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Ag Nanorods Coated with 
Ultrathin TiO2 Shells as Stable and 
Recyclable SERS Substrates
Lingwei Ma1, Yu Huang1, Mengjing Hou1, Zheng Xie3 & Zhengjun Zhang2

TiO2-coated Ag nanorods (Ag@TiO2 NRs) have been fabricated as multifunctional surface-enhanced 
Raman scattering (SERS) substrates. Uniform TiO2 shells could sufficiently protect the internal 
Ag NRs against oxidation and sulfuration, thus the temporal stability of SERS substrates was 
markedly improved. Meanwhile, due to the synergetic effect between crystalline TiO2 and Ag, the 
nanocomposites could clean themselves via photocatalytic degradation of the adsorbed molecules 
under ultraviolet irradiation and water dilution, making the SERS substrates renewable. Such Ag@
TiO2 NRs were shown to serve as outstanding SERS sensors featuring high sensitivity, superior 
stability and recyclability.

As an influential spectroscopic detection method for extremely minute amounts of target molecules, 
surface-enhanced Raman scattering (SERS) technique is currently recognized as one of the most prom-
ising analytical tools in fields of chemistry, biology, medicine, and life science1–4, with the advantages of 
ultrahigh sensitivity and specificity, rapid response speed as well as non-destructive determination5–8. 
In general, noble metal materials (in particular Au, Ag, and Cu) of multiple nanostructures can render 
excellent SERS performance, introduced mainly by the electromagnetic (EM) resonance between the 
incident optical field and localized surface plasmons (LSP)9,10. In recent years, great efforts have been 
dedicated to fabricate various noble metal substrates as efficient Raman signal amplifiers and even to 
meet the requirements for single-molecule detection11–14.

However, from practical application viewpoint, not only strong enhancement but also stability, recy-
clability as well as cost-effective preparation methods are necessary for satisfactory SERS sensors. To this 
end, the fabrication of SERS-active substrates with optimized properties is still faced with numerous 
challenges. For example, despite the optimal plasmonic enhancement of Ag nanostructures15–17, their 
applicability is hindered by the poor stability, which is caused by the oxidation and sulfuration of silver 
in air18–20 and will greatly weaken the SERS performance. Furthermore, traditional SERS substrates with 
noble metals are not easily reused, thus the high costs would seriously hamper the universality of SERS 
technique21–23. For these reasons, it is significant to develop stable and recyclable SERS substrates. Lately, 
nanocomposites consisting of noble metals and photocatalytic materials have been elaborately designed 
and synthesized, which showed great potential to satisfy the above demands12,24–28.

Herein, we reported the preparation of Ag nanorods coated with uniform TiO2 overlayers (Ag@TiO2 
NRs), for the synthesis of sensitive, stable, and recyclable SERS substrates. Slanted Ag NRs were prepared 
based on oblique angle vapor deposition (OAD)29–31 technique, and were subsequently covered with TiO2 
layers using atomic layer deposition (ALD)19,32. In order to achieve the recyclability of the substrates, 
further thermal annealing at 300 °C was employed to improve the crystallinity of TiO2, which was crucial 
for photocatalytic activity. The Raman enhancement originates from ordered Ag NRs, and TiO2 shells 
function as a barrier that could protect the internal Ag NRs at elevated temperatures as well as avoid their 
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direct contact with external environments. What’s more, the self-cleaning ability stems from the ultra-
violet (UV) light-induced degradation of analytes via the synergetic effect of TiO2 shells and Ag NRs, 
i.e., subsequent to SERS measurements, the substrates can be purified by UV irradiation and be reused 
for further Raman analyses. This self-cleaning function offers an opportunity to eliminate the single-use 
shortcoming of most conventional SERS substrates and reduce the SERS measurement costs as well.

Results and Discussion
Characterization of Ag@TiO2 NRs. Ag NRs coated with TiO2 shells by 1, 2, 3, 4, and 5 ALD cycles 
are denoted hereafter as Ag@TiO2-1, Ag@TiO2-2, Ag@TiO2-3, Ag@TiO2-4, and Ag@TiO2-5, respectively. 
Figure 1a shows the typical top-view and side-view SEM images of Ag@TiO2-3 NRs. It could be observed 
that the tilted NRs are ~40 nm in diameter, ~280 nm in length, and well-separated. Note that, due to the 
relative low-temperature ALD procedure (at 80 °C) and the generated TiO2 shells, there were no evident 
fusion and distortion of the underneath Ag NRs during ALD coating and the subsequent annealing 
treatments19,33,34. In addition, we found that the substrates coated by different ALD cycles showed no 
visible structure variation observed from the SEM resolution, which might be due to the ultrathin nature 
of the deposited TiO2 layers.

