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Key evidence of the role of 
desertification in protecting the 
underlying permafrost in the 
Qinghai–Tibet Plateau
Shengbo Xie1, Jianjun Qu1, Yuanming Lai1, Xiangtian Xu2 & Yingjun Pang3

Previous research has shown that the temperature of underlying permafrost decreases after the 
ground surface is covered with sand. No significant conclusions have yet been drawn that explain 
why this happens, because the heat transfer mechanism effects of the sand layer on the underlying 
permafrost remain unclear. These mechanisms were studied in the present work. We found that 
the upward shortwave radiation flux of the Qinghai-Tibet Plateau ground surface with a sand layer 
covering was higher than that of the surface without sand; thus, the atmospheric heat reflected by 
the sand layer is greater than that reflected by the surface without sand. Therefore, the net radiation 
of the surface with the sand layer is lower than that of the surface without sand, which reduces 
the heat available to warm the sand layer. Because sand is both a porous medium and a weak 
pervious conductor with poor heat conductivity, less heat is conducted through the sand layer to the 
underground permafrost than in soil without the sand deposition layer. This phenomenon results in a 
decrease in the ground temperature of the permafrost under the sand layer, which plays a key role in 
protecting the permafrost.

The Qinghai–Tibet Plateau features a permafrost region with a total area of 149 ×  104 km2. This region is 
the world’s largest high–altitude permafrost area in the middle and low–latitude zones and accounts for 
69.3% of the total permafrost area in China. This unique environment, which is characterized by high 
elevation and low temperature1–3, is distinguished by frequent freeze–thaw cycles4, strong frost weath-
ering and abundant sources of sandy materials. Under dry and windy climate conditions, release and 
elutriation of sandy materials on the ground surface increase, the wind–sand activity is strong5–9, and 
desertification is frequent10. These natural processes result in various sand depositions on the ground 
surface, which result in changes to the properties of the Qinghai–Tibet Plateau ground surface. Such 
changes, in turn, affect the  radiation and energy balance at the ground  surface11 as well as water and 
heat fluxes in the ground12–15. In the permafrost regions of the Plateau, the ecological environment, par-
ticularly the permafrost environment, is highly fragile16,17; even a minimal change in the ground surface 
properties can influence the underlying permafrost through various processes, including radiation, water 
and heat exchange18.

Several recent studies have been conducted on variation in the underlying permafrost after the ground 
surface is covered with sand, including the role of a sand layer on the convective cooling effect often 
observed in permafrost areas19,20. An interesting finding at the Honglianghe River of the Qinghai–Tibet 
Plateau is that permafrost temperatures underneath the sand layer are lower than that of permafrost 
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underneath surfaces without sand cover (Fig. 1)21. This result has caused great concern. Thus, it is impor-
tant to determine why permafrost temperatures decrease under sand layers. The reasons behind this 
decrease in temperature are currently unclear. The potential influence of future climate warming on 
permafrost in cold regions provides the impetus for seeking a better understanding of the influence 
of sand layers on underlying permafrost22,23. Therefore, the authors conducted an experiment on the 
Qinghai–Tibet Plateau hinterland for field observation, combined with laboratory analyses and tests, to 
investigate the heat transfer mechanisms of the ground surface sand layer on the underlying permafrost 
in this region.

Experimental design and research methods
Research data were obtained by field observation and laboratory experiments. Variations in radiation 
and reflectance on the surface of the sand layer, the heat flux in the sand layer, and the temperature 
of the permafrost underneath the sand layer were observed by means of the synchronization contrast 
method21. The site for the observational study was located at the Honglianghe River of the Qinghai–Tibet 
Plateau. The geographic coordinates of the study area are 35°03’13” N, 93°01’07” E, and the plateau 
has an altitude of 4,658 m. The study site was located on the Qinghai–Tibet Plateau hinterland (Fig. 2), 
where the vegetation is sparse, the dunes are widespread on the ground surface, and permafrost has 
developed underground. The convective cooling effect is not obvious at this study site due to a lack of 
coarse blocky material. We selected a typical dune covering an area of 20 m ×  15 m that had an average 
sand bed thickness of 1 m. The dune centre is the primary observation area. A net radiometer with four 
components at a height of 1 m above the sand surface was erected on the sand layer (Hukseflux Thermal 
Sensors, The Netherlands). A heat flux plate was buried at a depth of 0.05 m below the surface of the sand 
layer (Hukseflux Thermal Sensors). A temperature–measuring hole was dug underneath the sand layer 
to observe the ground temperature of the permafrost. In addition to the dune, a natural ground surface 
without sand deposition was selected as the second observation area. The soil texture of the ground sur-
face without sand deposition was that of argillaceous siltstone. A net radiometer with four components 
at a height of 1 m above the surface was also erected on this surface, and a heat flux plate was buried at 
a depth of 0.05 m below the surface of the soil. A temperature–measuring hole was dug underneath the 
natural ground surface to observe the ground temperature of the permafrost. The distance between the 
first and second observation areas was 20 m (Fig.  3). The instruments were connected by data lines to 
the automatic data logger. The data logger collected observation data from the net radiometers and heat 
flux plates every 30 min, with the total observation time lasting for one year (September 2012 to August 
2013). Local sand and soil samples were also collected. The granularity of the samples was tested in 
the laboratory using a laser particle size analyzer, and thermal conductivity was determined using the 
unsteady state hot wire method.

