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Copy number variation in the 
region harboring SOX9 gene in 
dogs with testicular/ovotesticular 
disorder of sex development 
(78,XX; SRY-negative)
Malgorzata Marcinkowska-Swojak1,*, Izabela Szczerbal2,*, Hubert Pausch3, 
Joanna Nowacka-Woszuk2, Krzysztof Flisikowski4, Stanislaw Dzimira5, Wojciech Nizanski6, 
Rita Payan-Carreira7, Ruedi Fries3, Piotr Kozlowski1 & Marek Switonski2

Although the disorder of sex development in dogs with female karyotype (XX DSD) is quite common, 
its molecular basis is still unclear. Among mutations underlying XX DSD in mammals are duplication 
of a long sequence upstream of the SOX9 gene (RevSex) and duplication of the SOX9 gene (also 
observed in dogs). We performed a comparative analysis of 16 XX DSD and 30 control female dogs, 
using FISH and MLPA approaches. Our study was focused on a region harboring SOX9 and a region 
orthologous to the human RevSex (CanRevSex), which was located by in silico analysis downstream 
of SOX9. Two highly polymorphic copy number variable regions (CNVRs): CNVR1 upstream of SOX9 
and CNVR2 encompassing CanRevSex were identified. Although none of the detected copy number 
variants were specific to either affected or control animals, we observed that the average number 
of copies in CNVR1 was higher in XX DSD. No copy variation of SOX9 was observed. Our extensive 
studies have excluded duplication of SOX9 as the common cause of XX DSD in analyzed samples. 
However, it remains possible that the causative mutation is hidden in highly polymorphic CNVR1.

The most common canine disorder of sex development (DSD) manifests as testes or ovotestes without 
gametogenic activity, normal female karyotype (78,XX) and lack of the SRY gene1. This abnormality, 
termed testicular or ovotesticular XX DSD, is also quite common in other mammals, including humans2 
and livestock species – goat, pig, horse3.

The genetic basis of XX DSD phenotype is not uniform between mammalian species. In humans 
heterozygous duplication and triplication of a long sequence (approx. 78 kb) located 0.5 Mb upstream 
of SOX9, called RevSex4–6 (in this study called HumRevSex) or testis specific SOX9 enhancer candi-
date region7 are considered as the causative mutations. Recently the XX DSD HumRevSex region was 
delimited to 68 kb and distinguished from the XY DSD RevSex region8. This region likely contains an 
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enhancer regulatory sequence which duplicated may trigger SOX9 expression in the absence of the SRY 
gene product9. In a single case of testicular XX DSD in roe deer three copies of the entire SOX9 gene, 
including 5′ - and 3′ -UTR, were detected by quantitative PCR (qPCR)10. In pigs, genome wide association 
study (GWAS) of related animals with XX DSD implicated the SOX9 region, but did not pinpoint the 
causative mutation11.

Other regions have also been implicated in XX DSD. The first causative mutations were identified in 
human RSPO1 gene, which is involved in ovarian development in humans12. In goats a 11.7 kb deletion 
near another gene (FOXL2), also important for ovarian development, is responsible for this disorder13,14. 
Finally, the duplication of SOX3 gene has been identified in humans with XX DSD phenotype15.

There have been numerous attempts to identify the causative mutation or linked genetic markers 
in dogs, but so far without success [reviewed by1,16,17]. It has recently been claimed that some canine 
XX DSD cases are caused by duplication of a 577 kb region containing the SOX9 gene, as detected by 
array comparative genome hybridization (aCGH) and confirmed by real time qPCR. The mutation was 
detected in two of seven XX DSD dogs analyzed and study of control samples was not performed18. 
Although, it has to be noted that duplication of SOX9 in control samples was not detected in any of copy 
number variants (CNVs) discovery studies19–23.

Dogs show exceptional phenotypic variability and a high frequency of hereditary diseases, some of 
which are known to be due to structural variations in the genome24. Identification of copy number vari-
able regions (CNVRs) in the dog is thus of particular interest. Rossi et al.18 suggested a potential associ-
ation between XX DSD and a duplication in the SOX9 region, and we considered this worthy of further 
investigation. Here we describe the use of cytogenetic mapping (fluorescence in situ hybridization, FISH) 
and multiplex ligation-dependent probe amplification (MLPA) approaches to identify two highly variable 
CNVRs, and show that SOX9 is not duplicated in any of the samples analyzed.

