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Translational compensation 
of genomic instability in 
neuroblastoma
Erik Dassi1, Valentina Greco1, Viktoryia Sidarovich1, Paola Zuccotti1, Natalia Arseni1, 
Paola Scaruffi2, Gian Paolo Tonini3 & Alessandro Quattrone1

Cancer-associated gene expression imbalances are conventionally studied at the genomic, 
epigenomic and transcriptomic levels. Given the relevance of translational control in determining 
cell phenotypes, we evaluated the translatome, i.e., the transcriptome engaged in translation, as 
a descriptor of the effects of genetic instability in cancer. We performed this evaluation in high-risk 
neuroblastomas, which are characterized by a low frequency of point mutations or known cancer-
driving genes and by the presence of several segmental chromosomal aberrations that produce 
gene-copy imbalances that guide aggressiveness. We thus integrated genome, transcriptome, 
translatome and miRome profiles in a representative panel of high-risk neuroblastoma cell lines. We 
identified a number of genes whose genomic imbalance was corrected by compensatory adaptations 
in translational efficiency. The transcriptomic level of these genes was predictive of poor prognosis 
in more than half of cases, and the genomic imbalances found in their loci were shared by 27 
other tumor types. This homeostatic process is also not limited to copy number-altered genes, 
as we showed the translational stoichiometric rebalance of histone genes. We suggest that the 
translational buffering of fluctuations in these dose-sensitive transcripts is a potential driving process 
of neuroblastoma evolution.

Arising predominantly in the first two years of life, neuroblastoma is the most common cancer in 
infancy1. This cancer develops from the neural crest cells of the sympathetic nervous system and is 
classified as either aggressive or benign, with the latter most often encountering spontaneous regression 
(stage 4S) or gradual maturation to ganglioneuroma2,3. Aggressive neuroblastomas are further classified 
based on the presence of the MYCN amplification (appearing in ~16% of patients and associated with 
the worst prognosis of all subtypes2) and segmental aberrations, such as the loss of chromosome arms 
1p and  11q  or the  gain of chromosome arm 17q2. Patients with MYCN-amplified neuroblastoma and 
 segmental aberrations have a particularly poor prognosis, with an overall 5-year survival rate of only 
30%1.

Cancer genetic instability is most often studied at the genomic, epigenomic and transcriptomic levels, 
thus mainly focusing on the effects of genomic alterations on transcription and splicing. However, several 
recent works have shown that translational control is a powerful determinant of proteome variation and 
cell phenotypes4. In a landmark study, Schwanhäusser et al. demonstrated that, due to translational con-
trol, mRNA steady-state levels are a poor proxy for their corresponding protein levels5,6. Moreover, others 
and we have shown that variations in transcriptome profiles induced by various stimuli are profoundly 
reprogrammed at the translational level7–9. In cancer tissues, genomic lesions affecting translation fac-
tors, RNA-binding proteins (RBPs) and non-coding RNAs alter this physiological reshaping of gene 
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expression by translational efficiency. These alterations can produce a derangement of the translation 
machinery, the downstream effects of which are not detectable by transcriptome profiling10,11.

Incorporating translational efficiency estimation into mRNA profiling would generate molecular por-
traits that are closer to actual protein levels, thus helping to reveal the involvement of translational 
control alterations in tumor onset and progression, as previously proposed12. Such information could be 
obtained by translatomic profiling, which consists of polysome isolation by sucrose-gradient separation13 
and the evaluation of mRNA content by high-throughput methods. The use of this approach in tumor 
cell lines or mouse tissues has so far been limited to a few reports10–12 and, to the best of our knowledge, 
no translatomic study has been performed on human tumor samples.

We present here for the first time the integrative profiling of thirteen MYCN-amplified neuroblas-
toma cell lines at the genomic, transcriptomic and translatomic levels. By integrating these datasets, we 
describe the prevalence of a compensatory behavior, induced by translational control, over a set of genes 
affected by recurrent copy number alterations (CNAs). These genes are often associated with prognosis 
and subject to concordant genomic alterations in 27 other tumor types. Such compensatory behavior is 
not limited to imbalanced loci, as we report effects on protein complex-forming genes and specifically 
validate this behavior in histone genes. We thus report here a new mechanism by which neuroblastoma 
cells can overcome fitness disruptions caused by genomic rearrangements.

