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Synergistic Effect of Sorafenib 
and Radiation on Human Oral 
Carcinoma in vivo
Fei-Ting Hsu1,*, Betty Chang1,*, John Chun-Hao Chen1,2, I-Tsang Chiang3, Yu-Chang Liu1,3, 
Wei-Kang Kwang4 & Jeng-Jong Hwang1,5

Oral squamous cell carcinoma often causes bone invasion resulting in poor prognosis and affects 
the quality of life for patients. Herein, we combined radiation with sorafenib, to evaluate the 
combination effect on tumor progression and bone erosion in an in situ human OSCC-bearing mouse 
model. Treatment procedure were arranged as following groups: (a) normal (no tumor); (b) control 
(with tumor); (c) sorafenib (10 mg/kg/day); (d) radiation (single dose of 6 Gy); (e) pretreatment 
(sorafenib treatment for 3 days prior to radiation), and (f) concurrent treatment (sorafenib and 
radiation on the same day). The inhibition of tumor growth and expression level of p65 of NF-κB 
in tumor tissues were the most significant in the pretreatment group. EMSA and Western blot 
showed that DNA/NF-κB activity and the expressions of NF-κB-associated proteins were down-
regulated. Notably, little to no damage in mandibles and zygomas of mice treated with combination 
of sorafenib and radiation was found by micro-CT imaging. In conclusion, sorafenib combined with 
radiation suppresses radiation-induced NF-κB activity and its downstream proteins, which contribute 
to radioresistance and tumorigenesis. Additionally, bone destruction is also diminished, suggesting 
that combination treatment could be a potential strategy against human OSCC.

Human oral squamous cell carcinoma (OSCC) has been reported to be associated with betel quid chew-
ing, cigarette smoking and alcohol consumption, which are risk factors for cancer development1,2. The 
mortality of oral cancer is ranked the fourth in Taiwan3, and about 2% among all cancers worldwide. 
The major treatments for oral cancer are radiotherapy (RT), chemotherapy and surgery, but with poor 
prognosis4. The estimated survival rates of 1-, 5- and 10-year for all stages after diagnosis is 84%, 61% and 
51%, respectively5. Among the established treatment for oral cancer, RT is currently the standard adju-
vant form of treatment6. However, DNA damage induced by radiation results in an increase in NF-κ B/
DNA binding activity if the double strand breaks were not repaired7. NF-κ B signaling pathway can 
be activated by chemotherapeutic agents and RT, respectively8,9, followed by the increased expressions 
of downstream effector proteins, such as cyclin D1, B-cell lymphoma 2 (Bcl-2), tumor necrosis factor 
(TNF-α ), vascular endothelial growth factor (VEGF), X-linked inhibitor of apoptosis protein (XIAP), 
matrix metalloproteinase 9 (MMP-9), and cyclooxygenase-2 (COX-2), and results in the tumor prolif-
eration, anti-apoptosis, invasiveness and radioresistance9. NF-κ B also has been shown to play a role in 
homeostasis of the bone. Mice deficient in both subunits of NF-κ B would fail to generate mature osteo-
clasts, suggesting the necessity of NF-κ B for the development of osteoclasts10. The production of receptor 
activator of NF-κ B ligand (RANKL) by OSCC may alter the tumor microenvironment to increase the 
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osteoclastogenesis and mediate local bone invasion11. Interaction of RANKL with its receptor, RANK, 
could stimulate osteoclast precursors to differentiate into mature osteoclasts, leading to severe bone 
destruction. However, the binding of RANKL to RANK can be inhibited by osteoprotegerin (OPG). 
During the process of bone resorption, growth factors are secreted into the microenvironment to pro-
mote the proliferation of oral cancer cells, which in turn release bone resorbing factors for the production 
of RANKL12. Bone invasion of OSCC usually indicates advanced cancer stage and poor prognosis13, the 
capability of OSCC to invade the nearby bones may reduce the quality of life of patients14. Therefore, 
inhibition of NF-κ B activation may be a potential therapeutic strategy for the treatment of OSCC with 
advantage to reduce the bone destruction simultaneously.