We thus used TEM analyses to provide a visual evidence of the TiO2 coatings, which were also applied 
to probe the thickness growth of TiO2 layers. The TEM images of Ag@TiO2 substrates coated with 1 to 5 
ALD cycles are displayed in Fig. S1. It is shown that the TiO2 coatings grown at 80 °C are extremely con-
formal and uniform with varying thickness, fully wrapping the Ag NRs, and are amorphous in structure. 
A linear relationship between TiO2 thickness and ALD cycles was obtained at ~0.55 nm per cycle, which 
was ascribed to the intrinsic characteristic of ALD process on the basis of sequential self-terminating 
growth32. Further, after annealing at 300 °C, Ag@TiO2-3 NRs exhibit the lattice spacing of 0.233 nm 
obtained from HRTEM image in Fig.  1b. This lattice spacing corresponds to the distance between the 
(112) crystal planes of anatase35,36 and indicates the crystallization of TiO2 at high temperature.

XPS measurements were conducted to further verify the surface components and valence states of 
Ag@TiO2 substrates. As shown in Fig.  2a, no excessive peaks other than Ag, Ti, O, and C signals are 
observed from Ag@TiO2-3 NRs. Figure 2b plots the XPS spectrum of Ag 3d5/2 and Ag 3d3/2 double peaks 
from the substrate, which are centered at 367.8 and 373.8 eV, respectively. This is in good agreement with 
those of elemental Ag37,38, and demonstrates that there was no corrosion of Ag NRs during ALD and 
post-annealing procedures. Figure 2c shows the amplified Ti 2p3/2 and Ti 2p1/2 XPS peaks at 458.5 and 
464.2 eV, indicating the formation of Ti4+ in TiO2 39,40. In addition, compared with TiO2 molecules, the 
ALD precursor tetrakis(dimethylamino)titanium (TDMAT) contains four N atoms in each molecule41, 
so the XPS spectrum of N element could be used to further evaluate the reaction extent of TDMAT and 
water. Figure 2d represents the XPS spectra of N 1 s from bare Ag and Ag@TiO2-3 NRs. No visible peaks 
were observed in both curves, which means that the Ti-N bonds of TDMAT were fully broken and the 
chemical reaction during ALD process was complete.

Sensitivity and Stability of Ag@TiO2 NRs. It has been long recognized that the Raman enhance-
ment of metal nanostructures depends strongly on the distance between metal surfaces and adsorbed 
molecules19,42,43. We therefore investigated the TiO2 layers’ effect on the sensitivity of SERS substrates, 
using crystal violet (CV) as a model analyte. The inset in Fig. 3a shows the SERS spectra of 10−5 M CV 
on bare Ag NRs and Ag NRs coated with TiO2 layers by 1 to 5 ALD cycles. It is observed that all spectra 
with distinct intensities clearly reveal several characteristic Raman bands of CV molecules44. Herein, 
the 1171 cm−1 Raman peak with strong intensity was chosen to quantitatively calculate the attenuation 
effect of TiO2 layers on SERS sensitivity. Figure 3a plots the normalized Raman intensities at 1171 cm−1 

Figure 1. (a) Top-view and side-view SEM images of Ag@TiO2-3 NRs. (b) HRTEM images of a Ag@TiO2-3 
NR after annealing at 300 °C.
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as a function of ALD cycles. As expect, due to the enhancive analyte-substrate separation introduced by 
TiO2, CV Raman signals decreased monotonously with the increase of ALD cycles. To be specific, the 
CV intensities on Ag@TiO2-1, Ag@TiO2-2, and Ag@TiO2-3 substrates occupied ~65%, ~55%, and ~43%, 
respectively, compared with those on bare Ag NRs, and then decreased mildly when further increasing 
the TiO2 thickness. It is noted that, although the Raman enhancement dropped to some extent when 
TiO2 became thicker, all coated substrates still exhibited large Raman signals with little background 
noises. Fig. S2 shows the Raman spectra of CV on Ag@TiO2-2 NRs at concentrations ranging from 
10−5 M to 10−10 M. One sees that the Raman intensities descend along with CV concentrations, never-
theless, their Raman peaks were readily observed even when the concentration was as low as 10−9 M. 
Meanwhile, the detection limits for Ag@TiO2-3 and Ag@TiO2-4 NRs were down to 10−8 M (spectra not 
shown here), demonstrating the superior sensitivity of Ag@TiO2 nanocomposites.