Results
Translational control alterations in neuroblastoma. We first sought to understand whether neu-
roblastoma genomic alterations could impact genes involved in post-transcriptional regulation. We con-
sidered 26 CNA profiles of high-risk neuroblastomas14 and analyzed their genomic structures. Because 
RBPs and miRNAs are the most documented trans-factors involved in post-transcriptional regulation, 
we reported their genomic distribution (Fig.  1A), observing a considerable proportion of them within 
altered regions in high-risk neuroblastomas. In particular, 490 RBP loci and 500 miRNA loci are altered 
(27.3% and 32.9%, as of miRBase 2015 of the total, respectively). Therefore, at least one out of four loci 
of genes involved in translational control is genomically imbalanced in high-risk neuroblastomas. Given 
the prevalence of MYCN-amplified tumors in the high-risk class, their relatively homogeneous genomic 
alteration profile (markedly different from that of non-MYCN-amplified tumors), their sheer aggressive-
ness2 and their unfavorable prognosis, we focused our analysis on this specific neuroblastoma subtype. We 
thus constructed an array of comparative genomic hybridization profiles for 13 primary (not sub-cloned  
in vitro) MYCN-amplified neuroblastoma cell lines and found them to be substantially superimposable 
with those of the tumors reported above (Fig. 1A); our cell-line sample is therefore representative of the 
genomic alteration pattern of high-risk neuroblastoma tumors. As for the neuroblastoma tumor profiles, 
many genes, listed in Supplementary Table S1, fall into CNA regions: 370 RBPs (20.7%) and 399 human 
miRNAs (22.8%) are indeed gained or lost in these cell lines. Comparing these figures with those of 
traditional cancer-enriched gene categories (kinases, transcription factors and genes implicated in pro-
liferation and differentiation programs), we found that, as shown in Fig. 1B, RBPs and miRNAs are also 
significantly enriched in the CNA regions (Fisher’s test p =  5.13E-04 and 6.79E-08, respectively). Taken 
together, these data suggest that RBPs and miRNAs can be as important as traditional cancer-enriched 
gene categories in the evolution of neuroblastoma.

Given the frequent alteration of these genes in MYCN-amplified neuroblastoma genomic profiles, 
we studied the available cell lines assuming that translational control has a role in the phenotype of 
this tumor. We thus profiled the total and polysomal mRNA and miRNA levels of these cells using a 
microarray platform. Surprisingly, the profile hierarchical clustering, as shown in Fig. 2A, indicated that 
for most cell lines (8/13, albeit in two distinct clusters), translatomic profiles cluster with other transla-
tomic profiles, rather than with their respective transcriptome profiles. Furthermore, a PCA analysis and 
a k-means clustering (shown in Supplementary Fig. S1) also suggest the same pattern, with the latter 
approach identifying two clusters comprised of only translatomic profiles (including 11/13 of these) 
and a third cluster that included all transcriptome profiles and the remaining two translatomic profiles. 
Therefore, substantial translational control may be responsible for the considerable divergence between 
the two levels of mRNA analysis in each cell line, and this control may act similarly in different cell lines 
harboring similar genomic alterations.

To further investigate this phenomenon, we plotted the distribution of the mRNA translational effi-
ciency (TE, defined as the ratio between translatomic and transcriptomic levels) for each cell line; devia-
tions from 1 indicate translational repression (TE <  1) or translational enhancement (TE >  1). As shown 
in Fig. 2B, whereas the amount of control to which each cell line is subjected to varies, all of them have a 
considerable number of mRNAs with TE <  or >  1, as represented by the fat distribution tails. Scatterplots 
of transcriptomic versus translatomic expression levels are also shown for all cell lines in Supplementary 
Figure S2.

By computing significant differences between the transcriptomic and translatomic signals, we then 
proceeded to identify mRNAs under consistently active translational control across the cell lines. We 
employed three algorithms: RankProd16, T-test and SAM17. As shown in Fig.  2C, all three identified a 
considerable number of mRNAs (11.7% for RankProd, 23.9% for T-test and 24.2% for SAM) as differ-
entially abundant between levels, hinting again at the widespread engagement of translational regulation 
in these cell lines. The diagram shows a good agreement in the mRNAs predicted to be significantly 
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regulated by all methods: the most conservative method, RankProd, shares 61.3% of its genes with T-test 
and SAM. The ranking approach adopted by RankProd abstracts from absolute signal means, thus allevi-
ating potential background noise differences in the total and polysomal mRNA abundance data. This fact, 
combined with the higher robustness granted by the more conservative RankProd estimate of regulated 
mRNAs, which minimizes false-positive calls, eventually led us to use the RankProd results for subse-
quent analyses. These differentially represented genes were first functionally studied with an ontological 
enrichment analysis: as shown in Fig. 2D, the enriched themes include histones (up; i.e., more represented 
in the polysomal than in the total profiles), which is composed of 45 genes of all histone types (H1, 
H2A/B, H3 and H4), ATPase activity (42 down genes; i.e., less represented in the polysomal than in the 
total profiles), RNA processing (53 down genes), intracellular transport (54 down genes), DNA repair (27 
down genes, including several SMC family members and chromatin-associated enzymes such as PARP1 
and APEX1) and mRNA polyadenylation (PABPC1, CPSF1 and others, all down).