Sorafenib, a multikinase inhibitor, has been approved by FDA for the treatment of several types of 
cancers including renal cell carcinoma, hepatoma and colorectal carcinoma through inhibition of sev-
eral pathways such as Ras-Raf-MEK-ERK, VEGF receptor (VEGFR), and platelet-derived growth factor 
receptor (PDGFR)15. Nevertheless, sorafenib alone has been reported to have a low level of anticancer 
capability such that sorafenib combined with other agents is suggested to achieve the better therapeutic 
outcome16,17. Our previous study shows that sorafenib enhances the treatment outcome of radiation via 
suppression of ERK/NF-κ B signaling pathway in human SAS oral cancer cell line18. However, it is still 
ambiguous whether such combination is effective in reduction of bone destruction while increasing 
the therapeutic efficacy of human OSCC in vivo. Here we evaluated the therapeutic efficacy and the 
underlying mechanism of sorafenib combined with ionizing radiation in orthotopic human SAS oral 
carcinoma-bearing mouse model using multimodalities of molecular imaging.

Results
Sorafenib Combined with Radiation Inhibits Tumor Growth in Orthotopic OSCC-bearing 
Animal Model. Orthotopic tumor-bearing nude mice were established by injecting 1.5 ×  106 SAS/luc2 
cells into the right masseter region of 6-week-old male mice. Two weeks later, mice were randomly 
divided into six groups as described in MATERIALS & METHODS and depicted in Fig.  1. BLI was 
used to evaluate the therapeutic efficacy of the treatments. As shown in Fig. 2A,B, photons emitted from 
the tumors of the combination group were significantly lower than those of the single treatment and 
the control groups, suggesting sorafenib could sensitize tumors to radiation therapy. The body weight 
was monitored from day − 3 to day 18. Notably, no significant difference of body weight change among 
groups of pretreat, concurrent and the normal was found, indicating that both pretreatment and con-
current treatment of sorafenib combined with radiation were effective for the tumor control (Fig. 2C,D).

Combination Treatment of Sorafenib and Radiation Inhibits Activation of NF-κB and 
Expressions of Its Downstream Effector Proteins. NF-κ B plays a critical role in the regulation 
of proteins involved in the cell survival (Bcl-2, XIAP), proliferation (cyclin-D1), invasion (MMP-9, 
RANKL), angiogenesis (VEGF), and inflammation (COX-2, TNF-α ), all contribute to the tumor pro-
gression. The activation of NF-κ B could be determined by its binding activity with DNA using EMSA 
assay. As shown in Fig. 3A, sorafenib suppresses the radiation-induced NF-κ B/DNA binding activity in 

Figure 1. The experimental design for the treatment of human OSCC-bearing mice. Each mouse 
was injected with 1.5 ×  106 human oral squamous carcinoma SAS/luc2 cells. Two weeks after tumor cell 
inoculation, mice were randomly divided into six groups (n =  10 per group). Sorafenib (10 mg/kg) was 
administered daily by gavage. For radiation treatment, mice were irradiated with single dose of 6 Gy on the 
head and neck region. All mice were sacrificed three weeks post treatments. The experiment was repeated 
three times.
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both groups of mice with pretreatment and concurrent treatment, respectively. The expressions of NF-κ B 
effector proteins were assayed with Western blot. Expressions of NF-κ B–associated proteins induced by 
radiation were significantly reduced by sorafenib as shown in Fig. 3B. The inhibition of protein expres-
sions related to the cell proliferation (cyclin D1) and tumor invasion (MMP-9 and RANKL) was more 
severe in the pretreatment group compared with that of the concurrent treatment group. The expressions 
of anti-apoptotic proteins such as Bcl-2 and XIAP were also suppressed (Fig. 3B), while the expressions of 
pro-apoptotic proteins involved in the mitochondria-dependent, and -independent apoptotic pathways 
such as cytochrome C, cleaved caspase-3 and cleaved caspase-8 were up-regulated (Fig. 3C).

