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Effects of random rewiring on the 
degree correlation of scale-free 
networks
Jing Qu1, Sheng-Jun Wang1, Marko Jusup2 & Zhen Wang3,4

Random rewiring is used to generate null networks for the purpose of analyzing the topological 
properties of scale-free networks, yet the effects of random rewiring on the degree correlation are 
subject to contradicting interpretations in the literature. We comprehensively analyze the degree 
correlation of randomly rewired scale-free networks and show that random rewiring increases 
disassortativity by reducing the average degree of the nearest neighbors of high-degree nodes. 
The effect can be captured by the measures of the degree correlation that consider all links in the 
network, but not by analogous measures that consider only links between degree peers, hence the 
potential for contradicting interpretations. We furthermore find that random and directional rewiring 
affect the topology of a scale-free network differently, even if the degree correlation of the rewired 
networks is the same. Consequently, the network dynamics is changed, which is proven here by 
means of the biased random walk.

Network theory has been recognized as an invaluable tool for describing complex systems such as 
social1–5, technological6–9, and biological networks10–19, as well as many other natural systems20–24. 
Particularly influential was the finding that large networks tend to self-organize in a scale-free state25 
characterized by the power-law distribution, ( ) ∼ γ−P k k , of the connection degree, k, of nodes—a prop-
erty radically different from the Poisson distribution observed in random networks. Subsequently, to 
analyze the topological properties of scale-free networks, a random rewiring algorithm was proposed, 
whereby an original network is rewired to generate any number of null-networks that serve as a basis for 
comparisons with the original13,26. This method was successfully applied to the analysis of protein net-
works13 and the Internet26.

An important statistical property describing the topology of scale-free networks is the degree cor-
relation of nodes27–31. This quantity measures the extent to which the degree of the neighboring nodes 
depends on the degree of a chosen (focal) node. In social networks, such as film actor collaborations 
and email address books, nodes with the same degrees tend to be connected to each other with a high 
probability—a feature named assortative mixing or, simply, assortativity. Conversely, biological and tech-
nological networks exhibit a characteristic by which nodes with low degrees tend to connect to nodes 
with high degrees and vice-versa, which is a feature known as disassortativity. Whether a network is 
assortative or disassortative has a huge impact on the dynamics of the network32–40.

Ref. 40 introduces a particularly simple, widely-used38,39,41,42, one-parameter algorithm for reshuffling 
scale-free networks to obtain the desired level of assortativity or, with a minor modification, disassorta-
tivity. The results show that (dis)assortativity is close to zero under random rewiring. However, ref. 26 
claims that the randomized versions of the Internet maintain a similar disassortative correlation profile as 
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the original network. This contradiction suggests that the understanding of how random rewiring affects 
the degree correlation of networks is incomplete.

We address the identified gap in understanding by systematically investigating the effects of random 
rewiring on the degree correlation of scale-free networks. The results show that the different measures 
of the degree correlation yield different outcomes. When a measure considers all links, random rewiring 
shifts the degree correlation of scale-free networks towards disassortativity. By contrast, when a measure 
is limited to links between the nodes with the same degree, the degree correlation is unaffected by ran-
dom rewiring. Finally, by means of biased random walk, we prove that random and directional rewiring 
influence the network dynamics in a distinct manner even if the degree correlation of the rewired net-
works is the same.

Results
Methods for Measuring Degree Correlation. For the purpose of generating scale-free networks we 
apply the Barabási-Albert (BA) algorithm25. An implementation of the BA algorithm generates a scale-
free network in the following way. Starting with m fully-connected initial nodes, at each step a new node 
is introduced and connected to any m pre-existing (not necessarily initial) nodes in accordance with the 
preferential attachment. Namely, the probability Π( )a  that the new node will be connected to a specific 
node a depends on the degree ka of this node such that Π( ) = /∑a k ka b b. After t steps, we are left with 
a scale-free network consisting of = +N t m nodes and = + ( × ( − ))/M mt m m 1 2 edges. The 
power-law exponent of the degree distribution is γ =  3 when → ∞N . The average degree of the network 
is =k m2 . Wherever appropriate, we make comparisons to Erdös-Rényi (ER) random networks of the 
same size and the same average degree.

