer survival datasets; RFS and DFS indicate relapse free survival and disease-free survival, respectively. 
These datasets were produced by different platforms, including the U133_X3P, HG-U133A_2, HG-U133_
Plus_2, AgilentG4502A_07 and HG-U133A platforms, which detected 19703, 12790, 20283, 15621 and 
12752 genes, respectively.
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Inconsistent-DEGs with Macro-Dissected-DEGs. The consistency score was 90.6% (P-value <  2.2 ×  10−16, 
binomial test) among the 790 overlapping genes between Macro-Dissected-DEGs and Consistent-DEGs, 
which suggested that Consistent-DEGs for both epithelial and stromal cancer cells can be largely 
reflected in macro-dissected breast cancer tissue. In contrast, among the 91 overlapping genes between 
Macro-Dissected-DEGs and Inconsistent-DEGs, the consistency score was only 51.7% (P-value =  0.34, 
binomial test), which suggested that the differential expression signals of such Inconsistent-DEGs, when 
detected in macro-dissected tissues, were sensitive to the tissue compositions of epithelial and stromal 
cells. Obviously, the differential expression signals detected in macro-dissected tissues would be consist-
ent with the epithelial DEGs only when the proportion of stromal cell is sufficiently small; otherwise, 
they would be affected by the stromal cells. Thus, when detected in macro-dissected tissues, the differ-
ential expression signals of these Inconsistent-DEGs would be different on datasets of macro-dissected 
tissues with different composition of epithelial and stromal cells and lack biological interpretation.

Functional interpretations of Macro-Dissected-DEGs. Based on the biological process (BP) of 
Gene Ontology (GO), using the GO-function algorithm20 designed for selecting non-redundant bio-
logically relevant GO terms from GO terms significantly enriched with DEGs (see Methods), with 
FDR <  10%, we identified 238 GO terms that were significantly enriched with Macro-Dissected-DEGs. 
Among the 238 significant terms, 122 terms primarily involved in cell proliferation, developmental 
growth and cell division tended to be significantly enriched in Consistent-DEGs (P-value <  0.05, hyper-
geometric test, Table S2). This result suggested that cell proliferation and division processes observed in 
macro-dissected breast cancer tissue might reflect common alterations among malignant breast epithelial 
and surrounding stromal cells. Among the 238 significant terms, 18 terms primarily involved in immune 
responses, biological adhesion and the response to wounding tended to be significantly enriched in 
Inconsistent-DEGs (P-value <  0.05, hypergeometric test, Table S2). This result indicated that once these 
immune terms were enriched by Macro-Dissected-DEGs, other evidence was needed to reveal the source 
of the Macro-Dissected-DEGs.

The influence of cancer tissue composition on the prognostic signature. For the 376 gene 
expression profiles extracted from TCGA for ER+  breast cancer tissues which contained 60–100% tumor 
cell, we evaluated the correlation between the expression measurements of DEGs and the proportions 
of tumor cell by Pearson correlation analysis (see Methods). The results indicate that, when detected in 
macro-dissected tissues, the expression levels of 39.8% Consistent-DEGs and 47.8% Inconsistent-DEGs 
were significantly correlated with the proportions of tumor cell in the macro-dissected cancer tissues 
(P-value <  0.05, Pearson correlation). Thus, the measurement values of both Consistent-DEGs and 
Inconsistent-DEGs expression were sensitive to the tissue composition of epithelial and stromal cells.

We extracted the immune signatures developed by Nagalla et al.21 and Reyal et al.22 and compared 
the two lists of signatures with the DEGs identified in our study. The result indicate that some immune 
signatures were not dysregulated and others were oppositely deregulated in epithelial and stromal cells, 
and these genes exhibit different dysregulated directions in macro-dissected breast cancer tissues (Table 
S3). These results demonstrated that immune-associated signatures were greatly affected by clinical can-
cer tissue sampling. Therefore, we developed a gene pair prognostic signature that was insensitive to the 
tissue composition of epithelial and stromal cells in macro-dissected breast cancer tissue.

Prognostic signature based on the relative order of expression. For Lcm-Data1, using the 
Fisher's exact test, with FDR <  10%, we extracted a list of gene pairs whose relative order of gene expres-
sion levels were significantly reversed in malignant epithelial cells compared with normal controls (see 
Methods). The similar process was performed for stromal cells. These two lists contained 56,268 over-
lapping gene pairs, among which 99.9% exhibited the same reversal patterns in malignant epithelial and 
stromal cells compared with normal controls, which was significantly more than expected by chance 
(P-value <  2.2 ×  10−16, binomial test). We defined these gene pairs as Consistent-Gene-Pairs. When 
the Consistent-Gene-Pairs were compared with those extracted from Lcm-Data2, M-Data1, M-Data2 
and M-Data1, the consistency scores were all greater than 99.70% (P-value <  2.2 ×  10−16, binomial test, 
Table 2), suggesting that Consistent-Gene-Pairs were robust in different datasets.