Combination of Sorafenib with Radiation Reduces Bone Invasion via Inhibition of Osteocla
stogenesis. Osteoclastogenesis can be induced through the RANKL/RANK signaling pathway, and 
lead to bone damage subsequently. The expression of RANKL induced by radiation was suppressed by 
sorafenib as shown in Fig. 3B. To evaluate the therapeutic effect on bone destruction, micro-computed 

Figure 2. Therapeutic efficacy evaluation of sorafenib, radiation, and combination treatment of both 
on human OSCC-bearing mouse model. (A) Tumor growth monitoring was assayed by bioluminescent 
imaging (BLI). Either pretreatment or concurrent treatment significantly suppresses tumor growth compared 
to the other groups of mice (control, sorafenib and radiation). (B) The regions-of-interest (ROIs) of 
tumors as shown in (A) were quantified. Pretreatment of sorafenib combined with radiation shows the 
most prominent tumor inhibition. a1: p <  0.05, a2: p <  0.01 compared to that of the control; b1: p <  0.05, b2: 
p <  0.01 compared to that of radiation group; c1: p <  0.05, c2: p <  0.01 compared to that of the concurrent 
treatment. (C) The body weights of mice treated with combination of sorafenib and radiation remain similar 
to that of normal mice throughout the study period. However, the body weights of the control and irradiated 
mice drop significantly. ***p <  0.001 compared to that of the normal. (D) The body weight was measured by 
digital platform at day 18. ***p <  0.001 compared to that of the control. ##p <  0.01, ###p <  0.001 compared to 
that of the normal.
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tomography was performed on day 21 to reconstruct the images of mice heads. Figure  4A shows the 
representatives of three-dimensional and two-dimensional images of the zygomatic bone damage of each 
group. The zygoma of untreated control mouse was seriously damaged (pointed by an arrow). The dam-
age of zygomas were reduced in mice treated with sorafenib and radiation alone, respectively. Little or no 
visible damage of zygoma was observed in both groups of pretreat and concurrent, suggesting the bone 
invasion could be suppressed by combination treatment. The score of the bone damage was performed 
by five independent researchers in a blind manner (Fig. 4B). In addition, the expression level of p65 (a 
subunit of NF-κ B) in the tumor tissue was examined by immunohistostaining and the representative 
image of each group was shown in Fig. 4C. NF-κ B induced by radiation could be suppressed significantly 
by sorafenib.

Discussion
Current treatment protocol for OSCC with conventional fractionated radiotherapy delivers a total of 
66–70 Gy to the primary tumor and involved lymph nodes. However, radiation dose exceeding 72 Gy 
may lead to unacceptable rates of normal tissue injury19,20, which limits the option of dose-escalation 
to achieve superior tumor control. Sequential or concurrent administration of chemotherapeutic agents 