Translational efficiency reprograms the gene expression of genomically altered genes.  Allelic 
gains and losses due to cancer genomic instability can have a direct effect on the affected loci and a 
more unpredictable, indirect effect on other loci due to the extensive networks linking gene products in 
cells. To understand how translational control can impact the neuroblastoma phenotype, we considered 

Figure 1. A map of neuroblastoma genomic alterations potentially affecting translation. (A) Recurrent 
copy number alterations in a set of 26 publicly available primary high-risk neuroblastoma samples and in 
our MYCN-amplified neuroblastoma cell lines dataset measured by aCGH analysis on the same platform. 
The outermost circle depicts chromosomes and related cytobands. Further in, the light green circle 
represents each RBP and miRNA gene with a black line at its corresponding genomic position. The dark 
grey circle represents recurrent alterations for the primary high-risk neuroblastomas, and the light grey 
circle displays the same for the MYCN-amplified neuroblastoma cell lines. Blue chunks represent deleted 
genome segments, and red chunks represent copy number gain/amplification events. The intermediate 
white circle indicates with an orange bar the genome position for the set of genes known to be involved 
in neuroblastoma onset and progression. (B) Enrichment p-values (Fisher’s test) for genes belonging to 
several categories and falling into a CNA in the set of MYCN-amplified neuroblastoma cell lines we profiled: 
RBPs, miRNAs, transcription factors (TF), kinases, and proliferation- and differentiation-related genes. The 
length of the bar represents the Benjamini-Hochberg-corrected enrichment p-value expressed as − log(p-
value), thus showing higher values for lower p-values; the number on top of the bars represents the fold 
enrichment for the gene category in the CNA gene set over the genome, and the red dotted line indicates 
the significance threshold at 0.05.
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the simpler case of the direct, collinear effects of gene dosage changes on the translational efficiency 
of the gene itself. From the CNAs mapped to the 13 MYCN-amplified neuroblastoma cell lines, we 
extracted those impacting the loci of differentially represented genes. We identified 157 differentially 
represented genes (12.2% of the total) bearing collinear CNAs, 51 of which were deletions and 106 of 
which were gains. Among these, we observed a “compensatory” translational efficiency for 92 genes: 23 
highly expressed genes carrying a genomic deletion (positive compensation) and 69 poorly translated 
genes with a genomic gain (negative compensation). We termed these genes “RESTORE”, as they com-
pensate for genomic disruptions by restoring the normal levels of their cognate proteins. RESTORE UP 
genes are translationally enhanced to compensate for a genomic loss, while RESTORE DOWN genes 
follow the opposite pattern. Among the remaining 65 genes, 37 had gained copies and were efficiently 
translated, whereas 28 were partially deleted and inefficiently translated: these are “ENHANCE” genes, 

Figure 2. Evidence for widespread translational regulation in the MYCN-amplified neuroblastoma cell 
lines. (A) Hierarchical clustering of the transcriptome and translatome profiles for the MYCN-amplified 
neuroblastoma cell lines. Blue circles indicate translatomic profiles, and red squares indicate transcriptome 
profiles. (B) Translational efficiency distribution (computed as translatome/transcriptome for each gene) for 
the MYCN-amplified neuroblastoma cell lines that were profiled. Deviations from 1 represent the presence 
of translational control, either repressing (values <  1) or enhancing (values >  1). Tail size varies between 
samples but indicates a non-negligible degree of translational control for all the lines. (C) Venn diagram 
depicting the intersections of genes identified by the three methods as differentially abundant between 
the transcriptome and translatome profiles. (D) Functional themes that were found to be enriched in the 
differentially represented (in the transcriptome and the translatome) gene set. The blue gradient represents 
the corrected p-value from more significant (darker blue) to less significant (lighter blue).
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as their translational behavior magnifies the genomic alteration effect on gene expression. ENHANCE 
UP genes are positively magnified (gained and highly translated), whereas ENHANCE DOWN genes 
follow the opposite pattern. These behaviors are depicted in Fig. 3, with the corresponding genes listed 
in Supplementary Table S2.

We then focused on the RESTORE genes, given their potential to be involved in the fitness of tumor 
cell clones by counteracting genomic imbalances. To determine whether this potential is indeed realized 
in neuroblastoma, we predicted and verified three possible features of these genes. First, the RESTORE 
behavior should be more frequent than that of ENHANCE because RESTORE behavior counteracts 
gene expression imbalances that derive from the many segmental alterations observed in neuroblastoma 
cells. As expected, RESTORE events are significantly more prevalent than ENHANCE events (binomial 
test p =  0.006), which is a reflection of the cell lines’ tendency to buffer DNA imbalances with mRNA 
translational compensation (Fig. 4A, left). Furthermore, genes with compensatory translational efficiency 
found in CNAs (thus our RESTORE genes) are enriched with respect to all genes with compensatory 
translational efficiency in the genome (Fisher test p =  5.01E-09). Moreover, this behavior may be gen-
eralizable to CNA genes in individual lines, not just the differentially represented genes we identified. 
Therefore, we extracted the gained and lost genes for each cell line, coupled to their translational effi-
ciency distributions, and computed Wilcoxon test p-values under the hypothesis that we should observe 
higher translational efficiencies for lost genes and lower translational efficiencies for gained genes with 
respect to genes not altered in copy number. Five cell lines (CHP-126 and CHP-212, IMR-32, SK-N-BE2 
and SK-N-DZ) have a significant p-values for RESTORE UP compensation and one (STA-NB-7) for 
RESTORE DOWN (Fig. 4B). Considering all the cell lines, we also found that the RESTORE UP p-value 
strength was correlated with the translational efficiency distribution breadth (Pearson r =  0.59), sug-
gesting that the occurrence of the RESTORE pattern may be more widespread in cell lines subjected 
to stronger translational control. Therefore, the RESTORE behavior could compensate for fitness drops 
due to the presence of segmental alterations in neuroblastoma clones, thus substantially contributing to 
tumor onset and progression by enhancing cell viability.