Research results
Albedo.  The annual average albedo of the sand layer at the Honglianghe River of the Qinghai–Tibet 
Plateau is 0.30, whereas the annual average albedo of the surface without the sand layer is 0.25. Based 
on the diurnal variation graph of the annual average albedo (Fig. 4), the albedo of the sand layer began 
to increase between 5:30 and 6:00, followed by a rapid increase to a maximum of 0.33 at 7:30, which is 
the maximum albedo for the day. The maximum albedo in the afternoon was 0.27, which was reached at 
16:30. Thereafter, the values decreased rapidly and returned to zero between 18:30 and 19:00. The albedo 
of the surface without the sand layer began to increase from 6:00 to 6:30 and then increased rapidly to a 
maximum of 0.24 at 7:30. This value was maintained until 16:30; thereafter, the value decreased rapidly 

Figure 1.  Temperature variation in the permafrost underneath the sand layer at the Honglianghe River 
of the Qinghai–Tibet Plateau (2011). 
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and returned to zero between 18:00 and 18:30. In addition to the annual average albedo of the sand layer 
being higher than that of the surface without sand, the diurnal variation, daily maximum of the annual 
average albedo, and duration of the positive value of the former were all greater than those of the latter 
(Fig. 4).

Figure 2.  Location map of Honglianghe River of the Qinghai-Tibet Plateau (the map was edited and 
generated by Mapgis 6.7 which is a Chinese GIS software, Shengbo Xie created this map). 

Figure 3.  Positions of the observation points at the experimental field (the photograph taken by 
Shengbo Xie at the experimental field of Honglianghe River of the Qinghai–Tibet Plateau). 
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Radiation.  The four–component radiation and net radiation observations for the two study sites are 
shown in Table 1 and Fig. 5. For both the sand layer and the surface without sand, the annual average 
flux density and yearly total are highest for the upward longwave radiation and lowest for the upward 
shortwave radiation. The flux densities for downward shortwave radiation and downward longwave radi-
ation are intermediate, with minimal differences observed between these last two components. The flux 
densities of the four-component radiation during summer and autumn are greater than those during 
winter and spring. For both the annual averages and yearly total values, the flux densities for downward 
shortwave, downward longwave, and upward longwave radiation for the sand layer are nearly equal to 
those for the surface without sand. However, flux density for the upward shortwave radiation of the sand 
layer is significantly greater than those of the surface without sand, with increases of 9.50 W·m−2 for the 
annual averages and 299.81 MJ for the yearly totals. The observed net radiation values during summer 
and autumn are greater than those during winter and spring. The annual average value of the net radiant 
flux density and the yearly total value of net radiation of the sand layer are significantly lower than those 
of the surface without sand, with corresponding values showing decreases of 11.17 W m−2 and 352.16 MJ.

The diurnal variation of the annual average radiant flux density is shown in Fig. 6. Based on the four–
component radiation observations, the four–component radiant flux density during the day is greater 
than that during the night, both in the sand layer and in the surface without sand, and reached peak 
values at noon. The downward shortwave radiation exhibited the maximum diurnal flux density ampli-
tude, followed by, in decreasing order, the upward shortwave radiation, the upward longwave radiation 
and the downward longwave radiation. The net radiant flux density in both the sand layer and the sur-
face without sand is negative at night, with minimal changes. The net radiant flux density turned from 
negative to positive between 6:30 and 7:00, increased gradually to a maximum value at 12:00 noon, and 
then decreased gradually. The net radiant flux density turned from positive to negative between 17:00 
and 17:30. The net radiant flux density during the day is greater than that during the night, and the net 
radiant flux density of the sand layer is nearly equal to that of the surface without sand during the night. 
However, the net radiant flux density of the sand layer is significantly lower than that of the surface 
without sand during the day, with a maximum difference of 40.47 W·m−2.

