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Five-wave-packet quantum error 
correction based on continuous-
variable cluster entanglement
Shuhong Hao, Xiaolong Su, Caixing Tian, Changde Xie & Kunchi Peng

Quantum error correction protects the quantum state against noise and decoherence in quantum 
communication and quantum computation, which enables one to perform fault-torrent quantum 
information processing. We experimentally demonstrate a quantum error correction scheme with a 
five-wave-packet code against a single stochastic error, the original theoretical model of which was 
firstly proposed by S. L. Braunstein and T. A. Walker. Five submodes of a continuous variable cluster 
entangled state of light are used for five encoding channels. Especially, in our encoding scheme the 
information of the input state is only distributed on three of the five channels and thus any error 
appearing in the remained two channels never affects the output state, i.e. the output quantum 
state is immune from the error in the two channels. The stochastic error on a single channel is 
corrected for both vacuum and squeezed input states and the achieved fidelities of the output states 
are beyond the corresponding classical limit.

The transmission of quantum states with high fidelity is an essential requirement for implementing quan-
tum information processing with high quality. However, losses and noises in channels inevitably lead to 
errors into transmitted quantum states and thus make the distortion of resultant states. The aim of quan-
tum error correction (QEC) is to eliminate or, at least, reduce the hazards resulting from the imperfect 
channels and to ensure transmission of quantum states with high fidelity1. A variety of discrete variable 
QEC protocols, such as nine-qubit code2, five-qubit code3, topological code4,5, have been suggested and 
the experiments of QEC have been realized in different physical systems, such as nuclear magnetic res-
onance6–8, ionic9,10, photonic11,12, superconducting systems13,14 and Rydberg atoms15.

Besides quantum information with discrete variables, quantum information with continuous var-
iables (CV) is also promptly developing16–23. Different types of CV QEC codes for correcting single 
non-Gaussian error have been proposed, such as nine-wave-packet code24,25, five-wave-packet code26,27, 
entanglement-assisted code28 and erasure-correcting code29. A CV QEC scheme against Gaussian noise 
with a non-Gaussian operation of photon counting has been also theoretically analyzed30. The CV QEC 
schemes of the nine-wave-packet code31, erasure-correcting code against photon loss32 and the correcting 
code with the correlated noisy channels33 have been experimentally demonstrated.

According to the no-go theorem proved in ref. 34, Gaussian errors are impossible to be corrected with 
pure Gaussian operations. However, non-Gaussian stochastic errors, which frequently occur in free-space 
channels with atmospheric fluctuations for example35–37, can be corrected by Gaussian schemes since the 
no-go theorem does not apply in this case. Generally, the stochastic error model is described by38

γ γ( , ) = ( − ) ( , ) + ( , ), ( )W x p W x p W x p1 1out in error

where the input state Win(x, p) is transformed into a new state Werror(x, p) with probability γ or it remains 
unchanged with probability 1 −  γ. Even for the case of two Gaussian states Win(x, p) and Werror(x, p), the 
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output state Wout(x, p) is also non-Gaussian, that is, this channel model describes a certain, simple form 
of non-Gaussian errors.

In 2009 T. Aoki et al. presented the first experimental implementation of a Shor-type nine-channel 
QEC code based on entanglement among nine optical beams, which was the achievable largest entangled 
state on experiments then31. This scheme is deterministically implemented using only linear operations 
and resources, which can correct arbitrary single beam error. Although S. L. Braunstein discovered a 
highly efficient five-wave-packet code theoretically in 1998, its linear optical construction was not pro-
posed26. Later, in 2010, T. A. Walker and S. L. Braunstein outlined a new approach for generating linear 
optics circuits that encode QEC code and proposed a linear optics construction for a five-wave-packet 
QEC code27. Differentiating from previous approaches by means of directly transferring existing qubit 
codes into CV codes, they defined the conditions for yielding a CV QEC code firstly and then searched 
numerically for circuits satisfying this criterion. The five-wave-packet code improves on the capacity of 
the best known code implemented by linear optics and saturates the lower bound for the number of 
carrier needed for a single-error-correct code27. However, the proposed five-wave-packet CV QEC code 
has not been experimentally demonstrated so far.