Results
In silico analysis of the SOX9 region. Since it is known that critical regulatory region for human 
SOX9 is located approx. 0.5 Mb upstream of the gene we anticipated a similar location for regulatory 
region in the dog genome. Unexpectedly, sequence similarity analysis of HumRevSex and canine ref-
erence genome (http://genome.ucsc.edu/cgi-bin/hgBlat, BLAT, UCSC GB) revealed that the predicted 
position of the canine sequence, termed CanRevSex (chr9:17605057-17642567, CanFam3.1), is very dif-
ferent, being located more than 9 Mb downstream of SOX9 (Fig.  1). CanRevSex also spans only about 
37 kb (part of HumRevSex) and shows relatively low homology to HumRevSex (86.1%). CanRevSex and 
HumRevSex differ in their sequence and genomic location, but it is not clear whether they are similar 
in function. We thus decided to analyze the region upstream of SOX9 and the downstream CanRevSex 
region, using FISH and MLPA for locus-specific CNVs analysis.

Analysis of the SOX9 region by FISH. Cytogenetic study of the SOX9 upstream region commenced 
with verification of BAC clones on one animal with XX DSD and one healthy reference female dog 
(data not shown). The BAC-5 clone, located closest to SOX9, produced specific and typical hybridization 
signals on CFA9. The second clone (BAC-4) in the contig order, upstream of the SOX9 gene (Fig.  1), 
also produced typical hybridization signals on CFA9, but additional signals were found on a long arm 
of the chromosome X (CFAXq), where there is a block of constitutive heterochromatin. The BAC-3 

Figure 1. Map of the region studied. From top to bottom are indicated: segmental duplication (SD) 
according to Nicholas et al.20, RevSeq genes (blue), FISH probes (green) and MLPA probes (black) with IDs 
indicated next to or below. The SOX9 with the upstream region and CanRevSex region are shown at higher 
resolution. Regions highlighted in yellow correspond to CNVRs detected in this study. The position of 
selected elements is indicated under the panels (please note that the scale is different for each panel).

http://genome.ucsc.edu/cgi-bin/hgBlat
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clone showed variation of the hybridization signals. A typical signal was present on CFA9 in a reference 
female dog, while in the XX DSD case the signal appeared in only one copy of the CFA9. Signals were 
also detected on one small autosome, which was identified as CFA18 by in silico analysis of sequence 
homology. Signals on CFA18 were observed in XX DSD and reference dogs. Another two clones (BAC-1 
and BAC-2) showed hybridization signal at the same position as the BAC-4 clone. BAC-1 and BAC-2 
signals were observed at the expected position on CFA9, and additional signals on the long arm of the 
X chromosome. The BAC-2 signal intensity showed variability, but because the probe bound to other 
chromosomes, it was not deemed a reliable indicator for CNV analysis.

Results of the FISH experiment indicated a potential CNVR in the region detected by BAC-3. To 
investigate this further, four groups of animals were included in the FISH study: XX DSD dogs (A5, A6, 
A7, A8, B3, B4), healthy relatives of A6 and B4 XX DSD dogs (C2, C3, C4 and C5) and 4 reference, fertile 
female dogs (F1–F4). Dual-colour FISH was applied, using two probes, BAC-3 and BAC-5. The BAC-3 
clone was used as a probe for CNV detection (labelled in red), while BAC-5 was used as a CFA9-specific 
reference probe (labelled in green). The hybridization signal produced by the BAC-3 probe showed varia-
tion in the animals studied (Fig. 2). Two large signals on CFA9 were found in A5, A6, A8, B4 and C2 ani-
mals, a large signal on one copy of CFA9 and a weak signal on the second copy of CFA9 were observed 
in A7, C3, C4 and C5, while in B3 the signal was visible on only one copy of CFA9. Similar variation 

Figure 2. Representative images of FISH analysis with two BAC clones: BAC-5 (green) and BAC-3 (red), 
for 6 animals. Red signals were observed on CFA9 and CFA18, while the green signal was present only on 
CFA9. Size variation of the red FISH signal in CFA9 was described as: large (+ + ), normal (+ ) and lack 
of the signal (− ). The following FISH patterns are visible: A7 (+ + /+ ), A8 (+ + /+ + ), B3 (+ + /− ), B4 
(+ + /+ + ), C2 (+ + /+ + ) and F1 (+ + /+ ).
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was observed on CFA9 in reference animals (F1–F4). These results suggested that hybridization signal 
variability is a common variation in this species. Inheritance of the CNV was confirmed in Pug family.