Figure 4.  Intra-daily variation of albedo averaged over each day of one year at the Honglianghe River of 
the Qinghai–Tibet Plateau (September 2012 to August 2013). 

Radiation Sand layer Without sand Sand/no sand × 100%

Downward shortwave radiation
Annual average radiant flux density (W·m−2) 221.27 222.77 99.33

Yearly total values (MJ) 6987.60 7034.69 99.33

Upward shortwave radiation
Annual average radiant flux density (W·m−2) 59.84 50.34 118.87

Yearly total values (MJ) 1889.06 1589.25 118.86

Downward longwave radiation
Annual average radiant flux density (W·m−2) 214.81 216.45 99.24

Yearly total values (MJ) 6773.29 6824.92 99.24

Upward longwave radiation
Annual average radiant flux density (W·m−2) 315.32 316.79 99.54

Yearly total values (MJ) 9947.25 9993.67 99.54

Net radiation
Annual average radiant flux density (W·m−2) 60.92 72.09 84.51

Yearly total values (MJ) 1924.55 2276.71 84.53

Table 1.   Radiation observations for the sand layer and the surface without sand at the Honglianghe 
River of the Qinghai–Tibet Plateau (September 2012 to August 2013).
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Soil heat flux.  Both the sand layer and the surface without sand at the Honglianghe River of the 
Qinghai–Tibet Plateau are dominated by heat absorbing during summer, when the direction of soil heat 
flux is downwards; heat is released during winter, when the direction of soil heat flux is upwards (Fig. 7). 
Heat is absorbed during the day and released at night (Fig. 8). Diurnally, the soil heat flux of the sand 
layer increased significantly from 6:00, transitioned from heat release to heat absorbing between 7:30 
and 8:00, and reached maximum absorbing at 11:30 (Fig. 7). Thereafter, the soil heat flux decreased and 
changed from heat absorbing to heat release between 16:00 and 16:30. The soil heat flux did not change 
significantly during the night. The soil heat flux of the surface without sand increased significantly from 
6:00, turned from heat release to heat absorbing between 7:30 and 8:00, and reached maximum absorbing 
at 12:00 noon. Thereafter, the soil heat flux decreased and changed from heat absorbing to heat release 
between 17:00 and 17:30. The soil heat flux did not change significantly during the night. The duration 
of heat absorbing by the sand layer during the day is shorter than that by the surface without sand, and 
the absorbing is less extensive. The diurnal amplitude and the annual average value of the soil heat flux 
of the sand layer are lower than those of the surface without sand.

Analyses and discussion.  The upward shortwave radiation observed after the ground surface was 
covered with sand is greater than that of the surface without sand because the albedo of the former is 
higher than that of the latter. When the radiation fluxes of other components are nearly equal, the sand 
layer reflects more atmospheric heat than does the surface without sand. Therefore, the net radiation 
of the sand layer is lower than that of the surface without the sand layer, which means that less heat 
is available to warm the surface of the sand layer than the surface without sand. Based on the Stefan–
Boltzmann law, we have

( )ε σ ε= + − ( )
↑ ↓E T E1 1L g Lg g

4

Figure 5.  Variation in radiant flux density within the year at the Honglianghe River of the Qinghai–
Tibet Plateau. 

Figure 6.  Intra-daily variation of radiant flux density averaged over each day of one year at the 
Honglianghe River of the Qinghai–Tibet Plateau (September 2012 to August 2013). 
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in which ↑EL is the upward longwave radiation of the ground surface (W·m−2); εg is the emissivity of the 
ground surface; σ  is the Stefan–Boltzmann constant (5.6696 ×  10−8 W·m−2·K−4); T g  is the temperature of 
the ground surface (°C); and ↓EL is the downward longwave radiation of the atmosphere (W·m−2).