Based on the approach outlined by T. A. Walker and S. L. Braunstein27, we design a more compact 
linear optics construction and achieve the first experimental demonstration of five-wave-packet CV QEC 
code using a five-partite CV cluster entangled state39,40. In this experiment only four ancilla squeezed 
states of light are required and four optical beamsplitters are used in the encoding and the decoding 
system, respectively. Comparing with the nine-wave-packet system31, the required quantum resources 
and utilized optical elements in our system decrease a half. The smaller codes not only save quantum 
resources, but also increase data rates and decrease the chance of further occurring errors, thus are very 
significant for the development of quantum information technology27. In the presented encoding method, 
only a part of all wave packets (three of five in the presented experiment) involves the information of the 
input state and therefore the noise occurring in the remained channels (channels 1 and 2 in the presented 
system) do not introduce any error into the transmitted quantum state. Such that, we do not need to 
perform the error correction for the remained channels and the near unity fidelity is achieved in these 
channels. We name the encoding method as the partial encoding. It should be emphasized that although 
the remained two channels do not involve the information of the input state, they play the unabsolva-
ble roles in the syndrome recognition and the error correction. In the presented QEC experiment, the 
error correction is implemented in a deterministic fashion due to the application of unconditional CV 
quantum entanglement16,17. A vacuum state and a squeezed vacuum state are utilized as the input states, 
respectively, to exhibit the QEC ability of the system for different input states. According to the standard 
notation for QEC code1, the presented five-wave-packet code should be expressed by [n, k, d] =  [5, 1, 3],  
where n =  5 denote the number of used wave packets, k =  1 is the number of logical encoded input state, 
and d =  3 is the distance, which indicates how many errors can be tolerated, a code of distance d can 
correct up to (d −  1)/2 arbitrary errors at unspecified channels.

Results
Encoding.  The schematic of the CV QEC scheme is shown in Fig. 1(a). The QEC procedure contains five 
stages, which are encoding, error-in, decoding, syndrome recognition and correction, respectively. The 
encoding is completed by a beam-splitter network consisting of four beam-splitters (T1–T4). Four squeezed 
states with − 3.5 dB squeezing ( )−â1 4  generated by three non-degenerate optical parametric amplifiers, are 
used as ancilla modes (see Supplementary Information for details). In the experiment, three ampli-
tude-squeezed states, = +− ( ) + ( )ˆ ˆ ˆa e x ie pm

r
m

r
m

0 0  (m =  1, 3, 4), and a phase-squeezed state, = ++ ( ) − ( )ˆ ˆ ˆa e x ie pn
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n
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n
0 0  

(n =  2) are applied, where r is the squeezing parameter (r =  0 and r =  + ∞ correspond to no squeezing and 
perfect squeezing, respectively), ( )x̂ j

0  and ( )p̂ j
0  denote the amplitude and phase quadratures of the vacuum 

field, respectively. The transformation matrix of the encoding network is expressed by
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The unitary matrix can be decomposed by = ( / ) ( / ) ( / ) ( / )− + + +U B B B B1 2 1 3 1 2 1 445 34 12 23 . Here, ( )±B Tkl  stands 
for the transformation of modes k and l on a beam-splitter, the corresponding transformation matrix is 
given by
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The input state âin is encoded with the four ancilla modes by ( , , , , ) = ( , , , , )ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆc c c c c U a a a a aT
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From equation (4) we can see, the input state is partially encoded on channels 3, 4 and 5 (ĉ3, ĉ4 and )ĉ5  
by means of the designed beam-splitter network, while the encoded states in channels 1 and 2 (ĉ1 and 
)ĉ2  do not contain any information of the input state.

As shown in Fig. 1(b) the encoded five modes ĉi (i =  1, ..., 5) is the five submodes of a five-partite CV 
linear cluster entangled state39,40. The correlation noises of quadrature components among the encoded 
five wave-packets are expressed by + = ( ) −ˆ ˆ ˆx x x e2c c

r
1 2 1
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4
0 . These expressions show that the correlation noises of +ˆ ˆx xc c1 2, + +ˆ ˆ ˆx x xc c c3 2 4 and +ˆ ˆx xc c4 5 

are smaller than the corresponding normalized shot-noise-level (SNL) for any non-zero squeezing of the 
ancilla modes. While the correlation noises of − −ˆ ˆ ˆp p pc c c2 1 3 and − −ˆ ˆ ˆp p pc c c4 3 5 depend on the input 