Based on the integrated raining dataset (Sur-Data1 and Sur-Data2, as described in Table1) for 
macro-dissected ER+  breast cancer tissues with data of the relapse free survival (RFS), defined as the time 
period between the date of the first surgery and the date of first relapse, using the univariate Cox model 
with a FDR <  10%, we identified 17 gene pairs as prognostic gene pairs from the Consistent-Gene-Pairs. 
For each of the prognostic gene pairs presented in Table  3, the expression level of the latter gene was 
larger than that of the former gene in patients with better RFS, and the orderings were reversed in 
patients with worse RFS.

According to the classification rule described in the Methods section, the prognostic gene pairs clas-
sified the training samples into a high-risk group with 53 samples and a low-risk group with 166 sam-
ples, and the RFS of the high-risk patients was significantly reduced compared with low-risk patients 
(log-rank P = 4.15E–10, C-index =  0.66, Fig. 1). After adjusting for grade, age, and tumor size using the 
multivariate Cox proportional hazards regression model, the prognostic gene pairs were identified as an 
independent prognostic signature for predicting patient outcomes (Table 4).
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The accuracy of the prognostic gene pairs was validated in two independent datasets. In Sur-Data3, 
the prognostic gene pairs classified the 209 patients into 101 high-risk patients and 108 low-risk patients, 
and the RFS of the high-risk patients was significantly reduced compared with low-risk patients (log-rank 
P =  9.00E-04, C-index =  0.60, Fig.  2A). For Sur-Data4, disease-free survival (DFS) in 17 high-risk 
patients was significantly reduced compared with 102 low-risk patients classified by the prognostic gene 
pairs (log-rank P =  0.03, C-index =  0.57, Fig. 2B). In addition, the prognostic gene pairs were identified 
as an independent prognostic factor after adjusting for clinical factors, including grade, age, and tumor 
size using the multivariate Cox proportional hazards regression model in the Sur-Data4 dataset, which 
contained additional clinical information (Table 4).

Discussion
The impurity of macro-dissected cancer tissues raises several problems in the analyses of gene expression 
profiles in cancer tissues. In this study, we demonstrated that most DEGs related to proliferation and divi-
sion processes observed in breast cancer macro-dissected tissues reflect similar gene expression changes 

Dataset Tis-type Dis Nor Pair-num Pair-0.05 Direc-con

Lcm-Data2 Lcm_epi 15 5 31271 6372 6353 (99.70%)

Lcm-Data2 Lcm_str 15 5 31271 5762 5748(99.76%)

M-Data1 Tis 28 34 50958 36518 36496(99.94%)

M-Data2 Tis 19 27 50958 29389 29272(99.60%)

M-Data3 Tis 67 17 50958 17204 16547(96.18%)

TCGA-low Tis 225 55 40025 30806 30438(98.81%)

TCGA-high Tis 151 55 40025 33114 32790(99.02%)

Table 2.  The reproducibility of Consistent-Gene-Pairs. Note: Lcm and Tis indicate laser capture 
microdissection datasets and macro-dissected datasets, respectively; Dis and Nor indicate cancer samples 
and normal controls, respectively; Pair-num indicates the number of gene pairs detected in the datasets; 
Pair-0.05 indicates the number of gene pairs with a tendency for reversion (P-value <  0.05); Direc-con 
indicates the number and proportion of gene pairs that are reversed consistently in Pair-0.05 and Com-p; 
TCGA-low indicates low-tumor purity samples in The Cancer Genome Atlas; TCGA-high indicates high-
tumor purity samples in The Cancer Genome Atlas.