Figure 3. The effects of sorafenib and radiation on NF-κB activity and expressions of its downstream 
effector proteins in tumor tissues of SAS/luc-bearing mice. (A) The NF-κ B /DNA binding activity was 
measured by electrophoretic mobility shift assay (EMSA) using nuclear extracts from tumor tissues of mice. 
The NF-κ B/DNA binding activities are significantly suppressed by sorafenib alone, pre- and concurrent 
treatments, respectively, compared to those of the control and radiation. (B) Protein lysates extracted 
from tumor tissues of mice were assayed with Western blot. Expressions of radiation-induced NF-κ B 
downstream effector proteins, such as XIAP, VEGF, COX-2 and RANKL, are significantly suppressed by 
pre- and concurrent treatments of sorafenib with radiation. Bcl-2, cyclin D1, MMP-9, TNF-α and p-EPK are 
also suppressed. (C) Expression levels of pro-apoptotic proteins (cleaved caspase-8 and cleaved caspase-3) 
induced by radiation were further increased in the groups of pre- and concurrent treatments. β-Actin 
was used as the internal control. Ctrl: Control, SO: sorafenib, Rad: radiation, PRE: pretreatment, Conc: 
concurrent treatment.
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Figure 4. Zygomatic bone destruction in SAS/luc-bearing mouse model. (A) Zygomatic bone destruction 
in SAS/luc-bearing mouse model was assayed using micro-CT on day 32 post inoculation of tumor cells. 
The top row shows the top views of three-dimensional zygomatic bone images of mice, while the bottom 
row shows the bottom views of two-dimensional zygomatic bone images of the same mice. The zygomatic 
bone damage in the control mouse is demonstrated (pointed by an arrow). Notably, no or little damage to 
mandible and zygoma were found in mice treated with sorafenib combined with radiation, especially in mice 
of the pretreatment group. (B) The severity of zygomatic bone destruction was scored by five independent 
researchers. ***p <  0.001 compared to that of the DMSO-treated control, and ###p <  0.001 compared between 
the pre- and concurrent treatments. (C) Tumors from each group of mice were removed and sectioned 
for immunohistostaining of p65, a subunit of NF-κ B. Cells stained in brown indicate p65-positive. NF-κ B 
induced by radiation can be significantly suppressed by combination treatment of sorafenib and radiation. 
Bar =  100 μ m, magnification =  200 x. *p <  0.05 and **p <  0.01 compared to that of the normal. #p <  0.05 and 
##p <  0.01 compared to that of radiation group.
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to radiotherapy, such as fluorouracil and cisplatin21, paclitaxel22, docetaxel-cisplatin-fluorouracil23, 
carboplatin-fluorouracil24, is currently considered as the standard of care for advanced OSCC, which is 
classified as stage IV once mandibular bone or zygoma is invaded. Distant metastasis occurs in approxi-
mately 8–17% of patients who eventually die of the disease25. Hence, finding a strategy to reduce tumor 
growth and bone invasion is important for improving the treatment outcome.

The NF-κ B signaling pathway in the cell can be activated by radiation via degradation of inhibitor 
|B protein (Iκ B). Activation of NF-κ B subsequently leads to the expressions of proteins for pro-survival, 
anti-apoptosis, and results in the induction of radioresistance and tumorigenesis26. Constitutive acti-
vation of NF-κ B in human head and neck squamous cell carcinoma is correlated to the resistance to 
chemo- or radiation therapy, which can be reduced through inhibition of NF-κ B activation27. Sorafenib, 
a multi-kinase inhibitor, has been approved by FDA to treat human renal carcinoma and hepatoma. 
In our previous study, we have shown that sorafenib could suppress radiation-induced NF-κ B activity 
and the expressions of its downstream effector proteins in a human colorectal carcinoma-bearing ani-
mal model28. Synergistic effect of sorafenib combined with radiation on human OSCC in vitro also has 
been shown18. Furthermore, NF-κ B could be suppressed by sorafenib through the inhibition of RAF/
MEK/ERK pathway29. Here we demonstrate that sorafenib can sensitize human OSCC to radiation and 
suppress the expressions of carcinogenic proteins through the inhibition of NF-κ B in vivo (Fig.  3A). 
Although receptor tyrosine kinase inhibitors have been reported to be able to increase the level of COX-2,  
and lead to the development of drug resistance30,31, our results show that the expression of COX-2 in 
human OSCC can be suppressed by sorafenib in vivo. Furthermore, radiation-induced COX-2 expression 
also can be suppressed by sorafenib (Fig. 3B).