The operation of random rewiring13 is formally defined as follows. Two links in the network are 
selected at random. If the selected links are, say, a-b and c-d, they get cut and replaced with two new 
links, a-d and c-b. If, however, either one of the new links already exist, the rewiring step is aborted. 
Irrespective of whether a single step was successful or aborted, the whole procedure is repeated starting 
with the random selection of two different pre-existing links. Following these steps guarantees that a pair 
of nodes defines a unique link and that the degree of nodes remains unaffected by rewiring. In the text 
we also use directional rewiring, whereby at each step, with the probability p, rewiring is done only if it 
increases (dis)assortativity and, with the remaining probability 1 −  p, rewiring is random. The probability 
p controls (dis)assortativity of the rewired network40.

Several measures of the degree correlation have been proposed in the literature. They can roughly 
be classified into two types; measures that consider (i) all links in the network or (ii) just links between 
degree peers. To perform a comprehensive analysis, we use three measures of the degree correlation. The 
first one, called the edge degree correlation coefficient (ρ), was introduced in ref. 43 to characterize the 
correlation between the out-degree of node a and in-degree of node b, where the edge is directed from 
a to b43,44,

ρ = .
( )
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The operator . e
 denotes averaging over all edges. Definition in Eq. (1) is unusual in the sense that the 

state of no correlation corresponds to ρ =  1.
The edge correlation coefficient, ρ, was defined with directional (i.e. asymmetric) networks in mind. 

We are, however, interested in non-directional (i.e. symmetric) networks, which allows us to rewrite Eq. 
(1) in a more convenient form. Namely, let’s introduce the quantity ρ = /k k k kab a b a e b e

out in out in , which 
represents the contribution of an arbitrary edge ab to ρ such that ρ ρ= ab e

. In a symmetric network, 
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2 because there is no distinction between in- and out-degrees of a node. Averaging 
over all neighbors of the node a yields ρ ρ= ∑−
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, where the set of a′ s neighbors is denoted Ω a. 

Furthermore, we can average ρa over all nodes with a given degree ∈ , + ,...,k m m k{ 1 }max  to obtain 
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, where Nk is the number of nodes with degree k in the network. With these defini-
tions, we readily observe that ρ ρ ρ∑ = ∑ ∑ ∑ == ∈ΩkN M2k k k k k k b aba a

. The factor of 2 is necessary 
because the triple sum runs across all edges in the network twice. Moreover, the same definitions imply 
that the quantity ρk can be connected to the average degree of the nearest neighbors of nodes with degree 
k, which we denote knn . The appropriate relationship is ρ = /( )k k kk enn

2. From these considera-
tions, we obtain the end-result
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For the purpose of analyzing the effects of random rewiring on the degree correlation, it is useful to 
define
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so that ρ α= ∑k k.
Another related measure of the degree correlation is the Pearson correlation coefficient, r, of the 

degrees of nodes at either end of an edge, first proposed in ref. 29. The formula for computing r is
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where j and k are the degrees of nodes at the ends of an edge. Averaging, . e
, is done over all edges. The 

Pearson correlation coefficient attains values in the range − ≤ ≤r1 1, with 1, 0, and − 1 respectively 
indicating total assortativity, no correlation, and total disassortativity.

Unlike the measures of the degree correlation defined so far, it is possible to quantify assortativity just 
by considering links between nodes that are degree peers. One such quantity was introduced in ref. 40. If 
we let εjk be the probability that a randomly selected edge connects one node with degree j and another 
with degree k, then for uncorrelated (i.e. random) networks we have

( )ε δ= −
( ) ( )

,
( )
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where δjk is the standard Kronecker delta and P(.) is the degree distribution. In an assortative network, 
high degree nodes are more likely to be connected to other high degree nodes, meaning that the proba-
bilities of two degree peers being connected, εjj, should be greater than in a random network (i.e. 

)ε ε>jj jj
r . This line of reasoning leads to an intuitive measure of assortativity defined by


ε ε
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The value  = 1 corresponds to a totally assortative network, whereas  = 0 is indicative of an uncor-
related network. Note that  may be bounded from above by a value smaller than 1 due to the finite size 
effects40.