Figure 2. (a) XPS survey spectrum taken from Ag@TiO2-3 NRs. (b) HRXPS Ag 3d spectrum on Ag@
TiO2-3 NRs. (c) HRXPS Ti 2p spectrum on Ag@TiO2-3 NRs. (d) HRXPS N 1 s spectra on different 
substrates: the spectrum above is from bare Ag NRs, and the one below is from Ag@TiO2-3 NRs. All 
binding energies of the XPS spectra are calibrated with reference to the C1s peak at 284.8 eV.

Figure 3. (a) The normalized Raman intensities of 1171 cm−1 peak from 10−5 M CV molecules versus 
the ALD cycles of Ag@TiO2 NRs. The inset illustrates the Raman spectra of 10−5 M CV adsorbed on bare 
Ag NRs and Ag@TiO2-1, Ag@TiO2-2, Ag@TiO2-3, Ag@TiO2-4, Ag@TiO2-5 NRs, respectively. (b) The 
normalized Raman intensities of 1171 cm−1 peak on these substrates during aging in air for 48 days.
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The temporal stability of bare Ag and Ag@TiO2 NRs was supervised via counting the SERS intensi-
ties of 10−5 M CV from the stored substrates as a function of time. Figure  3b displays the normalized 
Raman intensities at 1171 cm−1 band obtained from different substrates over a period of 48 days. For 
each sample, the 1171 cm−1 peak value was normalized to that on freshly prepared Ag NRs to facilitate 
comparison. As can been seen, CV signals on bare Ag NRs emerged a substantial decline even only 
after 8 days (~50% drop), and were more than one order smaller after 48 days. However, when the NRs 
were uniformly wrapped with ultrathin TiO2, their stability was dramatically enhanced. Specifically, Ag@
TiO2-1 NRs presented a slight decrease in SERS performance, while the substrates covered with TiO2 by 
two or more cycles remained unchanged in SERS enhancement during the whole test period. As a result, 
the TiO2 shells could protect the internal Ag NRs against at atmospheric conditions, which were valuable 
in improving the corresponding stability of SERS substrates.

Recyclability of Ag@TiO2 NRs Substrates. In addition to sensitivity and stability, the recycla-
ble property of SERS substrates is also meaningful for routine applications19,43,45. In our study, the 
self-cleaning performances of Ag@TiO2 NRs were investigated through UV light-assisted photocatalytic 
bleaching of organic molecules adsorbed on the substrates. These experiments were performed by the 
following setups: after SERS characterization of the analytes adsorbed on Ag@TiO2 NRs, the substrates 
were immersed into deionized water and were irradiated by UV light for certain times. When the organic 
molecules were completely decomposed, these substrates could be reused for further analyte immersion 
and SERS measurements. The primary results showed that the Ag NRs coated with TiO2 layers by 3, 4, 
and 5 cycles could degrade most of the CV molecules absorbed on them through UV radiation within 
20 minutes, while Ag NRs with thinner TiO2 films could not achieve an effective decomposition of dye 
molecules within a short time. Hence, Ag@TiO2-3 NRs were chosen to verify the UV-assisted renew-
ability, due to their relatively high SERS sensitivity compared with that of Ag@TiO2-4 and Ag@TiO2-5 
substrates. As shown in Fig. 4a, four circulations of the “detection-UV cleaning” process were carried out. 
Strong Raman signals of 10−5 M CV were observed in the first round, while no obvious CV peaks were 
identified after UV-illumination, suggesting that the target molecules were gradually decomposed into 
small inorganic species such as CO2, HCl, and H2O that could be removed easily by aqueous solvent26. 
In this way, this substrate could be reused as a new and clean SERS sensor, while it was not possible to 
wash the adsorbed molecules off the substrate barely by water (see Fig. S3). More importantly, the results 
from the subsequent three circulations showed that the Raman intensities of CV maintained almost at 
the same level in every detection step, which indicates that the Ag@TiO2 structure could endure multiple 
UV irradiations, enabling it to work as a reversible SERS substrate with high robustness.