Analysis of the SOX9 and CanRevSex regions by MLPA. To investigate the canine SOX9 region 
in more detail, we developed a custom-made CanSOX9+  MLPA assay composed of 21 probes and cov-
ering the following sub-regions of interest: i) SOX9 gene, ii) the region of ~620 kb in length upstream of 
the SOX9 gene and iii) the 37,5 kb CanRevSex region (Fig. 1).

MLPA analysis was performed on 45 dog samples from 21 different breeds (for details see Table 1). 
Results for individual samples are shown as bar plots in Suppl. Fig. S1 and summarized in the column scat-
ter plot in Fig. 3. As shown in Fig. 3, three probes located in the CanRevSex region (cRevSex_1-cRevSex_3) 
and seven probes located in the region 0.4 Mb upstream of SOX9 (5′ SOX9_01-5′ SOX9_07) show very 
high signal variation (average coefficient of variation (aCV) =  0.55, compared to average CV =  0.14 and 
CV =  0.11 in non-polymorphic and control regions, respectively), indicating the extensive copy number 
(CN) variation, including homozygous deletions, in these regions. This result shows that two CNVRs are 
present in the studied SOX9 region: CNVR1 upstream of SOX9 gene of a minimal size of 214 433 bp, and 
CNVR2 in the CanRevSex region of a minimal size of 27 961 bp. The relative CN of these regions ranges 
from 0 to over 8 copies. Also, as shown in Fig. 3 and S1, there is no sign of CNVs within the SOX9 gene 
(average CV =  0.14). To confirm this result, we replicated our analysis with the modified CanSOX9+  

Animal Breed Reference

Technique applied

FISH MLPA

Group A – testicular or ovotesticular 78,XX and SRY-negative DSD phenotypical females with 
enlarged clitoris

A1 Cocker spaniel 47 − + 

A2 Bernese Mountain Dog 48 − + 

A3 American Staffordshire Terrier 16 − + 

A4 American Staffordshire Terrier 49 − + 

A5 Leonberger 16 + + 

A6 Pug This study + + 

A7 Beagle This study + + 

A8 Cocker spaniel This study + + 

Group B – 78,XX and SRY-negative DSD phenotypical females with enlarged clitoris but with 
unknown histology of gonads

B1 American Staffordshire Terrier 16 − + 

B2 Tibetan Terrier 16 − + 

B3 French Bulldog 16 + + 

B4 Pug This study + + 

B5 American Staffordshire Terrier 49 − + 

B7 Miniature Pinscher 49 − + 

B8 German Shepherd 50 − + 

B9 Yorkshire Terrier 16 − + 

Group C – Ancestors of 2 fullsibs with DSD (A6 and B4)

C2 Pug, father of A6 and B4 This study + + 

C3 Pug, mother of A6 and B4 This study + + 

C4 Pug, father of C2 and C3 This study + + 

C5 Pug, mother of C2 This study + − 

Group D - 16 control females representing breeds in which DSD has been 
reported: American Staffordshire Terrier (4), Beagle (2), German Shepherd, 
Cocker Spaniel (2), Pug (2), Bernese Mountain Dog, Yorkshire Terrier (3) 
and French Bulldog

− + 

Group E - 10 control females representing breeds in which DSD has not 
so far been reported: Rottweiler, Poodle, Mastiff, Pekingese, Bichon Friese, 
Chihuahua, Boxer, Dachshund, Briard, Labrador

− + 

Group F – 4 control females used for FISH analysis: Akita, Irish Setter, Shih 
Tzu and mongrel + − 

Table 1. Characterization of the dogs studied.
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assay excluding probes located in detected CNVRs. As Suppl. Fig.  S2 shows, this confirmed the absence 
of CNV in SOX9 gene in the analyzed samples.