NF-κ B may also play an important role in bone destruction by cancer cells. A SCCVII, derived 
from a mouse OSCC cell line, bearing animal model used by Furuta et al. showed that zygomatic bone 
destruction was significantly suppressed by NBD peptide, a selective NF-κ B inhibitor, as determined 
with micro-CT32. Interestingly, the bone damage in SAS/luc2-bearing mouse model observed in this 
study is less severe compared to that of the SCCVII animal model. This difference may due to the inva-
sive capability that the SCCVII cancer cell is more invasive. In addition, cancer type and animal model 
may also contribute to the difference in bone invasiveness. The bones located in the vicinity of or sur-
rounded by OSCC are often invaded by cancer cells, and results in osteoclastogenesis and bone damage 
for patients33. Preosteoclasts differentiate into mature osteoclasts via binding of RANKL to RANK, and 
lead to bone destruction to provide nutrients for the surrounding cancer cells to proliferate and grow. 
Oral cancer cells can release cytokines such as interleukin-6 (IL-6) and parathyroid hormone-related 
peptide (PTHrP) to induce osteoclastogenesis and stimulate the production of RANKL34. All three iso-
forms of RANKL (isoforms 1, 2, and 3) have been reported to be expressed in several OSCC cell lines. 
OSCC cells secrete pro-osteoclastogenic RANKL, which contributes to bone invasion and eventually 
causes bone destruction11. Here we found that the expression of RANKL isoform 2, a soluble form 
secreted into the cytoplasm, in the tumor was suppressed in OSCC-bearing mice treated with sorafenib 
prior to or concomitant with radiation (Fig. 3B). Furthermore, reconstruction of zygomatic bone images 
obtained from micro-CT show little or no bone damage in mice treated with combination of sorafenib 
and radiation (Fig. 4A,B). Therapeutic effect of sorafenib for the recurrent or metastatic squamous cell 
carcinoma of head-and-neck or nasopharyngeal carcinoma in a phase II clinical trial has been studied 
with unsatisfactory outcome35. Here we suggest that therapeutic effect of sorafenib combined with radi-
ation against human oral carcinoma could be through the inhibition of RANKL/p-ERK/NF-κ B pathway 
and the reduction of NF-κB regulated downstream effector proteins (Fig. 5). Additionally, our results also 
suggest that bone destruction caused by tumor invasion in human OSCC is through RANKL-RANK/
NF-κ B/NFATc1 pathway36, which can be suppressed by sorafenib through releasing OPG from osteo-
blasts to suppress RANKL binding to RANK (Fig. 5). These findings may have the potential application 
for treating patients with OSCC in clinic.

Methods
Establishment of SAS/luc2 Cell Line and Cell Culture. The human oral squamous cell carci-
noma, SAS, cell line was kindly provided by professor Kuo-Wei Chang of the Department of Dentistry 
at National Yang-Ming University, Taipei, Taiwan. The SAS cell line was transfected with a vector 
using CMV promoter to drive luciferase-2 reporter gene and renamed as SAS/luc2, and maintained in 
Dulbecco’s modified Eagles’ medium (DMEM) supplemented with 5% penicillin/streptomycin (Gibco® , 
Grand Island, NY, USA), and 10% fetal bovine serum (FBS; Hyclone) at 37 °C with 5% CO2. G418 
(500 μ g/mL; Calbiochem, Darmstadt, Germany) was added to the medium to stabilize SAS/luc2 cell line.