Figure 4. Raman spectra of (a) 10−5 M CV, (b) 5 × 10−6 M MB, and (c) CV and MB alternately adsorbed 
onto Ag@TiO2-3 NRs in four “detection-UV cleaning” cycles. Each cycle consists of the adsorption of target 
molecules followed by UV irradiation. The graphs show the Raman spectra before and after self-cleaning.
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In order to further confirm the universality of this multifunctional substrate, 5 ×  10−6 M methylene 
blue (MB) molecules were introduced to perform the “detection-UV cleaning” routes. As shown in Fig. S4,  
intense MB Raman signals are carried out on Ag NRs covered with various cycles of TiO2. Typically, 
there was also a descending relationship between Raman intensities and TiO2 cycles, which was in accord 
with the results we reached before. The Ag@TiO2-3 substrate was employed again in the reusability tests. 
Figure  4b shows the Raman spectra of MB on the substrate before and after self-cleaning. One sees 
clearly that the MB signals almost vanished after 30-minute UV illumination, and were fully recovered 
through subsequent MB soaking. Last but not least, different molecules can also be alternately examined 
and degraded over the same substrate. As shown in Fig. 4c, the representative vibration patterns of CV 
and MB were both clearly identified when dyes were adsorbed on Ag@TiO2-3 NRs, but were completely 
disappeared via UV irradiation and water dilution. We should note that the measurement of different 
molecules did not influence each other since only the Raman peaks of the adsorptive molecules were 
discovered other than any impurity peaks. These results suggest that the Ag@TiO2 composites were fea-
sible to act as recyclable SERS substrates for the detection of organic species such as CV and MB, and 
show great potential for further sensitive and reusable SERS applications13,26,28.

For comparison, this photocatalysis process was carried out on bare Ag NRs under the identical 
experiment conditions. From Fig. S5a, one sees that after UV irradiation for 30 minutes, the Raman 
peaks of MB were still clearly observed on Ag NRs, and the decline of Raman signals may owing to the 
molecule dilution in water. Moreover, in the following three “detection-UV cleaning” cycles, when the 
substrate was further soaked into MB solution, the Raman signals dropped gradually time after time. 
Fig. S5b,c present the SEM images of Ag NRs adsorbed with MB, before and after UV irradiation for 
60 minutes. Apparent coarsening was observed from the illuminated Ag NRs, i.e., the high power UV 
radiation gave rise to a detrimental effect on bare Ag NRs, resulting in the decrease in SERS sensitivity.

Photocatalytic Mechanism for Ag@TiO2 NRs. In the area of semiconductor-noble metal SERS 
substrates, TiO2 has attracted considerable attention owing to its strong chemical stability, remarkable 
photocatalytic activity, and low-cost synthesis46–48. It is commonly accepted that the photocatalytic ability 
of TiO2 depends greatly on its crystal types, and anatase is usually more active than rutile and amorphous 
TiO2 49–51. We thus annealed the Ag@TiO2 NRs at 300 °C to crystalize the amorphous TiO2 to anatase, in 
order to boost their photocatalytic performance. Additionally, Ag NRs in contact with TiO2 layers can 
act as electron traps to separate the photogenerated electron-hole pairs (e− −  h+), which is beneficial 
for photocatalytic reactions13,52,53. Figure  5 illustrates the mechanism of such a process. When TiO2 is 
activated by UV light, it undergoes charge separation and the e− are excited into the conduction band 
of TiO2. Since the work function of Ag is lower than that of TiO2 51,53, Ag serves as an acceptor of the 
e− transformed from TiO2 layers, while the h+ remain in TiO2. As a consequence, Ag@TiO2 NRs provide 
a charge transfer channel at the metal-semiconductor interface, and Ag could extensively suppress the 

Figure 5. The schematic for the photocatalytic mechanism of Ag@TiO2 NRs. 
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recombination of e− −  h+ pairs. The residual e− on the surface of TiO2 can be trapped via O2 to form 
superoxide (•O2

−)54, while h+ at the valence band of TiO2 are oxidized by H2O to form surface hydroxyl 
radical (•OH)55. Thereafter, the organic molecules nearby will react with these active oxidative species 
and be decomposed into inorganic compounds. In this way, the strong interaction between Ag and TiO2 
would optimize the separation of photo-excited charge carriers, resulting in a remarkable enhancement 
of organic molecules degradation efficiency.