As shown in Suppl. Fig. S1 CNVs do not occur at random in the variable regions, but the identified 
CNVs often extend over several consecutive probes. Among the most common CNVs observed are: i) 
gains of the region from probe 5′ SOX9_03 to probe 5′ SOX9_07 (5′ SOX9_03-07); ii) deletions of probes 
5′ SOX9_02 and 5′ SOX9_06-07; or iii) gains of CanRevSex region (cRevSex_1-3). Although the pattern 
of the observed variants is relatively conservative, it has to be noted that the determined CN values are 
relative and may differ somewhat depending on the reference samples used.

Detailed analysis of the variation observed in the regions tested showed that extensive CN variation 
occurs both in affected and control samples and that there is no unambiguous relationship between 
observed CNVs and the XX DSD phenotype (Fig. 3). Although we observed some specific CNV patterns 
for different breeds, especially for the CanRevSex region (Suppl. Fig. S3), most CNVs occurred in more 
than one breed and were not breed-specific.

Due to the lack of a simple relationship between CNVs and XX DSD phenotype, we decided to 
compare the relative signal distribution between samples from two groups of animals: XX DSD females 
(group A +  B) and healthy females (group D +  E) (Suppl. Fig. S4). This analysis demonstrated that in 
the region covered by six consecutive probes (5′ SOX9_02-07) XX DSD animals showed increased aver-
age CN values compared to control samples. The strongest association (the highest signal difference 
between groups) was observed for probe 5′ SOX9_02, which showed a significantly higher average relative 
signal in XX DSD females than in healthy females (3.23 vs 1.54, respectively; Mann-Whitney U test, p 
value =  0.0008). Similar CN differences were observed when affected animals (group A +  B) were com-
pared only with animals from group D, and no substantial differences were observed between groups D 
and E. These results suggest that the causative mutation for XX DSD may be located in this region. It has 
to be noted, however, that the observed association may result from heterogeneity and different breed 
composition of compared groups.

We then analyzed the segregation of copy number changes in Pug family, which consisted of two 
affected siblings and their healthy parents (Fig. 4). We did not analyze grandparents of the affected sib-
lings, due to the lack of grandfather DNA (C5) and the repeatedly poor quality of MLPA (non interpret-
able) results of the grandmother sample (C4). Both XX DSD animals (A6 and B4) showed a clear signal 
increase for probes 5′ SOX9_01-07. A similar signal increase was observed in the father (C2), but not the 
mother (C3). The increased MLPA signal correlated with results of the FISH analysis. Unfortunately, we 
could not analyze other littermates, and were thus unable to conclude, whether the increase of copies in 
XX DSD animals represents an association or is coincidental.

Discussion
Mutations in the region upstream of SOX9 are responsible for several human genetic diseases25, including 
XX DSD, which is associated with duplications or triplications of the HumRevSex region located approx. 

Figure 3. MLPA results for all tested samples. The column scatter plot represents the relative copy number 
(y-axis) of each CanSOX9+  probe (x-axis). Each dot represents one sample. Colored dots represent samples 
of XX, SRY-negative, testicular or ovotesticular DSD females (group A, solid red dots) and XX, SRY-negative 
DSD females with unknown gonad histology (group B, open red dots). Blue dots represent reference females 
(groups D and E).
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0.5 Mb upstream of SOX95,6. Different techniques can be used to detect CNVRs26,27 and we applied two 
of them (FISH and MLPA) to compare region harboring SOX9 in XX DSD dogs and normal, fertile 
female dogs.

FISH analyses revealed differences of the hybridization signal size for one of five BAC probes tested 
for 5′ -flanking region of the dog SOX9 gene. To visualize or confirm variation in this CNVR different 
types of FISH approaches can be applied using BAC or fosmid probes to detect FISH signal intensity28–31. 
We used a standard FISH procedure with BAC clones to find out whether different signal intensity 
variants exist among the XX DSD and control dogs. The size of inserts in the used BAC clones varied 
from 165–203 kb. The clone which revealed a very polymorphic fragment upstream of the SOX9 (BAC-3) 
carried the 165 kb long insert. Due to a visible variation of the FISH signal we assumed that there is an 
extensive polymorphism in the region studied. An advantage of the FISH approach is visualization of 
CNVs size differences in homologous chromosomes, however, it does not indicate the precise CN in a 
locus of interest.