Figure 1.  The schematic of the QEC scheme. (a) the schematic of experimental set-up. PZT: piezoelectric 
transducer. EOM: electro-optical modulator, T1−4: beam-splitters with 25%, 33%, 50%, and 50% 
transmission, respectively. Ch1-5: quantum channels. 99%T: a beam-splitter with 99% transmission. D1–D4: 
homodyne detectors, g: gain in the feedforward circuit. (b) the graph representation of the five-wave-packet 
code. The input state is encoded on submodes ĉ3, ĉ4 and ĉ5 of a five-partite linear cluster state −ĉ1 5.
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state, i.e. they have different values for different input state. The inseparability criteria of the five-mode 
cluster entangled state are denoted by41

〈∆( + ) 〉 + 〈∆( − − ) 〉 < ,
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When all combinations of correlation variances on the left of the inequalities (5) are less than the nor-
malized boundary on the right side, the five-wave-packet optical state is a CV cluster entangled state. 
With a vacuum input state and choosing the optimal gains of gi (i =  1, 2...6) the inseparability criteria will 
be satisfied for any non-zero squeezing of the ancilla modes. In this case, the encoded five wave packets 
form a five-partite linear cluster entangled state.

Error-in.  The five encoded wave packets constitute five quantum channels, where the errors possibly 
occur. In the experiment, the noise is modulated on an excess optical beam ( )b̂e  by an electro-optical 
modulator (EOM) drove by a sin-wave signal at 2 MHz to make an error beam firstly. Then, the error 
beam is randomly coupled into any one of the five coded wave packets each time by a mirror of 99% 
transmission. By sweeping the phase of the error wave packet with the piezoelectric translator (PZT) 
attached on a reflection mirror, a quasi-random displacement error is added on one of the five channels. 
The experimental operation corresponds to adding an error operator ( = , ... )ê i 1 2 5i  on a corresponding 
optical wave packet, the mathematic expression of which is ( , , , , ) + ( , , , , )ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆU a a a a a e e e e ein

T T
1 2 3 4 1 2 3 4 5 , 

where only one of êi is non-zero when an error is occurring in one channel.

Decoding.  The decoding circuit is the inverse of the encoding circuit. After decoding, the output 
mode ( )d̂out  and syndrome modes (d̂1, d̂ 2, d̂3 and )d̂ 4  of the five channels are calculated by 
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It is obvious that the input state and ancilla modes are recovered after the decoding stage and the errors 
are included in five output channels. Please note that the output state d̂out does not contain the errors ê1 
and ê2, which means that the output state is immune from errors in channels 1 and 2. If the error occurs 
in channels 1 and 2, the output state will not be affected.

Syndrome measurement.  From the decoded modes, we can see that the error in different channels 
results in different outputs of the homodyne detectors D1–D4. By the DC outputs of the homodyne 
detectors, we can determine in which channel the error is occurring (see Table 1). If a syndrome mode 
does not contain the error in a certain channel, the DC output of the corresponding detector will be a 
straight line without any fluctuation. When the error appearing in a syndrome mode, the DC output of 
the corresponding detector will be a line with fluctuation (coming from the error). A four-channel digital 
oscilloscope is used to record the DC output of detectors D1–D4. Figure 2 shows error syndrome meas-
urement results. In Fig. 2(a), outputs with fluctuation are obtained by detectors D1, D2 and D3, and the 
fluctuations of detectors D1 and D3 are in-phase. The output of D4 is a straight line because the syndrome 
mode d̂ 4 does not contain the error in channel 1 ( )ê1 . Comparing this result with Table 1, we can identify 
that an error is occurring in channel 1. In Fig. 2(b), we have outputs with fluctuation for detectors D1, 
D2 and D3, and the outputs of detectors D1 and D3 are out-of-phase, which means that an error is occur-
ring in channel 2. With the same way, we know that the error occurs in channels 3, 4 and 5 from the 
measured results in Fig. 2(c–e), respectively.
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Error-correction.  After the position of the error is identified, we can correct the error by feedfoward-
ing the measurement results of the corresponding homodyne detectors D1–D4 to the output state with 
suitable gains (see Table  2). The partial encoding method simplifies the error correction procedure. 
When the error is occurring in channels 1 and 2, we do not need to correct it because it does not affect 
the output state. When the error occurs in the channel 3, 4 or 5, the output state will be stained by the 
error and we need to implement the feedforward of the measurement results.