Second, we would expect RESTORE genes to be associated with neuroblastoma aggressiveness. 
RESTORE genes do not considerably overlap with classic cancer genes: indeed, as listed in Supplementary 
Table S3, intersecting RESTORE genes with TUSON cancer gene predictions18 yields only 16 of the 
92 predicted to be potential oncogenes or tumor suppressors. Further annotations, listed in the same 
table, show very little overlap with pan-cancer copy-number alteration drivers (1/92 genes)19 or stem-
ness determinants20 (3/92 genes) and only a moderate enrichment of cell essential genes (13/92, Fisher’s 
test p =  1.45E-05) defined by RNAi screenings in HeLa cells21–23. RESTORE genes might therefore be a 
novel group of genes related to cancer biology. We thus studied their association with prognosis using 
Kaplan-Meier curves constructed from the transcriptomic profiles of publicly available neuroblastomas24. 
As shown in Fig. 4C and listed in Supplementary Table S4, RESTORE DOWN genes are predominantly 

Figure 3. Translational compensatory and magnifying patterns for CNA-affected genes. The potential 
behaviors of genes that are under translational regulation in neuroblastoma and that are affected by collinear 
copy-number alterations are shown. We describe four possible situations: ENHANCE UP and DOWN (top 
and bottom line of the figure), which represent situations in which a genomic aberration is mirrored by a 
translational regulation in the same direction (i.e., a gene which is deleted and also downregulated at the 
translatome level, thus magnifying the alteration induced by the CNA; or vice versa), and RESTORE UP 
and DOWN (second and third line of the figure), in which a genomic aberration is potentially compensated 
for by a translational regulation in the opposing direction (i.e., a gene which is gained but downregulated at 
the translatome level, thus limiting the effects of the genomic aberration; or vice versa).
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Figure 4. RESTORE genes are biologically relevant. (A) The proportion of RESTORE and ENHANCE 
genes in differentially represented genes (left), which is significantly higher for the former (p-value 0.006). 
The right panel shows the most represented biological processes and molecular functions for RESTORE 
genes, with their number of genes indicated next to the bar. (B) p-values for the global prevalence of 
RESTORE UP (left) and RESTORE DOWN (right) patterns in single cell lines. The red dotted line indicates 
the significance threshold at 0.05. (C) The − log10 p-value for RESTORE genes is associated with a worse 
neuroblastoma prognosis when their expression is higher (upper part) or lower (lower part). Red dots 
represent genes whose association with prognosis is in accordance with the RESTORE behavior (higher 
expression for RESTORE DOWN, lower for RESTORE UP), and blue dots represent genes with the opposite 
behavior. Dashed lines around the zero line represent the 0.05 p-value threshold. (D) The overall frequency 
of genomic alteration in several tumor types for the neuroblastoma RESTORE UP genes (lower part) and 
RESTORE DOWN (higher part). These genes almost entirely undergo concordant alterations in most tumor 
types, with RESTORE UP being mostly deleted and RESTORE DOWN being mostly gained.
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associated with a worse prognosis when highly expressed (48/69 have a significant p-value), whereas 10 
of 23 RESTORE UP genes are significantly associated with a worse prognosis when poorly expressed. 
Globally, 63% of RESTORE genes are significantly associated with neuroblastoma prognosis when in the 
expression status that would trigger the translational compensation observed in our cell lines.

Third, the ability of RESTORE genes to undergo CNAs that may be translationally compensated to 
reestablish fitness could be independent of the tumor type; we would thus expect these genes to bear 
the same CNAs in other tumors, as the degree of freedom granted by this compensation could favor the 
“fixation” of these CNAs during clonal evolution. To test this possibility, we studied the occurrence of 
CNAs involving RESTORE genes across 27 tumor types using the cBio portal25. Indeed, RESTORE genes 
predominantly display the same kind of genomic lesions in the majority of tumor types, with RESTORE 
UP genes being deleted (Fig.  4D, down) and RESTORE DOWN genes being gained (Fig.  4D, up). A 
1000-sample bootstrap of randomly selected genes indicated that both deletion (RESTORE UP) and gain 
(RESTORE DOWN) frequencies are significantly higher than expected (p <  0.001). When performed 
on randomly selected genes from regions of genomic alteration in neuroblastoma (excluding RESTORE 
genes), the frequency of deletions (RESTORE UP loci) is significantly higher than expected (p <  0.001), 
whereas the frequency of gains (RESTORE DOWN) is not (p =  0.592).