To precisely characterize CNVR detected by FISH, we employed the MLPA technique with a set of 21 
probes designed to study the SOX9 region (~650 kb) and the CanRevSex region (~40 kb), located ~9 Mb 
downstream of SOX9. This approach allowed us to conclude that there was no SOX9 duplication in any 
of the samples tested. This observation contrasts with results of Rossi et al.18 who claimed that duplica-
tion of a large region, including entire SOX9 gene, is a relevant cause of XX DSD. A similar association 
between SOX9 duplication and XX DSD has also been reported for a roe deer10 and a boy32. However, 
both were single cases analyzed by qPCR. The lack of SOX9 duplication in our relatively large cohort of 
XX DSD females at least suggests it is not a common cause of XX DSD in dogs.

The MLPA approach also allowed us to identify two highly variable regions: CNVR1 upstream of 
SOX9, and CNVR2 in the CanRevSex region downstream of SOX9. The location and observed variation 
of CNVR1 correlate well with the FISH analysis (BAC-3 probe). Because CNVs in both CNVRs were 
observed in affected and healthy animals they do not provide a simple explanation of the disorder. 
However, the association of the higher CN in the CNVR1 (from probes 5′ SOX9_01 to 5′ SOX9_07) with 
XX DSD phenotype suggests that this region may harbor CNV or some other genetic variation associated 
with XX DSD. This association is in line with our FISH results (BAC-3 probe) and with results of Pug 
family analysis in which high CN value in CNVR1 are observed in two affected siblings but not in the 
normal mother. The detection of two CNVRs in the SOX9 region generally confirms previous reports. 
CNVR1 has been described previously in two genome-wide studies20,33 and CNVR2 in six genome-wide 
studies19,20,22,23,33,34 (Suppl. Fig. S5). Both CNVRs detected in this study co-localize with previously iden-
tified segmental duplications (SDs)20, which suggests they may have been formed by non-allelic homol-
ogous recombination (NAHR).

CNVR1 is located ~0.4–0.6 Mb upstream of SOX9 and its approximate length is greater than 214 kb. It 
well overlaps with the size and the location of HumRevSex, which is located more than 500 kb upstream 
of SOX9 and the length of this region is at least 67 kb6. However the in silico predicted position of 
CanRevSex, based on homology analysis, is ~9 Mb downstream of SOX9. This may suggest that the 
region critical for XX DSD is characterized not by sequence, but by its location. Interestingly, a very 
recent report of Rossi et al.35, based on FISH study and in silico analysis, suggested that canine genome 

Figure 4. The MLPA and FISH analysis in the Pug family. The family consisted of two XX, SRY-negative 
DSD females (A6 and B4) and their healthy parents: father (C2) and mother (C3). Bar plots represent the 
relative copy number (y-axis) of each CanSOX9+  probe (x-axis). The red bracket marks probes, where the 
signal is increased (5′ SOX9_01–5′ SOX9_07). Corresponding diagrams of the results of FISH analysis are 
shown next to the MLPA bar plots.
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assembly (canFam3) in the region of SOX9 is not correct and the CanRevSex is in fact localized upstream 
of SOX9.

Our findings are consistent with previous studies performed on mouse models. The regulatory role 
of the upstream region (approx. 1 Mb) of Sox9 was revealed in transgenic mouse, called the Odds sex 
mouse, which also carries an ~150 kb deletion upstream of Sox9. This modification triggered upregula-
tion of Sox9 in fetal gonads and XX mice, which developed as sterile males36. Further studies showed 
that promoter of the transgene, not the deletion itself, was responsible for the upregulation in XX Odds 
sex mice37. Extensive study on murine Sox9 gene regulation revealed that its expression is crucial for 
Sertoli cell differentiation and is controlled by positive and negative regulators interacting with a 3.3 kb 
testis-specific enhancer (TES) that contains a highly conserved 1.4 kb sequence. The main positive reg-
ulators are SF1 and SRY transcription factors, and among crucial regulators are DAX1, WNT4, FOXL2, 
RESPO1 and β -catenin38.

