Abstract
In quantum gravity, several approaches have been proposed until now for the quantum description of discrete geometries. These theoretical frameworks include loop quantum gravity, causal dynamical triangulations, causal sets, quantum graphity and energetic spin networks. Most of these approaches describe discrete spaces as homogeneous network manifolds. Here we define Complex Quantum Network Manifolds (CQNM) describing the evolution of quantum network states and constructed from growing simplicial complexes of dimension . We show that in d = 2 CQNM are homogeneous networks while for d > 2 they are scale-free i.e. they are characterized by large inhomogeneities of degrees like most complex networks. From the self-organized evolution of CQNM quantum statistics emerge spontaneously. Here we define the generalized degrees associated with the
-faces of the
-dimensional CQNMs and we show that the statistics of these generalized degrees can either follow Fermi-Dirac, Boltzmann or Bose-Einstein distributions depending on the dimension of the
-faces.
Introduction
Several theoretical approaches have been proposed in quantum gravity for the description and characterization of quantum discrete spaces including loop quantum gravity1,2,3, causal dynamical triangulations4,5, causal sets6,7, quantum graphity8,9,10, energetic spin networks11,12 and diffusion processes on such quantum geometries13. In most of these approaches, the discrete spaces are network manifold with homogeneous degree distribution and do not have common features with complex networks describing complex systems such as the brain or the biological networks in the cell. Nevertheless it has been discussed14 that a consistent theory of quantum cosmology could also be a theory of self-organization15,16, sharing some of its dynamical properties with complex systems and biological evolution.
In the last decades, the field of network theory17,18,19,20,21 has made significant advances in the understanding of the underlying network topology of complex systems as diverse as the biological networks in the cell, the brain networks, or the Internet. Therefore an increasing interest is addressed to the study of quantum gravity from the information theory and complex network perspective22,23.
In network theory it has been found that scale-free networks24 characterizing highly inhomogeneous network structures are ubiquitous and characterize biological, technological and social systems17,18,19,20. Scale-free networks have finite average degree but infinite fluctuation of the degree distribution and in these structures nodes (also called “hubs”) with a number of connections much bigger than the average degree emerge. Scale-free networks are known to be robust to random perturbation and there is a significant interplay between structure and dynamics, since critical phenomena such as in the Ising model, synchronization or epidemic spreading change their phase diagram when defined on them25,26.
Interestingly, it has been shown that such networks, when they are evolving by a dynamics inspired by biological evolution, can be described by the Bose-Einstein statistics and they might undergo a Bose-Einstein condensation in which a node is linked to a finite fraction of all the nodes of the network27. Similarly evolving Cayley trees have been shown to follow a Fermi-Dirac distribution28,29.
Recently, in the field of complex networks increasing attention is devoted to the characterization of the geometry of complex networks30,31,32,33,34,35,36,37,38,39. In this context, special attention has been addressed to simplicial complexes40,41,42,43,44, i.e. structures formed by gluing together simplices such as triangles, tetrahedra etc.
Here we focus our attention on Complex Quantum Network Manifolds (CQNMs) of dimension d constructed by gluing together simplices of dimension d. The CQNMs grow according to a non-equilibrium dynamics determined by the energies associated to its nodes and have an emergent geometry, i.e. the geometry of the CQNM is not imposed a priori on the network manifold, but it is determined by its stochastic dynamics. Following a similar procedure as used in several other manuscripts8,9,10,41, one can show that the CQNMs characterize the time evolution of the quantum network states. In particular, each network evolution can be considered as a possible path over which the path integral characterizing the quantum network states can be calculated. Here we show that in d = 2 CQNMs are homogeneous and have an exponential degree distribution while the CQNMs are always scale-free for d > 2. Therefore for d = 2 the degree distribution of the CQNM has bounded fluctuations and is homogeneous while for d = 2 the CQNM has unbounded fluctuations in the degree distribution and its structure is dominated by hub nodes. Moreover, in CQNM quantum statistics emerges spontaneously from the network dynamics. In fact, here we define the generalized degrees of the -faces forming the manifold and we show that the average of the generalized degrees of the
-faces with energy
follows different statistics (Fermi-Dirac, Boltzmann or Bose-Einstein statistics) depending on the dimensionality
of the faces and on the dimensionality
of the CQNM. For example in d = 2 the average of the generalized degree of the links follows a Fermi-Dirac distribution and the average of the generalized degrees of the nodes follows a Boltzmann distribution. In d = 3 the faces of the tetrahedra, the links and the nodes have an average of their generalized degree that follows respectively the Fermi-Dirac distribution, the Boltzmann distribution and the Bose-Einstein distribution.
Consider a -dimensional simplicial complex formed by gluing together simplices of dimension
, i.e. a triangle for d = 2, a tetrahedron for d = 3 etc. A necessary requirement for obtaining a discretization of a manifold is that each simplex of dimension
can be glued to another simplex only in such a way that the (d−1)-faces formed by (d−1)-dimensional simplices (links in d = 2, triangles in d = 3, etc.) belong at most to two simplices of dimension
.
Here we indicate with the set of all
-faces belonging to the
-dimensional manifold with δ < d. If a (d−1)-face
belongs to two simplices of dimension
we will say that it is “saturated” and we indicate this by an associated variable ξα with value ξα = 0; if it belongs to only one simplicial complex of dimension
we will say that it is “unsaturated” and we will indicate this by setting ξα = 1.
The CQNM is evolving according to a non-equilibrium dynamics described in the following.
To each node i = 1, 2…, N an energy of the node i is assigned from a distribution
. The energy of the node is quenched and does not change during the evolution of the network. To every
-face
we associate an energy
given by the sum of the energy of the nodes that belong to the face α,