Animals. The experimental procedures of the animal study were performed in accordance to the pro-
tocols approved by the Animal Care and Use Committee at National Yang-Ming University. Six-weeks-old 
male BALB/cAnN.Cg-Foxn1nu/CrlNarl nude mice were purchased from the National Laboratory Animal 
Center (Taiwan) and housed in a pathogen-free animal facility. The animals were fed sterilized mouse 
chow and water.
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Plasmid transfection and Selection of Stable Clones. The transfection of SAS cells was per-
formed using jetPEITM (Polyplus Transfection, Strasbourg, France). SAS cells (2 ×  106) were seeded in a 
10-cm dish and allowed to grow for 24 h. The p-CMV-luc2 vector (8 μ g) and 16 μ L of jetPEITM solution 
were diluted with 500 μ L and 484 μ L of 145 mM NaCl. The mixture was mixed evenly, and incubated at 
room temperature for 30 min. 1000 μ L jetPEITM/DNA mixture was then added to the SAS cells and incu-
bated at 37 °C for 24 h. Cells were trypsinized and cultured with DMEM supplemented with 1 mg/mL  
G418, 1% penicillin/streptomycin, and 10% FBS for 2 weeks. The survived clones were isolated and 
assayed with bioluminescent imaging (BLI), and renamed as SAS/luc2 cell line.

Extraction of Sorfenib from Nexavar tablets. The extraction of sorafenib from Nexavar tablet 
(Bayer Healthcare Co, USA) were conducted as mentioned previously28.

Orthotopic Human Oral Carcinoma-bearing Mouse Model. All male Balb/c nude mice were 
anesthetized with pentobarbital (50 mg/kg/mouse). 1.5 ×  106 SAS/luc2 cells were prepared in PBS, and 
injected into the right submucosal masseter of the mouse with a 29-gauge hypodermic needle. Mice were 
then randomly divided into six groups (n =  10/group): (a) normal; (b) control (0.1 ml PBS/mouse/d by 
gavage); (c) sorafenib alone [0.1 ml/mouse/d (10 mg/kg) by gavage], (d) radiation alone (single dose of 
6 Gy on day 1), (e) pretreatment [0.1 ml/mouse/d of sorafenib (10 mg/kg) for three days prior to 6 Gy 
irradiation, and continued till the end of the experiment], (f) concurrent [0.1 ml/mouse/d sorafenib 
(10 mg/kg) and 6 Gy irradiation on day 1, and continued sorafenib till the end of the experiment]. 
Radiation treatment was performed on the head and neck, while the rest of the body was shielded with 
a lead plate with 5 cm thickness. Irradiation was conducted using an X-ray irradiator (RS 2000; Rad 
Source Technologies, Suwanee, GA, USA) at a dose rate of 1.03 Gy/min, 80 cm source-to-skin distance 
(SSD), and field size of 30 ×  30 cm2.

Ex-vivo Western Blot Analysis. Lysates (60 μ g) were extracted from the tumor tissues of mice, and 
were separated on 8–12% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) then 
transferred onto polyvinylidene difluroide membrane (PVDF, Millipore, USA). The membranes were 
blocked with 5% non-fat milk, followed by incubated with appropriate primary antibodies (anti-XIAP, 
anti-VEGF, anti-Bcl-2, anti-cyclin D1, anti-MMP-9, anti-COX-2, anti-TNF-α , anti-RANKL, anti-OPG, 
anti-t-ERK, anti-p-ERK, anti-cytochrome C, anti-caspase 3 and anti-caspase 8 all purchased from 
Millipore) at 4 °C overnight with gentle shaking. A secondary peroxidase-conjugated anti-rabbit or 
anti-mouse antibody was diluted at 1:1000, followed by incubation for 1 hour at room temperature. The 
membranes were subjected to an enhanced chemiluminescence system, and immunoreactive bands were 

Figure 5. Schematic diagram depicting the signaling pathways involved in enhanced therapeutic efficacy 
and reduced bone erosion by combination treatment of sorafenib with ionizing radiation. Radiation 
induces cancer cell killing via enhancing the expressions of cytochrome C and cleaved caspases 3 and 8, so 
does sorafenib. Radiation also induces expressions of RANKL and ERK/NF-κ B and results in expressions of 
anti-apoptotic proteins, such as Bcl-2 and XIAP. RANKL released from OSCC cancer cells binds to RANK 
on the surface of osteoclast precursor to produce NF-κ B and NFATc1, and differentiates into osteoclast. 
These pathways, however, can be inhibited by sorafenib. S: sorafenib; NFATc1: Nuclear factor of activated 
T-cells, cytoplasmic 1.
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captured on the photographic film. The Image J software (National Institutes of Health, Bethesda, USA) 
was used for quantification. The experiments were repeated three times.