Gene A Gene B COX.β COX.p

CAMLG KIAA0101 5.0287 7.23E–07

CRIP1 ING1 3.4221 1.17E–05

CRYAB MAP4K5 3.5943 6.59E–06

CSRP1 RAI14 3.8159 1.65E–06

FBL PSMD2 0.9705 1.61E–05

FBL HN1 1.2282 2.20E–05

LMCD1 FGFR4 2.7742 9.62E–06

HOXA4 MAP4K5 2.5518 2.47E–06

SERPINB5 NCAPG 1.1088 1.59E–06

PIGR KIF4A 0.9484 1.29E–05

PIK3R1 PRC1 0.8993 3.20E–05

SOX10 KIF4A 1.0677 7.40E–07

LMBRD1 KIAA0101 2.2254 2.32E–05

SAV1 KIF4A 1.1495 2.48E–05

OGFRL1 KIF4A 1.1011 3.72E–07

EVL GPR125 3.5943 6.59E–06

OGFRL1 HJURP 0.8993 3.18E–05

Table 3.  The prognostic gene pairs. Note: The univariate Cox proportional hazards model was used to 
estimate the risk coefficient of relative ordering (RA >  RB) for each gene pair and the correlation with overall 
survival in patients; the C-index represents the prognostic performance of relative ordering (RA >  RB) for 
each gene pair.
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in epithelial and stromal cells, whereas many immune DEGs observed in macro-dissected breast cancer 
tissues remain controversial. As opposed to epithelial cells, the dysregulation of surrounding stromal 
cells in breast cancer mainly includes immune-related functions, such as responses to wounds, immune 
responses and chemotaxis (Table S2 and Table S3). Given the distinct biological processes derived from 
epithelial and stromal cells, we should be cautious in interpreting DEGs identified from macro-dissected 
tissues and their related functions. We should also be cautious in interpreting immune related DEGs iden-
tified in macro-dissected tissues and micro-dissected stromal cells which include various types of cells, 
such as leukocytes, endothelial cells, fibroblasts, myofibroblasts and bone marrow-derived progenitors23.

Various studies have reported that genes associated with proliferation and immune responses could 
predict the outcomes of breast cancer patients22, and the expressional value of the immune gene prog-
nostic signature is significantly associated with the relative abundance of tumor-infiltrating immune 
cells21. However, the clinical tissue sampling procedure is uncertain, and our present analysis provides 
evidence that the expression measurements of these prognostic signatures tend to be influenced by the 
composition of the cancer tissue. To solve this problem, we developed a prognostic gene pairs index 
based on reversal of the relative order of gene expression values that commonly occur in malignant epi-
thelial cells and stromal cells compared with their normal controls respectively, which is insensitive to the 
cellular composition of macro-dissected tissues. In addition, the rank-based predictors are more robust 
than absolute expression value-based predictors because they are rather robust against batch effects and 
insensitive to data normalization24. Furthermore, a rank-based predictor is feasible for individual-level 
prognostic analysis25.

Figure 1. Kaplan–Meier curves illustrating relapse-free survival among patients with ER+ breast cancer 
based on Prognostic gene pairs in the training set. 

Characteristic Subcategory

Univariate analysis Multivariate analysis

HR (95% CI) P-value HR (95% CI) P-value

Training cohort

Prognostic gene pairs High vs. low 3.90(2.54–5.98) 4.12E–10 3.60(2.24–5.76) 9.61E–08

Age > 49 vs. ≤ 49 0.87(0.57–1.32) 0.52 0.95(0.60–1.50) 0.86

Grade I vs. II, III 1.81(1.01–3.23) 0.04 1.19(0.65–2.18) 0.57

Size > 2 cm vs. ≤ 2 cm 1.97(1.29–3.00) 1.51E–03 1.74(1.10–2.74) 0.02

Validation cohort

Prognostic gene pairs High vs. low 2.45(1.11–5.43) 0.03 2.19(0.95–5.06) 0.06

Age > 66 vs. ≤ 66 0.7(0.35–1.38) 0.31 0.74(0.37–1.49) 0.41

Grade I vs. II, III 1.41(0.70–2.86) 0.33 1.12(0.53–2.36) 0.76

Size > 18 mm vs. ≤ 18 mm 1.78(0.91–3.50) 0.09 1.68(0.85–3.34) 0.14

Table 4.  Univariate and multivariate Cox regression analysis of the association with RFS.
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In this study, we focused on breast cancer. It is likely that the same problem exists for other types of 
tumors; therefore, this subject requires further study.

Methods
Data sources and preprocessing. The ten gene expression datasets used in this study were down-
loaded from the Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/)26 and The Cancer 
Genome Atlas (TCGA, http://cancergenome.nih.gov/)27. Three macro-dissected ER+  breast tissues with 
an average tumor cell proportion of approximately 60% were produced by different laboratories28–30, and 
two datasets for malignant epithelial cells and stromal cells of ER+  breast cancer and normal controls 
were produced by different laboratories8,9 (Table  1). These datasets were used to identify and compare 
Macro-Dissected-DEGs, Epithelial-DEGs and Stromal-DEGs. For the ER+  breast cancer data from 
TCGA31, the gene expression profile and the proportion of breast malignant epithelial cells were pro-
vided for each sample (Table 1), and these data were used to evaluate the correlation between expression 
values of DEGs identified in macro-dissected cancer tissues and the proportions of tumor cells in the 
tissues. Four datasets containing gene expression profiles32–35 and relapse-free survival (RFS) data of ER+  
breast cancer patients with early-stage, lymph node negative (LN-) cancer who had not received adjuvant 
systemic treatment or hormone therapy were used to develop a prognostic signature (Table1).