At time t = 1 the CQNM is formed by a single -dimensional simplex. At each time t > 1 we add a simplex of dimension
to an unsaturated (d−1)-face
of dimension d−1. We choose this simplex with probability Πα given by

where β is a parameter of the model called inverse temperature and Z is a normalization sum given by

Having chosen the (d−1)-face α, we glue to it a new d-dimensional simplex containing all the nodes of the (d−1)-face α plus the new node i. It follows that the new node i is linked to each node j belonging to α.
In Fig. 1 we show few steps of the evolution of a CQNM for the case d = 2, while in Fig. 2 we show examples of CQNM in d = 2 and in d = 3 for different values of β.
Evolution of the Complex Quantum Network Geometries in d = 2.
Few steps of a possible evolution of the CQNM for d = 2. The nodes have different energies represented as different colours of the nodes. A link can be saturated (if two triangles are adjacent to it) or unsaturated (if only one triangle is incident to each). Starting from a single triangle at time t = 1, the CQNM evolves through the addition of new triangles to unsaturated links.
Visualization of Complex Quantum Network Geometries in dimensions d = 2,3.
Visualization of CQNM with d = 2 (panel A) and d = 3 (panel B). The colours of the nodes indicate their energy while their size indicates their degree
. In d = 2 the degree distribution of the CQNMs is a convolution of exponentials, in d = 3 the CQNMs are scale-free and the presence of hubs is clearly observable from this visualization. The data shown are for CQNM with N = 103 nodes, β = 0.2 and Poisson distribution
with average z = 5.
From the definition of the non-equilibrium dynamics described above, it is immediate to show that the network structure constructed by this non-equilibrium dynamics is connected and is a discrete manifold.
Since at time t the number of nodes of the network manifold is N = t + d, the evolution of the network manifold is fully determined by the sequence and the sequence
, where
, for i ≤ d + 1 indicates the energy of an initial node, while for
with
it indicates the energy of the node added at time
and where
indicates the (d−1)-face to which the new
-dimensional simplex is added at time
.
The dynamics described above is inspired by biological evolutionary dynamics and is related to self-organized critical models. In fact the case is dictated by an extremal dynamics that can be related to invasion percolation28,45, while the case β = 0 can be identified as an Eden model46 on a
-dimensional simplicial complex.
Here we call these network manifolds Complex Quantum Network Manifolds because using similar arguments already developed in8,9,10,41 it can be shown that they describe the evolution of Quantum Network States (see Methods and Supplementary Information for details). The quantum network state is an element of an Hilbert space Htot associated to a simplicial complex of N nodes formed by gluing -dimensional simplices (see Methods and Supplementary Information for details). The quantum network state
evolves through a Markovian non-equilibrium dynamics determined by the energies
of the nodes. The quantity Z(t) enforcing the normalization of the quantum network state
can be interpreted as a path integral over CQNM evolutions determined by the sequences
and
. In fact we have

where the explicit expression of is given in the Supplementary Information. Moreover, Z(t) can be interpreted as the partition function of the statistical mechanics problem over the CQNM temporal evolutions. If we identify the sequences
and
, determining Z(t) with the sequences indicating the temporal evolution of the CQNM we have that the probability
of a given CQNM evolution is given by

Therefore each classical evolution of the CQNM up to time t corresponds to one of the paths defining the evolution of the quantum network state up to time t.
A set of important structural properties of the CQNM are the generalized degrees of its
-faces. Given a CQNM of dimension
, the generalized degree
of a given
-face
, (i.e.
) is defined as the number of
-dimensional simplices incident to it. For example, in a CQNM of dimension d = 2, the generalized degree k2,1(α) is the number of triangles incident to a link
while the generalized degree k2,0(α) indicates the number of triangles incident to a node α. Similarly in a CQNM of dimension d = 3, the generalized degrees k3,2, k3,2 and k3,0 indicate the number of tetrahedra incident respectively to a triangular face, a link or a node. If from a CQNM of dimension
one extracts the underlying network, the degree Kd(i) of node i is given by the generalized degree Kd,0(i) of the same node
plus d−1, i.e.