Figure 3 shows the results of QEC procedure for a vacuum input. The correction results for an error 
occurring in channels 1–5 are shown in Fig. 3(a–e), respectively. The quadrature components of output 
states before the error correction (cyan line), and after the correction (red and blue line) are given, where 
the red and blue lines correspond to the case using the squeezed and coherent state to be the ancilla 
modes, respectively, the black lines are the SNL. From Fig.  3(a,b), we can see that the output state is 
immune from errors appearing in channels 1 and 2. Thus, we do not need to perform error correction 
when errors are occurring in channels 1 and 2. When the error is imposed on channels 3, 4 and 5, the 
output state contains the error signal before the error correction [cyan lines in Fig. 3(c–e)]. In the error 
correction procedure, the measurement results of detectors 3 (or 4) and 2 are fedforward to the output 
state (see Table 2). Figure 3(c–e) show, when the squeezed ancilla modes are utilized, the noises on the 
output state are reduced. The better the squeezing, the lower the noise of output state. When the used 
ancilla modes are perfect squeezed states, the output state will totally overlap with the input vacuum 
state. The measured noise power of the output state can be found in Supplementary Information.

QEC results with a phase-squeezed state (− 3.5 dB/8.9 dB squeezing/antisqueezing) as the input state 
are shown in Fig. 4. Figure 4(a–e) are the results of the corrections for an error in channels 1–5, respec-
tively. In Fig. 4(a,b), the output state is still a phase squeezed state before the error correction (cyan line) 
when errors are occurring in channels 1 and 2, which shows that the output state is not affected by errors 
in channels 1 and 2. The measured squeezing and antisqueezing of the output state are − 2.78 dB/8.22 dB 
and − 2.73 dB/8.09 dB for the errors in channels 1 and 2, respectively. The decrease of the squeezing 
derives from the imperfection in the experiment, such as channel loss and fluctuation of phase locking 
system. When the error is imposed on channel 3, 4 and 5, the output state becomes very noisy before 
error correction (cyan line). After error correction, the measured noise of the output state with the 
squeezed ancilla modes (red line) is below that using coherent states as the ancilla modes (blue line).

The fidelity ( )ρ ρ ρ=

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, which denotes the overlap between the experimentally 

obtained output state ρ̂2 and the input state ρ̂1, is utilized to quantify the performance of the QEC code. 
The fidelity for two Gaussian states ρ̂1 and ρ̂2 with the covariance matrices σj is expressed by42,43

σ σ
β σ σ β=

∆ + −
− ( + ) ,

( )
−F 2 exp[ ]

7
T

1 2
1

where Δ  =  det(σ1 +  σ2), σ =  (det σ1 −  1)(det σ2 −  1), β =  α2 −  α1, and αj is the mean amplitudes αj ≡ (αjx, 
αjp)T (j =  1, 2), σ1 and σ2 are the covariance matrices for the input state ρ( )ˆ1  and the experimentally 
obtained output state ρ( )ˆ 2 , respectively. In our experiment, a vacuum state and a squeezed vacuum state 
are used for the input states, respectively, and the mean amplitude for the both states equals to zero. If 
squeezed states with infinite squeezing (r →  ∞) are utilized as the ancilla states, the fidelity will equal to 1.  
When all ancilla modes are the coherent states of light with zero classical noise (r =  0), the obtained 
fidelity of the output state is the corresponding classical limit31,32. Since the errors in channels 1 and 2 
do not affect the output state, the obtained fidelity is near unity (0.99). The fidelity obtained with squeezed 

The error 
channel

Detectors with 
fluctuation Measurement basis

1 1, 3 (in-phase) x

2 p

2 1, 3 (out-of-phase) x

2 p

3 3 x

2 p

4 3, 4 (out-of-phase) x

2 p

5 3, 4 (in-phase) x

2 p

Table 1.   Error syndrome measurements.
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states to be the ancilla modes is higher than that obtained with coherent states when error appears in 
channel 3, 4 and 5 (see Table 2).