Finally, we searched for factors that could play a role in translational compensation by analyzing the 
untranslated regions (UTRs) of the RESTORE gene mRNAs for experimentally determined cis-elements 
and RBP/miRNA-binding sites using the AURA 226 database. The regulatory enrichment tool of AURA 2 
retrieves experimentally annotated binding sites or cis-elements from the UTRs of specified mRNAs and 
computes an enrichment p-value for each RBP/miRNA/cis-element type found in at least one of these 
UTRs. To increase the likelihood of these trans-factors being related to the change in translational effi-
ciency of the RESTORE genes, we selected only RBPs found in the CNA loci and processed our miRome 
profiles to select only the expressed miRNAs from such loci. The resulting candidates of most interest are 
trans-factors with potential multiple interactions: the PUM2, LIN28A and FMR1 RBPs (associated with 
28, 37 and 43 mRNAs, respectively) and the miR-21, miR-106b and miR-301a miRNAs (associated with 
4 mRNAs each) (Supplementary Fig. S3). For cis elements, the RESTORE DOWN mRNAs were observed 
to be enriched in alternative polyadenylation sites (39 genes, 56.5%, Fisher’s test corrected p <  0.001) 
and AU-rich elements (44 genes, 63.7%, Fisher’s test corrected p <  0.001); no significant enrichment was 
detected in the RESTORE UP genes.

Translational restoration of histone complex stoichiometry. RESTORE genes were defined as 
those genes that are localized to copy-number-altered regions and that possess mRNAs differentially 
abundant between the transcriptome and the translatome, thus selecting for those loci that translational 
regulation may directly affect to compensate for DNA imbalances. However, as already suggested in 
Fig. 4A,B, this definition forced us to select a small sample of all genes with altered translation rates, the 
majority of which are instead likely indirectly affected. To validate examples of such genes, we returned 
to the differentially represented genes reported in Fig.  2B, whether they were encoded in unbalanced 
loci. The most enriched class contained histone genes, which nonetheless are not perturbed by CNAs 
(Supplementary Table S1). Given their importance for cell survival and proliferation27, the rigid stoichi-
ometric arrangement of their protein products in the nucleosome and the known mechanism by which 
they are translationally controlled28, we employed them to test the generality of the RESTORE behavior 
in neuroblastomas. We first reported their expression in the cell lines; Supplementary Figure S4 displays a 
sample of all the scored histone genes in a single cell line and of a single gene in all cell lines. These genes 
include members of all replication-dependent histone families (3 genes for H1, 12 for H2A, 16 for H2B, 
5 for H3 and 9 for H4). The nucleosome relies on the tight stoichiometry of its components to be func-
tional29,30. Because histone type variants are highly similar in sequence and associate to produce a single 
component of this complex (e.g., all H4 variants produce H4 proteins), we reasoned that the mRNA 
signals of the histone genes should be grouped by family. We thus averaged the sum of histone mRNA 
levels by family, both in the transcriptome and the translatome. The results shown in Fig.  5A show a 
coordination of translated histone mRNA levels that is absent in the transcriptome. We confirmed that 
protein levels correspond with the expected nucleosome stoichiometry by performing histone extraction 
followed by Coomassie staining (Fig. 5B). The microarray signals of one histone gene per type were also 
validated by RT-qPCR in four of the cell lines (Supplementary Fig. S4). The experimental validation of 
a clear translational restoration pattern for the histone genes in neuroblastoma cells may thus suggest 
that the tendency to reinstate “normal” expression levels by translational modulation is not limited to 
CNA-imbalanced genes. The occurrence of such transcriptome imbalances may thus be due to indirect 
effects, such as the genomic alteration of a transcriptional or post-transcriptional regulator.

Searching for regulators of histone mRNAs by means of AURA 226, we eventually observed the 
well-known histone RNA hairpin-binding protein SLBP as potentially regulating at least 50% of these 
genes (p =  8.9E-10). Interestingly, one cell line (KELLY) appears almost unaffected by the translational 
restoration of stoichiometry (as visible in Fig. 5A). Investigating the genomic status of histone-associated 
factors in these cells, we found that SLBP is heterozygously deleted in KELLY and not in all the other cell 
lines. SLBP may thus be involved in the reduced compensatory pattern in KELLY cells.
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Because the formation of fixed-stoichiometry protein complexes, such as the nucleosome, can be 
a strong determinant of functionality for core cell activities, we wanted to determine if the behavior 
demonstrated above is a more general feature of protein complexes. We thus retrieved the 1725 human 
protein complexes annotated in CORUM31: out of these, 126 (7.3%) contained half of the genes belonging 
to our differentially represented group. Globally, a significant number of differentially represented genes 
(208, 16.2%) are part of a complex (1000-sample bootstrap p =  0.005). The significant enrichment of 
genes coding for protein complex components among the differentially represented genes suggests that 
translational restoration may be particularly active in the homeostasis of protein complexes.