Effects of Random Rewiring. We start analyzing the effects of random rewiring on the degree cor-
relation by plotting the relationship between ρ and the number of rewiring steps, t, for both ER and 
BA networks. (Fig. 1). The value of ρ in the ER network is close to unity irrespective of the number of 
rewiring steps. The BA network is slightly disassortative to begin with (i.e. ρ <  1), but under random 
rewiring disassortativity strengthens until ρ settles close to the value of 0.72. The inset in Fig. 1 shows 

Figure 1. Relationship between ρ and the number of rewiring steps, t, in a random (red curve) and a 
scale-free network (blue curve). Inset: The distribution of ρ after random rewiring. The network parameters 
are set to: the number of nodes, N =  1000; the degree distribution exponent, γ =  3.0; and the average degree, 
=k 10. A total of 100 realizations is used for computing the two distributions.
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the distributions of ρ inferred from 100 realizations of the random rewiring process. In ER networks, 
the distribution of the values of ρ is centered around unity and narrow, indicating that random rewiring 
has no consequences for the degree correlation. In BA networks, by contrast, the distribution is much 
wider, it peaks around the value of 0.7, and shows that random rewiring causes higher disassortativity 
than in the original network.

Next we turn to examining the dependence of ρ on the network parameters: the size of the network, 
N; the connection density, k ; and the degree distribution exponent, γ. In Fig. 2(a), it is shown that the 
degree correlation of the rewired networks as measured by ρ decreases with the network size, N. The 
effects of random rewiring are present in both small and large networks, but become more pronounced 
in the latter kind. From Fig.  2(b), it is apparent that the value of ρ in BA networks increases with the 
connection density, k ; BA networks are thus less disassortative when they are denser. However, the 
effect of random rewiring is present in both sparse and dense BA networks, with the rewired networks 
always attaining a lower value of ρ than the original BA network. Finally, we vary the distribution expo-
nent, γ, in order to adjust the heterogeneity of the node’s degree in a scale-free network. The value of γ 
is adjusted by adding the initial attractiveness into the BA model45. The preferential attachment proba-
bility becomes ∏ ( ) = ( + )/∑ ( + )k k k k ka a b b0 0 , where − < < ∞m k0 , so that γ = + /k m3 0 . In 
Fig.  2(c), ρ is shown to increase progressively with γ. The effects of random rewiring in this case are 
qualitatively similar to those observed in the case of k .

The Pearson correlation coefficient, r, is another measure that, just like ρ, considers all links in the 
network. Figure  3 shows how r varies with the number of random rewiring steps in both ER and BA 
networks. In an ER network, r fluctuates around 0, whereas in a BA network, starting from a small 
negative initial value, it decreases and eventually settles close to r= − 0.2. This result points to behavior 
similar to what we observed previously, whereby a BA network becomes increasingly disassortative with 
the number of rewiring steps until it reaches saturation. The inset in Fig. 3 shows the distributions of r 
in rewired ER and BA networks. These distributions are centered around 0 and − 0.2, respectively. With 
the exception that r tends to be more widely distributed around 0 in ER networks than ρ, the results for 
the two measures of the degree correlation are qualitatively similar. Because of the similarities, we focus 
only on ρ in what follows.

To better understand the cause behind the observed decrease in the degree correlation of scale-free 
networks after random rewiring, we examine the effect of this operation on the degree of the nearest 
neighbors. We use knn  to denote the average degree of the nearest neighbors of nodes with degree k. A 
typical relationship between knn  and the node degree, k, in a BA network and its rewired variant is 
shown in Fig. 4. It is apparent that random rewiring decreases knn  for all but the smallest degree nodes. 
In fact, as expected from the law of large numbers, the average degree of the nearest neighbors after 
rewiring approaches the average degree of the whole network, k . An important consequence, displayed 
in Fig. 5, is that the contribution to ρ as quantified by Eq. (3) decreases for most ∈ , + ,...,k m m k{ 1 }max , 
thus causing the rewiring operation to lower the overall degree correlation.