Discussion
The presented compact five-wave-packet QEC code can be applied to correct a single stochastic error in 
a single quantum channel. For this type of error correction one usually assume that errors occur stochas-
tically with a small probability so that multiple errors are unlikely to happen. When two or more errors 
are occurring simultaneously on the encoded channels, the errors can not be identified and corrected 
because the syndrome measurement will be confusing31,32.

The general error = +ˆ ˆ ˆe x i p ( ≠ , ≠ )ˆ ˆx p0 0  and x-displacement error =ˆ ˆe x can be well recognized 
and corrected suitably with the presented scheme. For the p-displacement error =ˆ ˆe i p, it is  
unclear which channel the error comes from since only the phase measurement of detector D2 has  
output with fluctuation for all five channels (see Table 1). If this happens in the syndrome measurement 
results, we need to apply a Fourier transformation F (a 90° rotation in the phase space) on  
each ancilla mode in the encoding stage. In this way, the output state is given by 

( , , , , ) +( , , , , ) =( , , , , ) + ( , , , , )− −ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆU U Fa Fa Fa a Fa e e e e e Fa Fa Fa a Fa U e e e e e[ ]in
T T

in
T T1

1 2 3 4 1 2 3 4 5 1 2 3 4
1

1 2 3 4 5  
and thus in the syndrome stage, the amplitude quadrature of detector D2 and phase quadratures of detec-
tors D1, D3, D4 are measured. Such that, the p-displacement error can be identified by the outputs with 
fluctuation from detectors D1, D3 and D4.

Figure 2.  Error syndrome measurement results. (a–e) correspond to that a random displacement error is 
imposed on channel 1-5, respectively. The DC outputs of detectors D1-D4 are recorded by a four-channel 
digital oscilloscope and the results are shown in (1)–(4) from top to bottom, respectively.

Error in 
channel

Quadrature of 
output

Feedforward 
components

Fidelity with 
coherent state

Fidelity with 
squeezing

1 x 0 0.99 (0.99) 0.99 (0.99)

p 0

2 x 0 0.99 (0.99) 0.99 (0.99)

p 0

3 x / x2 3 3 0.60 (0.68) 0.75 (0.85)

p − p2 2

4 x / x2 3 4 0.40 (0.42) 0.56 (0.60)

p p2 2 2

5 x − / x2 3 4 0.39 (0.44) 0.59 (0.59)

p p2 2 2

Table 2.   Error correction feedforward components and the obtained fidelities. Fidelities in and out of 
brackets are for the case of a squeezed and a vacuum state used as input state, respectively.
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(c) (d) (e)

(a) (b)x p x p

x p x p x p

Figure 3.  The error correction results for a vacuum input. (a–e) are the results of error correction with 
an error on channel 1–5, respectively. Black lines: the SNL. Cyan lines: the noises on amplitude (x) and 
phase (p) components of output state before error correction. Blue and red lines are the noises on x and 
p components of output state with the coherent and squeezed ancilla modes, respectively. Measurement 
frequency is 2 MHz, the spectrum analyzer resolution bandwidth is 30 kHz, and the video bandwidth is 
300 Hz.

Figure 4.  The error correction results for a phase-squeezed input. (a–e) are the results of error correction 
with an error on channel 1–5, respectively. Black lines: the SNL. Cyan lines: the noises of the amplitude 
(x) and phase (p) components of output state before the error correction. Blue and red lines correspond to 
the noises levels of output state after the error correction with the coherent and squeezed ancilla modes, 
respectively. Measurement frequency is 2 MHz, the spectrum analyzer resolution bandwidth is 30 kHz, and 
the video bandwidth is 300 Hz.
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In summary, we experimentally demonstrated a compact five-wave-packet CV QEC code using a 
five-partite cluster entangled state of light. The QEC code is implemented only with linear optics oper-
ations and four ancilla squeezed states of light. The compact optics circuit can increase data rates and 
decrease chance of further error occurring. The presented partial encoding method may simplify the 
error correction procedure and improve the efficiency of QEC. The presented experiment is the first 
experimental demonstration of the approach proposed by S. L. Braunstein and T. A. Walker for design-
ing linear optics circuits of CV QEC code, which has potential application in constructing future CV 
quantum information networks.
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