Discussion
We performed an integrative analysis of thirteen neuroblastoma cell lines representative of high-risk neu-
roblastoma (Fig. 1A), in which we added translatomic profiles to the extant genome, transcriptome and 
miRome profiles. Although cancer-related gene catalogs do not score the RBP category significantly, we 
found a statistically significant enrichment of RBPs and miRNAs among the loci affected by CNAs in our 
cell lines that was greater than that of conventional cancer-related gene categories, such as transcription 
factors32 or protein kinases33. We thus hypothesized that genes involved in the post-transcriptional con-
trol of gene expression may be specifically affected by segmental aberrations in neuroblastoma. While the 
involvement of translational control in cancer has been widely explored in studies of mTORC1 pathway 
protein mutations34,35 and the altered expression of translation initiation complex components36,37, little is 
known about the role of RBPs. RBP involvement in neuroblastomas should therefore be further explored, 
especially given that LIN28B, an RBP involved in miRNA maturation38 and in translation39, has recently 
been identified as a determinant of inherited neuroblastoma predisposition40 and a powerful oncogene 
able to recapitulate this disease in mice41.

Our evaluation of tumor mRNA translational efficiencies is the first attempt of this type in 
patient-derived cells, preceded only by an analysis in glioma based on a murine model10 in which 
polysomes and non-translating mRNA-bound single ribosomes could not be distinguished. The use 
of a low-throughput method, sucrose-gradient centrifugation, on a sufficient number of cell lines 

Figure 5. A translational compensatory mechanism for coordinated histone gene expression.  
(A) Expression levels for the upregulated histone genes in all the cell lines averaged by histone family at 
the transcriptomic (left) and at the translatomic (right) levels. Each color identifies a different histone 
family, and the cell lines are represented on the horizontal axis. Blue rectangles highlight the almost 
absent compensation of the KELLY cell line. (B) Coomassie staining of the histone protein extracts of 
the 13 MYCN-amplified neuroblastoma cell lines we analyzed, highlighting the restoration of a proper 
stoichiometry between the various histone types. CTRL lanes contain a commercial histone extract at a 
known concentration.
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representative of a single aggressive tumor subtype was our proof-of-principle demonstration of the 
usefulness of translatomic profiling in cancer studies.

We identified genes for which the differences in transcriptomic and translatomic signals were shared 
among cell lines and were therefore features of the corresponding tumor subtype. This study demonstrated 
the occurrence of active translational control by which transcriptomic fluctuations are reprogrammed 
at the translatome level. We identified the genes most affected by this feature. These differentially rep-
resented genes comprised more than 10% of the total (1288/11,321 detectable genes); of these, more 
than 10% were also located in sites of genomic alteration. For these genes, we hypothesized that their 
translational efficiencies were likely directly due to allelic imbalance. We focused on those displaying 
RESTORE behavior, the countering of allelic imbalance with compensatory translational efficiency, i.e., 
the more efficient translation of loci with lost alleles and the more inefficient translation of loci with 
gained alleles. We demonstrated that this pattern is not due to chance and is not restricted to these few 
genes. Given the relative paucity of point mutations24 and cancer-driving genes in neuroblastomas (less 
than a dozen established in almost twenty years of investigation, see Fig.  1A), the several segmental 
alterations of high-risk tumors may still hold undetected determinants of the tumor phenotype, as these 
alterations are often associated with prognosis42. However, considering the failure to discover the drivers 
of neuroblastoma tumors using conventional paradigms, other approaches should be explored.

In our proposed model, RESTORE genes suffer a lack or excess of expression due to a CNA negatively 
affecting the fitness of the clone in which they occur. A compensatory alteration then modulates their 
translation rate to promote restored protein levels and fitness; when this occurs, the tumor becomes 
immune to the allelic imbalance of these otherwise dose-sensitive genes. The observation that RESTORE 
genes have the same alteration in 27 other tumor types (Fig. 4D) suggests that this “dosage permissive-
ness” phenomenon is active in other cancer types. RESTORE genes, despite not being conventional 
cancer genes43, may behave as new, powerful drivers able to bypass the bottleneck of loss of clonality 
potential induced by dosage alteration through translational compensation. Such a role would justify the 
association of a considerable proportion of these genes with poor prognosis when altered in a manner 
that enables translational restoration (Fig. 4C).