Thus, we have:

( )ε
ε σ

=








− − 





 ( )

↑ ↓

T
E E1

2
g

L g L

g

1
4

Based on the equation (2), if the emissivity of the ground surface is 0.95, the temperature of the sur-
face of the sand layer must be 1.07 °C and the temperature of the surface without the sand layer must be 
1.39 °C. Thus, the temperature on the surface of the sand layer is lower than that of the surface without 
sand, as observed. If molecular conduction is the main process of soil heat transmission in homogene-
ous soil, the Fourier law can be used to approximately the heat fluxes at a given depth of the soil layer:

λ λ= −
∂
∂
= −

−
∆ ( )q T

z
T T

z 3
2 1

where λ is the thermal conductivity of the soil layer (W·m−1 °C−1). Based on the laboratory test results, 
the thermal conductivity of the sand and soil sample are 0.36 and 0.43 W·m−1 °C−1, respectively. Here, 
T is the temperature of the soil layer (°C), T1 is the temperature value of the upper surface of the soil 
layer, T2 is the temperature value of the lower surface of the soil layer, and Δ z is the thickness of the 
soil layer (m).

Based on equation (3), the heat fluxes of the sand layer at depths of 0.5 and 1 m are 0.17 and 
0.12 W·m−2, respectively. The heat fluxes of the surface without sand at depths of 0.5 and 1 m are 0.76 
and 0.46 W·m−2, respectively. The heat flux in the sand layer is less than that in the surface without sand. 
These results are consistent with the heat flux results measured in the field.

Figure 7.  Variation in the soil heat flux within the year at the Honglianghe River of the Qinghai–Tibet 
Plateau. 

Figure 8.  Intra-daily variation of the soil heat flux averaged over each day of one year at the Honglianghe 
River of the Qinghai–Tibet Plateau (September 2012 to August 2013). 
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Based on analysis of the laboratory samples, the particle sizes for the sand in the experimental field 
at the Honglianghe River were predominately in the range of 0.10–0.25 mm and 0.25–0.50 mm. Sand 
with particle sizes in the range of 0.05–0.10 mm was found infrequently, and sand with particle sizes 
in the range of 0.001–0.005 and 0.005–0.05 mm was not found (Table 2). A significant amount of space 
was also present between sand particles. The soil sample showed different characteristics. Although par-
ticle sizes in the range of 0.10–0.25 mm dominated the study area soil, particle sizes in the ranges of 
0.001–0.005 mm, 0.005–0.05 mm, and 0.05–0.10 mm, were also fairly high (Table 2). The gaps between 
soil particles were mainly filled with fine materials, which caused the porosity of the soil to be less than 
that of the sand layer.

The thermal conductivity of the sand layer is smaller than that of the soil layer13. Under certain atmos-
pheric driving conditions, heat flux within soil is influenced by a number of factors, such as thermal 
diffusion coefficient and water content12,15. Compared with the soil without the sand deposition layer, the 
sand layer has a lower water content and a better separation of sandy material (Table 2). These charac-
teristics give the sand layer a low soil heat flux and low ground temperature amplitude14. The sand layer 
is clearly both a porous medium and a weak pervious conductor with poor heat conductivity; therefore, 
the heat conducted through the sand layer to the underground permafrost is less than that in the soil 
without the sand layer.

Given the rapid developments in engineering construction projects that are undertaken in cold 
regions24–27, preventing permafrost degradation is a primary concern of academic communities28–32. The 
decrease in ground temperature of the permafrost under a sand layer was confirmed by the experimental 
results and analyses of this study. These results present guiding significance for protecting the permafrost 
in sandy regions of the Qinghai–Tibet Plateau and other similar zones where engineering construction 
projects are required.

Conclusions
The upward shortwave radiation flux of the ground surface of the Qinghai–Tibet Plateau covered with a 
sand layer increases because the surface albedo increases. When the radiation fluxes of other components 
are nearly equal, the atmospheric heat reflected by the sand layer increases. Therefore, the net radiation 
of the sand layer decreases, which reduces the heat available to warm the surface of the sand layer.

The soil heat flux decreases after the ground surface of the Qinghai–Tibet Plateau is covered with 
sandy depositions because the sand layer is both a porous medium and a weak pervious conductor with 
poor heat conductivity, therefore, the heat conducted through the sand layer to the underground perma-
frost decreases. This phenomenon induces the ground temperature of the permafrost to decrease under 
the sand layer, which plays a key role in protecting the permafrost.
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