Analysis of families in which the disorder segregates is a crucial step towards identifying its mode 
of inheritance and molecular characterization of the causative mutation. Extensive studies performed in 
goats revealed autosomal recessive inheritance13. Similar approach was applied to show the causative role 
of the RSPO1 gene mutations in some cases of human XX DSD12. In pigs autosomal recessive inheritance 
was also proposed39 and candidate region containing the SOX9 gene was indicated11. Interestingly, in 
XX DSD pigs no CNV was found in the 3.14 Mb region containing the SOX9 gene. In humans pedi-
gree analysis, associated with a causative 178 kb duplication located 600 kb upstream of SOX9, revealed 
autosomal dominant sex-limited (females only) inheritance. The inheritance mode of canine XX DSD is 
unclear. Originally, it was hypothesized that this disorder is inherited according to an autosomal reces-
sive, sex-limited model40. The deleterious effect of SOX9 duplication suggested by Rossi et al.18 does 
not fit this model and indicated that also dominant, sex-limited mode of inheritance is possible, as it 
was earlier demonstrated in humans18. In our study we could only analyze parents of two full sibling 
XX DSD cases. Since other littermates were unavailable we cannot draw any conclusion concerning the 
inheritance model.

Concluding, in our study on the molecular background of XX DSD we analyzed a relatively large 
cohort of cases and controls. We did not observe CN variation of the SOX9 gene, however we found two 
highly polymorphic CNVRs located upstream (CNVR1) and downstream (CNVR2) of SOX9. Although 
higher copy number in CNVR1 may be associated with XX DSD phenotype, it was detected in both 
cases and controls, and therefore cannot be considered as a causative mutation. We hypothesize that 
within CNVR1 may occur mutation site/sites responsible for ablation of binding sites for repressor or 
enhancer of the SOX9.

Material and Methods
Ethics statement. Tissue sampling and clinical studies were carried out according to standard Polish 
veterinary protocols. All animal experiments were approved by a local Bioethical Commission for Animal 
Care and Use in Poznan (Poland).

Material. A total of 50 dogs were included in the study. These were grouped as follows: (A) 8 cases 
of unrelated XX DSD phenotypic females with enlarged clitoris and testis or ovotestis, this group was 
crucial in our study due to the knowledge of the gonads histology, (B) 8 cases of unrelated XX DSD 
phenotypic females with enlarged clitoris, but unknown gonad histology; (C) 4 ancestors of two testic-
ular XX DSD full sibs, (D) 16 control females of the same breed as the XX DSD cases studied, (E) 10 
control females of breeds where XX DSD has not yet been reported, and (F) 4 control females for the 
FISH study. Some XX DSD dogs were described earlier in terms of clinical examination, chromosome 
complement, presence of the SRY gene and histology of gonads, but were not studied by FISH and MLPA 
techniques (Table 1). Four new XX DSD cases, included in groups A (3) or B (1), were described for the 
first time (Fig. 5).

Fluorescence in Situ Hybridization (FISH). Chromosome preparations were obtained from 
short-term lymphocyte culture by standard procedures41. BAC clones covering the 5′  region of SOX9 
gene on canine chromosome 9 (CFA9) were selected based on localization upstream of SOX9, in a region 
which position corresponds to HumRevSex. The BACs were selected from CHORI-82 Canine Boxer (F) 
(Canis familiaris) BAC library (https://bacpac.chori.org/) with the use of UCSC Genome Browser (http://
www.genome.ucsc.edu/). The following BAC clones were used in FISH experiments: BAC-1 (CH82-
405G24), BAC-2 (CH82-496F06), BAC-3 (CH82-26L13), BAC-4 (CH82-135B15) and BAC-5 (CH82-
116C01). The locations of the BAC probes are shown in Fig. 1.