For the GEO datasets, the raw data (.CEL files) from each dataset was processed using the Robust 
Multi-array Average (RMA) algorithm for background adjustment with quantile normalization36. Then, 
each probe-set ID was mapped to an Entrez gene ID with the custom CDF file. If multiple probe-sets 
were mapped to the same gene, the expression value for the gene was summarized as the arithmetic 
mean of the values of multiple probe-sets. Probe-set IDs with no mapped Entrez gene ID or Probe-set 
IDs that mapped to more than one Entrez gene ID were deleted. For the TCGA dataset, we applied the 
level 3 profile directly.

Identification of differentially expressed genes (DEGs). The Bioconductor package RankProd18, 
based on the rank products algorithm37, was used to identify DEGs of breast cancer versus normal 
control samples with a false discovery rate (FDR) less than 10%. The P-values were adjusted using the 
Benjamini-Hochberg procedure38. A DEG was considered upregulated (or downregulated) if its average 
expression level in the cancer samples was increased (or reduced) compared with normal controls.

Evaluation of the consistency of two DEG lists. If DEG list 1 with L1 genes and DEG list 2 with L2 
genes have k overlapping genes, the probability (P1) of observing at least k overlapping genes by chance 
can be calculated according to the following cumulative hypergeometric distribution model:
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Figure 2. Kaplan–Meier curves illustrating relapse-free survival among patients with ER+ breast 
cancer based on Prognostic gene pairs in the test sets. (A) Test set 1 consisted of Sur-Data3; (B) Test set 2 
consisted of Sur-Data4.

http://www.ncbi.nlm.nih.gov/geo/
http://cancergenome.nih.gov/
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where L represents the number of the background genes commonly detected in the datasets from 
which the DEGs are extracted. The two DEG lists were considered to be significantly overlapping if 
P1 <  0.05.

If a DEG exhibited the same dysregulated direction (up- or down-regulated) in the two DEG lists, it 
was considered consistent across the datasets. We defined a dysregulation consistency score as the per-
centage of consistent DEGs in the overlapping DEGs between the two DEG lists. The probability (P2) of 
observing at least s DEGs with the same dysregulation direction across the two datasets from k randomly 
selected genes was calculated according to the following cumulative binomial distribution model39:

( )∑= − ( − )
( )=

−
−P k

i p p1 1
2i

s
i k i

2
0

1

where p represents the random possibility (here 0.5) of one DEG having the same dysregulated direction 
across two DEGs lists. A dysregulation consistency score was considered significant if P2 <  0.05.

Functional enrichment analysis. To derive biologically relevant, non-redundant terms from statisti-
cally significant terms for a disease, GO-function20 was used to select the disturbed functional categories 
significantly enriched in DEGs. We focused on analyzing the biological process (BP) of Gene Ontology 
(GO), which was downloaded in April 2013.

Correlation between the expression measurements of DEGs and the proportions of tumor cell 
in macro-dissected tissues. Extracted from TCGA, the 376 gene expression profiles for ER+  breast 
cancer tissues included the data of tumor cell proportions. Using these samples, for the Consistent-DEGs 
and Inconsistent-DEGs respectively, we applied Pearson’s correlation analysis to detect genes whose 
expression levels were significantly correlated with tumor cell proportions. Then, the percentages of 
DEGs that were significantly correlated with tumor cell proportions were calculated for Consistent-DEGs 
and Inconsistent-DEGs, respectively.

Development of the prognostic signature based on reversed gene pairs. For a pair of genes, 
gene A and gene B, we used Fisher’s exact test to evaluate whether the frequency of samples with a higher 
(or lower) expression level of gene A than gene B in disease samples was significantly different from that 
in the corresponding normal controls. The P-values were adjusted using the the Benjamini-Hochberg 
procedure38. The significant gene pairs detected with a FDR control level of 10% were defined as signif-
icantly reversed gene pairs. Gene pairs with the same reversals of relative ordering of gene expression 
measurements in malignant epithelial cells and stromal cells were defined as Consistent-Gene-Pairs.

Then, based on the expression profiles of ER+  breast cancer with RFS information, a univariate Cox 
regression model was used to select gene pairs among the Consistent-Gene-Pairs with a relative order 
of expression that was significantly correlated with the RFS; these pairs were defined as prognostic gene 
pairs. The prognostic classifier was constructed according to the following rule: a patient was classified 
into the low risk group if there were significantly more prognostic gene pairs classifying her as low risk 
(P-value <  0.05, binomial test); otherwise, the patient was classified into the high risk group. The multi-
variate Cox proportional hazards regression model was performed to determine whether prognostic gene 
pairs are an independent prognostic factor in predicting RFS after adjusting for clinical factors, such as 
age, grade and tumor size.

All statistical analyses were performed using the R 2.15.3 (http://www.r-project.org/).
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