Having understood why the degree correlation of rewired networks decreases when measured with 
quantities that consider all links in the network, we turn to the kind of measure that considers only links 

Figure 2. The dependence of ρ on (a) the network size, ρ; (b) the average degree, 〈k〉; and (c) the degree 
distribution exponent, γ, in scale-free networks. When held constant, the parameter values are N =  1000, 
γ =  3.0, and =k 10.
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between degree peers. Figure 6 shows the variation of one such measure, , with the number of rewiring 
steps, t, in ER and BA networks. Unlike the results so far, where the degree correlation of the BA network 
decreased from a small initial value to the point of saturation, the quantity  keeps fluctuating around 
a constant value in both types of networks. The inset in Fig. 6 shows that in ER networks  distributes 
around zero, whereas in BA networks the corresponding distribution is centered around the small neg-
ative value of − 0.03, reflecting the slightly disassortative profile mentioned above. These results are in 
agreement with ref. 40 and show that  measures the degree correlation of randomly rewired networks 
in a fundamentally different manner from ρ in Fig. 1 and r in Fig. 3.

What is the reason that random rewiring does not change the value of  much? To see the effect of 
rewiring on , we first show in Fig. 7(a) how the quantities appearing in Eq. (6), εjj and εjj

r , depend on 
the node degree, j, before and after rewiring. The three curves seem to overlap when the node degree is 
small, but when the node degree becomes relatively large the curve for the rewired network separates 
from the others. If this were the whole story, the difference ε ε∑ − ∑j jj j jj

r  would become more negative 
after rewiring and  would measure the degree correlation analogously to ρ and r. To better emphasize 
what is truly happening, we plot the ratio ε ε= /R jj jj jj

r  in Fig. 7(b). The plot implies that after rewiring 
εjj increases relative to εjj

r  when the node degree is small and decreases when the node degree is large. 
These two effects practically cancel each other; before rewiring ε∑ = .0 0264j jj , whereas after rewiring 
ε∑ = .0 0272j jj . Therefore, the rewiring operation changes the value of  very little.

Figure 3. Relationship between the Pearson correlation coefficient, r, and the number of rewiring steps, 
t, in a random (red curve) and a scale-free (blue curve) network. Inset: The distribution of r after random 
rewiring, with the network parameters set to: N =  1000, γ =  3.0, and =k 10. A total of 100 realizations is 
used for computing the two distributions.

Figure 4. The average degree of the nearest neighbors of nodes with degree k, denoted 〈knn〉, before and 
after a scale-free network is randomly rewired. The parameter values are N =  1000, γ =  3.0, and =k 10.
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From considerations so far it is unclear whether ρ and r, on the one hand, or , on the other, better 
represent the degree correlation of randomly rewired networks. To shed some light on this issue, we 
introduce a quantity, ε ε∆ = −jk jk jk

r , which is related to  and serves as a means of comparing the 
connection probabilities not only among degree peers, but among all nodes in the network. Figure  8 
shows the value of Δ jk before and after a scale-free network is randomly rewired. It is always the case 
that Δ jk <  0, reflecting the disassortative profile of scale-free networks in general. More importantly, the 
absolute values of Δ jk are very small and if they were summed across all j and k, then the main contri-
bution to the sum would come from the lower left corner. In this region, however, the main difference 
between Δ jk before and after rewiring is in off-diagonal elements, which are not included in the calcu-
lation of . Thus, in randomly rewired networks,  fails to capture the degree correlation and is an 
unsuitable measure thereof.

As a final step in our analysis, we look at the differences between scale-free networks subjected to 
random and directional rewiring. The initial BA network—with the parameters N =  1000, γ =  3.0, and 
=k 10—is first randomly rewired to find the saturation value of ρ, whereupon the same initial network 

is directionally rewired as described in the methods section until the same degree correlation (i.e. ρ) is 

Figure 5. Functional dependence on the node degree, k, of (a) the corresponding contribution to the degree 
correlation, αk, in scale-free networks before and after rewiring, along with (b) the difference, Δαk, between 
the two curves in panel (a). 

Figure 6. Relationship between assortativity, , and the number of rewiring steps, t, in a random (red 
curve) and a scale-free (blue curve) network. Inset: The distribution of  after random rewiring. The 
network parameters are set to: N =  1000, γ =  3.0, and =k 10. A total of 100 realizations is used for 
computing the two distributions.
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reached. Figure 9(a) shows the average degree of the nearest neighbors of nodes with degree k, denoted 
knn , in both rewired networks. The quantity knn  is lower in the randomly rewired network for small 

and large values of k, whereas the opposite is true for the mid-range values. The two rewired networks 
(i.e. random and directional) thus have different topologies despite (i) being created from the same initial 
BA network and (ii) having the same degree correlation.