DNA from BAC clones was isolated by alkaline lysis and labelled by random priming with 
biotin-16-dUTP or digoxigenin-11-dUTP. FISH hybridization was performed according to Szczerbal 
et al.42. Briefly, denatured probes were applied to a denatured chromosome preparation and hybrid-
ized overnight at 37 °C. Signal detection and amplification were performed using streptavidin-Cy3 or 
anti-digoxigenin-fluorescein. Chromosomes were counterstained with 4′ ,6-diamidino-2-phenylindole 
(DAPI) and the standard chromosome nomenclature of the dog43 was applied for localization of the 
probes on CFA9. Hybridization signal of BAC5 probe, specific to the region of interest, was used as a 
marker of CFA9.

https://bacpac.chori.org/
http://www.genome.ucsc.edu/
http://www.genome.ucsc.edu/
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Slides were analyzed under a Nikon E 600 Eclipse fluorescence microscope, equipped with a cooled 
digital CCD camera, driven by the computer-aided software LUCIA.

Multiplex Ligation-dependent Probe Amplification (MLPA). A custom-made MLPA assay 
(CanSOX9+  assay) was designed and generated for detailed analysis of CNVRs in the canine region 
harboring SOX9. The CanSOX9+  assay was composed of 21 probes (Fig. 1, Suppl. Table S1) including: 
i) three control probes (CF_ctrl1-CF_ctrl3) located on CFA9, outside the investigated region, in locations 
with no evidence of common CNVRs19,20,22,23,33,34 and 18 probes covering the investigated SOX9 region, 
including: ii) three probes located in the SOX9 gene, one probe in each exon (SOX9_ex1-SOX9_ex3); iii) 
12 probes evenly distributed along the 620 kb-long region upstream of SOX9 (5′ SOX9_01-5′ SOX9_12) 
(the less even distribution of probes in the fragment overlapped by BAC-3 is a consequence of segmen-
tally duplicated sequences with high homology to sequences on CFA18); and iv) three probes located in 
the region homologous to HumRevSex region (CanRevSex) (cRevSex_1-cRevSex_3). The MLPA probes 
and general probe layout were designed according to the strategy previously proposed by Kozlowski et 
al.44 and by Marcinkowska et al.45, which involves short oligonucleotide probes easily generated via stand-
ard chemical synthesis. The total probe length ranged from 93 to 164 nt. Target sequences for all probes 
were designed according to the CanFam2 and CanFam3.1 dog genome assemblies and were selected to 
avoid SNPs, repeat elements and sequences of extremely high or low GC content. All MLPA probes were 
designed to be specific for the unique genomic sequence. In some cases (7 probes), in regions with high 
homology to other chromosomes, the MLPA probes were designed to specifically recognize only the 
region of interest on CFA9. Suppl. Table S1 shows detailed characteristics and sequences of the probes 
used. All MLPA probes were synthesized by Integrated DNA Technologies (Skokie, IL, USA).

MLPA reactions were run according to the manufacturer’s general recommendations (MRC-Holland, 
Amsterdam, Netherlands), as described previously in46 and44. Briefly, approximately 100 ng DNA was 
denatured and hybridized with MLPA probe-mix for 16 hours. In the next step, all properly hybridized 
probes were ligated and then amplified using the pair of universal primers. PCR products were separated 
via capillary electrophoresis on an ABI Prism 3130XL apparatus (Applied Biosystems, Carlsbad, CA, 
USA) and electropherograms analyzed using GeneMarker software (v1.91). The signal intensities (peak 
heights) of all probes were transferred to the prepared Excel spreadsheets in which further analyses were 
performed. To avoid run-to-run signal variation, signals of each probe in each sample were normalized 
by division by the average signal of control probes. The normalized MLPA signal of all samples was then 

Figure 5. Characteristics of three new testicular (A6 and A8) or ovotesticular (A7) XX DSD cases. The 
following breeds were represented: Pug – case A6 (a–c), Beagle – case A7 (d–f) and Cocker Spaniel – case 
A8 (g–i). External genitalia (a,d,g), gonad morphology (b,e,h) and histology (c,f,i) are shown.
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compared to the normalized signal of samples selected as references. Reference samples were randomly 
selected from the group of healthy females (D) that showed the lowest normalized signal variation for 
all probes and no homozygous deletions for any of the regions investigated.

All MLPA reagents, except for the probe mix, were purchased from MRC-Holland (Amsterdam, the 
Netherlands). All graphs shown were generated using Prism v. 4.0 (GraphPad, San Diego, CA, USA) and 
Microsoft Excel.
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