We also showed that this behavior is not restricted to dosage effects induced by segmental alterations 
and could therefore involve a larger fraction of genes. Genomic instability indirectly affects the expres-
sion of many more genes than those located in CNAs, both in neuroblastoma44 and other tumors45, thus 
altering the levels of mRNAs in normally biallelic loci. These altered levels could also be “corrected” by 
changes in translational efficiency. We show here the paradigmatic case of histone mRNAs, for which 
a strong pressure towards cell proliferation restricts the stoichiometry of nucleosome protein compo-
nents. The frequent involvement of translational control in assuring protein complex stoichiometry was 
observed in a recent work in bacteria46.

This homeostatic model of cancer progression by translational compensation may bring under scru-
tiny a number of new genes, not necessarily involved in cancer biological hallmarks, whose fluctuation 
in mRNA levels would simply suppress clonality unless a counteracting fluctuation in translational effi-
ciency restores it. These “fitness bottleneck” genes could become new therapeutic targets, along with the 
translational mechanisms enabling their normalization.

Given this compensatory behavior, translational efficiency thus appears as a better indicator of prog-
nostic relevance than transcriptomic profiling. However, one should consider that the translatome is 
a proxy for protein levels and not a direct measurement; other mechanisms may influence the final 
outcome of the translational compensation. A high-throughput proteomic profile would grant the clos-
est observation platform for tumor phenotype; however, still unsolved issues prevent the generation of 
profiles that are as complete as those of the transcriptome and the translatome.

The present technical limitations of translatome profiling in cancer preclude studies with large cohorts 
of patients; however, this limitation could rapidly change with the development of new RNA-seq-based 
techniques stemming from ribosome profiling47, thus paving the way to systematically study and exploit 
the translational compensation of genomic instability in cancer.

Materials and Methods
Cell culture. Cell lines were grown according to the suppliers’ instructions at 37 °C in a 5%-CO2 
humidified atmosphere. CHP-134, IMR-32, KELLY, LAN-1, SK-N-BE2 and − DZ were obtained from 
ECACC (Salisbury, UK). CHP-126, MHH-NB-11 and SIMA were obtained from DSMZ (Braunschweig, 
Germany). CHP-212 was obtained from ATCC. STA-NB-1, − 7 and − 10 were kindly provided by Dr. 
Peter F. Ambros (CCRI, Vienna, Austria). All cell lines were used at early passages (n =  3) to avoid the 
insurgence of any alteration, and all were checked for mycoplasma and other potential infections. All 
cell lines were checked against the Database of Cross-contaminated or Misidentified Cell Lines (http://
iclac.org/), and none were found to have been previously flagged as cross-contaminated or misidentified.

aCGH microarrays. Total DNA was isolated according to the manufacturer’s protocol using the 
DNA Blood and Tissue Extraction Kit (Qiagen). Array-CGH was performed using Human Genome 
CGH 244 K microarrays (Agilent Technologies), and the slides were scanned using a G2565BA scanner 
(Agilent Technologies).

http://iclac.org/
http://iclac.org/


www.nature.com/scientificreports/

1 0Scientific RepoRts | 5:14364 | DOi: 10.1038/srep14364

Total  RNA  profiling.  Total RNA was isolated according to the manufacturer’s protocol using the 
RNeasy Mini Kit (Qiagen) and then quantified and quality-assessed using the RNA 6000 Nano Assay on 
the 2100 Bioanalyzer (Agilent Technologies); a 7 RIN threshold was used to select samples for this study. 
Expression profiling was performed with 500 ng of starting material. The samples were hybridized on 
Human GE 4x44K v2 microarrays (Agilent Technologies), and the slides were scanned using a G2565BA 
scanner (Agilent Technologies).

Polysomal RNA profiling.  Cells were incubated for 3 min with 0.01 mg/ml cycloheximide at 37 °C. 
Then, the plates were placed on ice, the medium was removed, and the cells were washed twice with 
PBS supplemented with 0.01 mg/ml cycloheximide. The cells were lysed with 300 μ l of cold lysis buffer 
(10 mM MgCl2, 10 mM NaCl, 10 mM Tris–HCl (pH 7.5), 0.2 U/ml RNase inhibitor (Fermentas), 1 mM 
DTT, 1% Triton X-100, 1% sodium deoxycholate and 0.01 mg/ml cycloheximide) and scraped. The result-
ing extracts were centrifuged for 5 min at 12,000 g at 4 °C. The supernatant was loaded on a 15–50% 
linear sucrose gradient with 30 mM Tris–HCl (pH 7.5), 100 mM NaCl and 10 mM MgCl2 and centrifuged 
on an SW41 rotor for 100 min at 180,000 g. Fractions were collected by monitoring the absorbance at 
254 nm and were treated with 0.1 mg/ml proteinase K for 2 h at 37 °C. RNA was extracted with phe-
nol–chloroform, precipitated with isopropanol and resuspended in 30 μ l RNase-free water. All fractions 
after the ribosomal 80S peak were considered as polysomal and employed for these analyses. Expression 
profiling was performed as described for total RNA.

miRNA  profiling.  miRNAs were isolated according to the manufacturer’s protocol using the miR-
Neasy Micro Kit (Qiagen) and then quantified and quality-assessed using the Small RNA Assay on 
the 2100 Bioanalyzer (Agilent Technologies); a 7 RIN threshold was used to select samples for this 
study. miRNA profiling was performed with 100 ng of starting material. The samples were hybridized on 
Human miRNA Microarrays 2.0 (Agilent Technologies), and the slides were scanned using a G2565BA 
scanner (Agilent Technologies).