Figure 7. Functional dependence of (a) quantities εjj and εjj
r , as well as (b) the ratio Rjj on the node  

degree j.

Figure 8. Quantity Δjk as a function of node degrees j and k in a scale-free network (a) before and (b) after 
random rewiring. 

Figure 9. Functional dependence of (a) the quantity knn , along with (b) the stationary occupation 
probability, ∞Pi , on the node degree, k, in a BA network subjected to random (red squares) and directed 
rewiring (blue circles). The parameter values are N =  1000, γ =  3.0, and =k 10.
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How does such a difference affect the dynamics of the network? Here, we use the biased random walk 
as an effective method to study transport in complex networks46. At each time step, a random walker 
moves from the node a to a neighboring node b according to the probability

=
∑

,
( )

α

α
∈Ω

w
k

k 7
ab

b

i ia

where Ω a is the set of the nearest neighbors of the node a. By setting α =  − 1, the random walk is biased 
towards the small degree neighbors. Based on these ideas, we numerically compute the stationary occu-
pation probability, ∞Pa ; that is, the probability that a random walker is located at the node a in the limit 
of infinite time. Relative to uncorrelated networks, in which = /∞P N1a

46, in disassortative networks the 
stationary occupation probability decreases (increases) for low-degree (high-degree) nodes39. The same 
qualitative result is displayed in Fig.  9(b). Furthermore, Fig.  9(b) shows that the network subjected to 
directionl rewiring has a higher stationary occupation probability at high-degree nodes than the ran-
domly rewired counterpart. Such an observation can be explained by topological properties discussed 
above and shown in Fig. 9(a). Namely, the random walker is biased towards the low-degree neighbors, 
but in the directionally rewired network, low-degree nodes have a higher knn  than the corresponding 
nodes in the randomly rewired network. As a result, the random walker is more likely to occupy a node 
of the same, sufficiently high degree in the network subjected to directional than random rewiring.

Conclusion
We examined the effects of random rewiring on the degree correlation of scale-free networks and found 
them to be disassortative after random rewiring. The underlying mechanism was also uncovered; namely, 
random rewiring causes the neighbors of the highest-degree nodes to be randomly selected from the 
network, which in turn decreases the average degree of these neighbors to the average degree of the 
whole network. Consequently, the contribution of the highest-degree nodes to the degree correlation 
decreases after rewiring. The opposite happens for the small degree nodes, but their contribution to the 
degree correlation is relatively small. In total, the degree correlation decreases. We further showed that 
the measure of the correlation degree which considers only the links between degree peers fails to capture 
the described mechanism. Finally, we investigated the distinction between randomly and directionally 
rewired scale-free networks. Despite the same degree correlation, network topology is affected differently 
by the two kinds of rewiring. As a result, the network dynamics changes, causing the stationary occu-
pation probability to be higher at high-degree nodes of directionally than randomly rewired networks.

References
1. Goh, K. I., Oh, E., Kahng, B. & Kim, D. Betweenness centrality correlation in social networks. Phys. Rev. E 67, 017101 (2003).
2. Newman, M. E. J. The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. USA 98, 404–409 (2001).
3. Contreras, M. G. A. & Fagiolo, G. Propagation of economic shocks in input-output networks: A cross-country analysis. Phys. 

Rev. E 90, 062812 (2014).
4. Mastrandrea, R., Squartini, T., Fagiolo, G. & Garlaschelli, D. Reconstructing the world trade multiplex: The role of intensive and 

extensive biases. Phys. Rev. E 90, 062804 (2014).
5. Wang, Z., Wang, L. & Perc, M. Degree mixing in multilayer networks impedes the evolution of cooperation. Phys. Rev. E 89, 

052813 (2014).
6. Pastor-Satorras, R., Vázquez, A. & Vespignani, A. Dynamical and Correlation Properties of the Internet. Phys. Rev. Lett. 87, 