Ex Vivo Electrophoretic Mobility Shift Assay (EMSA). Nuclear proteins were extracted from 
tumor tissues of mice using the nuclear extraction kit (Chemicon International, Temecula, CA, USA). 
The binding activity of NF-κ B was analyzed with the EMSA kit (Thermo Fisher Scientific Inc., Rockford, 
IL, USA). The oligionucleotide sequence for NF-κ B is AGTTGAGGGGACTTTCCCAGGC. The 
non-labeled fragment sequence is GCCTGGGAAAGTCCCCTCAACT. Nuclear extracts were incubated 
with the biotin-labeled DNA probe at 25 °C for 20 min. A 5% polyacrylamide gel was used to separate the 
DNA-protein complexes and free oligonucleotides. After separation, the gel was transferred to a nylon 
membrane and cross-linked with an UV light, then further incubated with streptavidin-horseradish per-
oxidase for 15 min, and detected by enhanced chemiluminescence probe (ECL, Thermo Scientific Pierce 
Protein Biology Products, USA). The experiments were repeated three times.

Bioluminescent Imaging (BLI) In Vivo. Mice bearing SAS/luc2 tumors of each group (n =  5) were 
injected intraperitoneally with 200 μ L of 150 mg/kg D-luciferin in PBS, and anesthetized with 1–2% 
isoflurane 10 min before imaging. Mice were set onto the imaging platform and continuously exposed 
to 1–2% isoflurane throughout the acquisition time. The tumor growth was monitored with BLI using 
IVIS50 Imaging System (Xenogen, Alameda, CA, USA) twice a week for 3 weeks. The body weight of 
mice was monitored twice a week until the end of the study. The photons emitted from the tumor were 
assayed using IVIS50 Imaging System. The acquisition time was 30 sec. Regions of interest (ROIs) were 
drawn around the tumor and quantified with the Living Image software (Xenogen, Alameda, CA, USA) 
as photons/s/cm2/sr.

Micro-computed Tomography. Five weeks after tumor injection, five mice from each group were 
sacrificed and scanned with micro-computed tomography (micro-CT, Triumph X-O CT system, Gamma 
Medica Inc., Northridge, CA, USA). Two-dimensional and three-dimensional reconstruction images of 
the mouse head were acquired. The score of zygomatic bone destruction from the three-dimensional 
reconstruction image was evaluated as follows: 0: normal, 1: asymmetric, 2: having a fracture line, 3: 
zygomatic bone completely separated, and 4: destruction of more than 1/3 of the zygoma32. The severity 
of zygoma bone destruction was assessed by five independent researchers in a blinded manner. The 
experiments were repeated twice.

Immunohistochemistry of p65, Subunit of NF-κB. Sections of paraffin embedded tumor tissue 
on the glass slides obtained from each group were deparaffinized in xylene, and rehydrated with decreas-
ing concentrations of ethanol. The slides were then incubated in 3% H2O2 for 10 min. After washing, the 
slides were blocked with 5% normal goat serum for 5 min in a tight container, followed by incubation 
with primary anti-rabbit p65 antibody in a dilution of 1:100 (Millipore, USA) at 4 °C overnight. Finally, 
slides were counterstained with hematoxylin. At least three slides from each group were studied.

Statistical Analysis. All data were represented with the mean ±  standard error. Student’s t-test was 
used for the comparison between two groups. Kaplan-Meier plotting was used for the survival analysis, 
and the data were compared using the log-rank test. Difference between the means was considered sig-
nificant if p <  0.05 or less.
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