Histone extraction. Histone proteins were purified from nuclear pellets by acid extraction. Cells 
were resuspended in the extraction buffer (PBS containing 0.5% Triton X-100, 2 mM PMSF, and 0.02% 
NaN3) and incubated on ice for 10 min. The pellet was collected by centrifugation at 10,000 ×  g for 10 min 
at 4 °C, washed once in PBS containing 0.5% Triton X-100 and resuspended in 400 μ l of 0.2 M HCl. After 
4 h of incubation on ice, the supernatant was collected by centrifugation at 14,000 ×  g for 15 min, and the 
proteins were recovered by cold acetone precipitation.

Coomassie staining. Histone proteins were separated by a 15% SDS–PAGE assay. The gel was stained 
with Coomassie Brilliant Blue R-250, destained in 40% methanol and 10% glacial acetic acid and vis-
ualized using the ChemiDoc XRS +  Imaging System (Bio-Rad). A commercially available calf thymus 
histone preparation (Roche) was used as a positive control.

qPCRs. qPCRs were performed using TaqMan probes (Applied Biosystems). cDNA was synthesized 
from 1 μ g of RNA in 20-μ l reactions using the iScript cDNA Synthesis Kit (BioRad). PCR mixtures 
contained 10 ng of cDNA; the mix was prepared using 2×  Kapa Probe Fast qPCR Universal Master 
Mix (Kapa Biosystems) and 1x TaqMan probe. PCR reactions were performed in triplicate on a CFX96 
real-time PCR system (BioRad). The cycling conditions were 3 min at 95 °C and 40 cycles at 95 °C for 
30 sec, 60 °C for 20 sec and 72 °C for 60 sec. mRNA levels were computed by the delta-CT method using 
the geometric means of HPRT1, B2M and SDHA for normalization.

aCGH data analysis. Arrays were loaded in R by limma48, the signals were median-centered, 
and MANOR49 was used to correct for global intensity trend and local spatial bias and to check the 
signal-to-noise ratio and replicate consistency. Filtered probes were processed with CGHcall50, applying 
an outlier smoothing correction, CBS segmentation and a post-segmentation normalization to adapt 
the data to its most likely zero-value. Genomic segments were assigned a loss/gain status, and recurrent 
aberrations were obtained through KCsmart51. RESTORE gene CNAs were analyzed in other tumor 
types with CGDS-R25. Primary high-risk neuroblastomas were retrieved from GEO52 (accession number 
GSE45478) and processed as described above. Alterations from both datasets were plotted with Circos53.

Gene expression data analysis. Arrays were loaded in R through Agi4x44PreProcess (bioconduc-
tor.org/packages/2.13/bioc/html/Agi4x44PreProcess.html). Probes were filtered with the following cri-
teria: at least 25% of the samples having values well above background; at least 75% having sufficient 
spot diameter and a signal-to-noise ratio well above the negative controls; and not saturated or an out-
lier. Probes were median-summarized and log2-converted; quantile normalization was applied through 
the same package. Genes with expression levels below the first quartile were considered non-expressed. 
Hierarchical clustering was performed using the hclust function (ward linkage, Pearson distance). The 
PCA analysis was performed using the prcomp function and k-means clustering using the kmeans func-
tion (with n =  3). Differentially represented genes were computed by RankProd16, SAM (cran.r-project.
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org/web/packages/samr) and T-test54. The corrected p-value threshold was 0.05 for T-test, PFP at 0.05 
for RankProd and FDR at 0.05 for SAM.

Gene annotations. Functional enrichments were performed with DAVID55, and cis-elements were 
identified using the AURA 2 regulatory element enrichment tool26. Essential genes were first obtained 
by merging three genome-wide siRNA screens in HeLa21–23 and intersecting our gene set with this list. 
Kaplan-Meier curves were computed for the RESTORE genes through R2 (http://r2.amc.nl). Human 
protein complexes were obtained from CORUM31.

miRNA data analysis. Arrays were loaded into R by AgiMicroRna56. Probes were summarized and 
filtered for being expressed (at least 75% of the samples) and being well above negative controls (at least 
25% of the samples). Signals were log2-converted, and quantile normalization was applied. Ingenuity 
Pathway Analysis (www.ingenuity.com) was used to perform functional enrichments on the miRNA list.

RBP list construction. The RBP list was constructed by retrieving proteins annotated to contain an 
RNA-binding domain from InterPro57 and completed by adding novel RBPs identified by a recent work58.
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