258701 (2001).
7. Caldarelli, G., Marchetti, R. & Pietronero, L. The fractal properties of Internet. Europhys. Lett. 52, 386 (2000).
8. Vázquez, A., Pastor-Satorras, R. & Vespignani, A. Phys. Rev. E 65, 066130 (2002).
9. Kenmogne, F., Yemélé, D., Kengne, J. & Ndjanfang, D. Transverse compactlike pulse signals in a two-dimensional nonlinear 

electrical network. Phys. Rev. E 90, 052921 (2014).
10. Jeong, H., Mason, S. P., Barabási, A.-L. & Oltvai, Z. N. Lethality and centrality in protein networks. Nature 411, 41–42 (2001).
11. Wang, Z., Wang, L., Szolnoki, A. & Perc, M. Evolutionary games on multilayer networks: a colloquium. EPJB 488, 124 (2015).
12. Bauch, C. T. & Galvani, A. P. Social factors in epidemiology. Science 342, 47–49 (2013).
13. Maslov, S. & Sneppen, K. Specificity and stability in topology of protein networks. Science 296, 910–913 (2002).
14. Hansda, D. K., Sen, S. & Padinhateeri, R. Branching influences force-velocity curves and length fluctuations in actin networks. 

Phys. Rev. E 90, 062718 (2014).
15. Stern, M., Sompolinsky, H. & Abbott, L. F. Dynamics of random neural networks with bistable units. Phys. Rev. E 90, 062710 

(2014).
16. Takemoto, K. Metabolic networks are almost nonfractal: A comprehensive evaluation. Phys. Rev. E 90, 022802 (2014).
17. Lopes, M. A., Lee, K.-E., Goltsev, A. V. & Mendes, J. F. F. Noise-enhanced nonlinear response and the role of modular structure 

for signal detection in neuronal networks. Phys. Rev. E 90, 052709 (2014).
18. Wang, S. & Zhou, C. Hierarchical modular structure enhances the robustness of self-organized criticality in neural networks. 

New J. Phys. 14, 023005 (2012).
19. Wang, S., Hilgetag, C. C. & Zhou, C. Sustained activity in hierarchical modular neural networks: self-organized criticality and 

oscillations. Front. Comput. Neurosci. 5, 30 (2011).
20. Guez, O. C., Gozolchiani, A. & Havlin, S. Influence of autocorrelation on the topology of the climate network. Phys. Rev. E 90, 

062814 (2014).
21. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D. U. Complex networks: Structure and dynamics. Phys. Rep. 424, 

175–308 (2006).
22. Boccaletti, S. et al. The structure and dynamics of multilayer networks. Phys. Rep. 544, 1–122 (2014).
23. Perra, N., Goncalves, B., Pastor-Satorras, R. & Vespignani, A. Activity driven modeling of time varying networks. Sci. Rep. 2, 469 

(2012).



www.nature.com/scientificreports/

9Scientific RepoRts | 5:15450 | DOi: 10.1038/srep15450

24. Buono, C., Alvarez-Zuzek, L. G., Macri, P. A. & Braunstein, L. A. Epidemics in partially overlapped multiplex networks. PLoS 
ONE 9, e92200 (2014).

25. Barabási, A.-L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512 (1999).
26. Maslov, S., Sneppen, K. & Zaliznyak, A. Detection of topological patterns in complex networks: correlation profile of the internet. 

Physica A 333, 529–540 (2004).
27. Vázquez, A., Boguñá, M., Moreno, Y., Pastor-Satorras, R. & Vespignani, A. Topology and correlations in structured scale-free 

networks. Phys. Rev. E 67, 046111 (2003).
28. Newman, M. E. J. Mixing patterns in networks. Phys. Rev. E 67, 026126 (2003).
29. Newman, M. E. J. Assortative mixing in networks. Phys. Rev. Lett. 89, 208701 (2002).
30. Newman, M. E. J. & Park, J. Why social networks are different from other types of networks. Phys. Rev. E 68, 036122 (2003).
31. Berg, J. & Lässig, M. Correlated random networks. Phys. Rev. Lett. 89, 228701 (2002).
32. Payne, J. L., Dodds, P. S. & Eppstein, M. J. Information cascades on degree-correlated random networks. Phys. Rev. E 80, 026125 

(2009).
33. Schläpfer, M. & Buzna, L. Decelerated spreading in degree-correlated networks. Phys. Rev. E 85, 015101 (2012).
34. Chavez, M., Hwang, D.-U., Martinerie, J. & Boccaletti, S. Degree mixing and the enhancement of synchronization in complex 

weighted networks. Phys. Rev. E 74, 066107 (2006).
35. Sendiña-Nadal, I. et al. Effects of degree correlations on the explosive synchronization of scale-free networks. Phys. Rev. E 91, 