Conclusion
In summary, we have developed a facile and novel approach for the fabrication of Ag NRs coated with 
uniform TiO2 shells as sensitive, stable, and reusable SERS substrates, and found that Ag NRs covered by 
~2 nm TiO2 shell was optimal in our study. TiO2 overlayers could protect Ag NRs against the disturbance 
from air, without seriously weakening the sensitivity of SERS substrates. Moreover, due to the beneficial 
interaction between Ag NRs and TiO2 layers, dye molecules adsorbed on Ag@TiO2 NRs were rapidly 
photodegraded into inorganic species under UV irradiation, thus the renewed substrate could be used 
for further SERS analyses with little decline in sensitivity. This study suggests that Ag@TiO2 nanocom-
posites with stability and self-cleaning property can serve as superb substrates in SERS sensing fields.

Methods
Fabrication of Ag NRs. Slanted Ag NRs were grown on Si (001) substrates by OAD technique in 
an electron-beam system (GLAD, Thermionics Inc.) with a background vacuum level down to 10−6 Pa. 
During deposition, the angle between the surface normal of substrates and the incoming vapor flux was 
set at ~86°, and the deposition rate as well as thickness were simultaneously monitored via a quartz 
crystal microbalance (QCM). The growth rate was fixed at ~0.75 nm/s, and the deposition stopped when 
the QCM read 500 nm. The detailed deposition procedure can be found elsewhere56–58.

Fabrication of Ag@TiO2 NRs. TiO2 adhesion layers were deposited onto freshly prepared Ag NRs 
in an ALD reactor (MNT-100, Wuxi MNT Micro and Nanotech Co.). The TiO2 precursors, i.e., TDMAT 
(maintained at 110 °C) and water (maintained at 40 °C) were alternately pumped through the reaction 
chamber, using high purity N2 (99.999%, 15 sccm) as the carrier and purge gas. The chamber was heated 
and maintained at 80 °C so as to guarantee a complete chemical reaction of precursors, while not dam-
aging the morphology of Ag NRs at the relatively low reaction temperature. Typically, one complete 
reaction cycle took ~38 s and consisted of four steps: (1) TDMAT reactant was pulsed for 200 ms and 
allowed to soak in an additional 5 s; (2) N2 gas was used to purge the chamber for 20 s; (3) water vapor 
was pulsed for 6 ms and soaked for an extra 3 s; and (4) the chamber was purified by N2 for 6 s. This 
reaction cycle repeated for 1, 2, 3, 4, and 5 times over Ag NRs, and the as-prepared samples were further 
annealed at 300 °C for 30 minutes in a quartz tube furnace in air.

Characterization. The morphology, structure, and chemical states of Ag NRs and Ag@TiO2 NRs were 
characterized by scanning electron microscope (SEM, JEOL-JMS-7001F), high-resolution transmission 
electron microscope (HRTEM, JEOL-2011) and X-ray photoelectron spectroscopy (XPS, PHI 5300) with 
Mg Kα  as the excitation source, respectively.

Measurements of SERS Sensitivity and Recyclability. The SERS performances were evaluated 
by an optical fiber micro-Raman system (i-Raman Plus, B&W TEK Inc.) using CV and MB as probing 
molecules. Before SERS measurements, all substrates were submerged into dye aqueous solutions for 
30 minutes, and dried naturally in air. The Raman spectra were obtained using a 785 nm laser as the 
excitation source, with its beam spot focused to ~80 μ m in diameter and an excitation power of 120 mW. 
The integration time of one spectrum was 15 s and 6 s for CV and MB, separately. For every sample, the 
Raman spectrum was obtained by averaging the spectra obtained from five different areas of the SERS 
substrate.

To test the UV-cleanable property, the photocatalytic self-cleaning experiments were performed by 
the following setups: after SERS characterization of the organic molecules adsorbed on Ag@TiO2 and 
bare Ag NRs (bare Ag NRs were used in a control experiment), these substrates were immersed into a 
vessel containing 50 mL deionized water and were irradiated by a 300 W Xe lamp for certain times. An 
ultraviolet cutoff filter was inserted between the light source and the substrates to block the UV light 
with the wavelength below 420 nm. The electric current was set at 15 A and the power density of the UV 
light was ~60 mW/cm2. Water was used to accelerate the dilution effect and get rid of the thermal energy 
coming from UV radiation. Then the illuminated substrates were dried in air and the following Raman 
spectra were executed to check the degradation degree of adsorbates. Finally, when the substrates showed 
no apparent Raman signals, they could be reused for further SERS trials. For the reusability characteri-
zation, the “detection-UV cleaning” cycles were repeated for four times on each sample.
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