032811 (2015).
36. Xue, Y., Wang, J., Li, L., He, D. & Hu, B. Optimizing transport efficiency on scale-free networks through assortative or dissortative 

topology. Phys. Rev. E 81, 037101 (2010).
37. Masuda, N. & Ohtsuki, H. Evolutionary dynamics and fixation probabilities in directed networks. New J. Phys. 11, 033012 (2009).
38. Wang, S., Wu, A., Wu, Z., Xu, X. & Wang, Y. Response of degree-correlated scale-free networks to stimuli. Phys. Rev. E 75, 046113 

(2007).
39. Hu, Y., Wang, S., Jin, T. & Qu, S. Biased random walks in the scale-free networks with the disassortative degree correlation. Acta 

Phys. Sin. 64, 28901 (2015).
40. Xulvi-Brunet, R. & Sokolov, I. M. Reshuffling scale-free networks: From random to assortative. Phys. Rev. E 70, 066102 (2004).
41. Rong, Z., Li, X. & Wang, X. Roles of mixing patterns in cooperation on a scale-free networked game. Phys. Rev. E 76, 027101 

(2007).
42. Li, P., Zhang, K., Xu, X., Zhang, J. & Small, M. Reexamination of explosive synchronization in scale-free networks: The effect of 

disassortativity. Phys. Rev. E 87, 042803 (2013).
43. Restrepo, J. G., Ott, E. & Hunt, B. R. Approximating the largest eigenvalue of network adjacency matrices. Phys. Rev. E 76, 056119 

(2007).
44. Larremore, D. B., Shew, W. L. & Restrepo, J. G. Predicting criticality and dynamic range in complex networks: effects of topology. 

Phys. Rev. Lett. 106, 058101 (2011).
45. Dorogovtsev, S. N., Mendes, J. F. F. & Samukhin, A. N. Structure of growing networks with preferential linking. Phys. Rev. Lett. 

85, 4633 (2000).
46. Fronczak, A. & Fronczak, P. Biased random walks in complex networks: The role of local navigation rules. Phys. Rev. E 80, 016107 

(2009).

Acknowledgements
We acknowledge the support from (i) the National Natural Scientific Foundation of China (Grant No. 
11305098), (ii) the Natural Science Basic Research Plan of the Shaanxi Province of China (Program 
No. 2014JQ1028), (iii) the Fundamental Research Funds for the Central Universities (Grant No. 
GK201302008), (iv) the Interdisciplinary Incubation Project of Shaanxi Normal University (Grant No. 5), 
and (v) Japan Society for the Promotion of Science (JSPS) Postdoctoral Fellowship Program for Foreign 
Researchers (no. P13380) and an accompanying Grant-in-Aid for Scientific Research.

Author Contributions
J.Q., S.J.W., M.J. and Z.W. planned the study, performed the simulations, analyzed the results, and wrote 
the paper.

Additional Information
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Qu, J. et al. Effects of random rewiring on the degree correlation of scale-free 
networks. Sci. Rep. 5, 15450; doi: 10.1038/srep15450 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The 
images or other third party material in this article are included in the article’s Creative Com-

mons license, unless indicated otherwise in the credit line; if the material is not included under the 
Creative Commons license, users will need to obtain permission from the license holder to reproduce 
the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by/4.0/

	Effects of random rewiring on the degree correlation of scale-free networks
	Introduction
	Results
	Methods for Measuring Degree Correlation
	Effects of Random Rewiring

	Conclusion
	Additional Information
	Acknowledgements
	References



 
    
       
          application/pdf
          
             
                Effects of random rewiring on the degree correlation of scale-free networks
            
         
          
             
                srep ,  (2015). doi:10.1038/srep15450
            
         
          
             
                Jing Qu
                Sheng-Jun Wang
                Marko Jusup
                Zhen Wang
            
         
          doi:10.1038/srep15450
          
             
                Nature Publishing Group
            
         
          
             
                © 2015 Nature Publishing Group
            
         
      
       
          
      
       
          © 2015 Macmillan Publishers Limited
          10.1038/srep15450
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep15450
            
         
      
       
          
          
          
             
                doi:10.1038/srep15450
            
         
          
             
                srep ,  (2015). doi:10.1038/srep15450
            
         
          
          
      
       
       
          True
      
   