We indicate with the distribution of generalized degrees kd,δ = k. It follows that the degree distribution of the network
constructed from the d-dimensional CQNM is given by

Let us consider the generalized degree distribution of CQNM in the case β = 0. In this case the new d-dimensional simplex can be added with equal probability to each unsaturated (d−1)-face of the CQNM. Here we show that as long as the dimension d is greater than two, i.e. d > 2, the CQNM is a scale-free network. In fact each -face, with
, which has generalized degree
, is incident to

unsaturated (d−1)-faces. Therefore the probability to attach a new
-dimensional simplex to a
-face
with generalized degree
and with δ < d−1, is given by.

Therefore, as long as δ < d − 2, the generalized degree increases dynamically due to an effective “linear preferential attachment24”, according to which the generalized degree of a δ-face increases at each time by one, with a probability increasing linearly with the current value of its generalized degree. Since the preferential attachment is a well-known mechanism for generating scale-free distributions, it follows, by putting δ = 0, that we expect that as long as the CQNMs are scale-free. Instead, in the case d = 2, by putting δ = 0 it is immediate to see that the probability
is independent of the generalized degree
of the
face (node) α and therefore there is no “effective preferential attachment”. We expect therefore17 that the CQNM in d = 2 has an exponential degree distribution, i.e. in d = 2 we expect to observe homogeneous CQNM with bounded fluctuations in the degree distribution. These arguments can be made rigorous by solving the master equation19 and deriving the exact asymptotic generalized degree distributions for every δ < d (see Methods and Supplementary Information for details). For δ = d − 1 we find a bimodal distribution

For instead, we find an exponential distribution, i.e.

Therefore in d = 2, the CQNMs have an exponential degree distribution that can be derived from Eq. (11) and Eq. (7). Finally for 0 ≤ δ < d − 2 we have the distribution

It follows that for 0 ≤ δ < d − 2 and the generalized degree distribution follows a power-law with exponent
, i.e.

and

The distribution given by Eq. (12) is scale-free if an only if
. Using Eq. (14) we observe that for d ≥ 3 and δ = 0 we observe that the distribution of generalized degrees
is always scale-free. Therefore the degree distribution
given by Eq. (7), for large values of the degree K and for d ≥ 3 is scale-free and goes like

with

Therefore, for d = 3 the CQNMs have and for
they have power-law exponent
.
These theoretical expectations perfectly fit the simulation results of the model as can been seen in Fig. 3 where the distribution of generalized degrees P3,1(k) and P3,0(k) observed in the simulations for β = 0 are compared with the theoretical expectations.
Distribution of the generalized degrees.
The distribution of the (non-trivial) generalized degrees and
in dimension d = 3 are shown. The star symbols indicate the simulation results while the solid red line indicates the theoretical expectations given respectively by Eqs. (11) and (12). In particular we observe that
is exponential while
is scale-free implying that the CQNM in d = 3 is scale-free. The simulation results are shown for a single realization of the CQNM with a total number of nodes N = 2 × 104.
In the case β > 0 the distributions of the generalized degrees depend on the density of
-dimensional simplices with energy
in a CQNM and are parametrized by self-consistent parameters called the chemical potentials, indicated as
and defined in the Supplementary Information.
Here we suppose that these chemical potentials exist and that the density
is given and we find the self-consistent equations that they need to satisfy at the end of the derivation. Using the master equation approach19 we obtain that for
the generalized degree follows the distribution

while for δ = d − 2 it follows

Finally for the generalized degree is given by

It follows that also for β > 0 the CQNMs in d > 2 are scale-free. Interestingly, we observe that the average of the generalized degrees of simplices with energy follows the Fermi-Dirac distribution for δ = d − 2, the Boltzmann distribution for δ = d − 2 and the Bose-Einstein distribution for δ = d > 2. In fact we have,

where ,
is proportional to the Boltzmann distribution and
,
indicate respectively the Fermi-Dirac and Bose-Einstein occupation numbers47. In particular we have

These results suggest that the dimension d = 3 of CQNM is the minimal one necessary for observing at the same time scale-free CQNMs and the simultaneous emergence of the Fermi-Dirac, Boltzmann and Bose-Einstein distributions. In particular in d = 3 the average generalized degree of triangles of energy follows the Fermi-Dirac distribution, the average of the generalized degree of links of energy
follows the Boltzmann distribution, while the generalized degree of nodes of energy
follows the Bose-Einstein distribution.
Finally the chemical potentials , if they exist, can be found self-consistently by imposing the condition.

dictated by the geometry of the CQNM, which implies the following self-consistent relations for the chemical potentials



In Fig. 4 we compare the simulation results with the theoretical predictions given by Eqs. (20) finding very good agreement for sufficiently low values of the inverse temperature β. The disagreement occurring at large value of the inverse temperature β is due to the fact that the self-consistent Eqs. (23)–(25), do not always give a solution for the chemical potentials . In particular the CQNM with
can undergo a Bose-Einstein condensation when Eq. (25) cannot be satisfied. When the transition occurs for the generalized degree with
, the maximal degree in the network increases linearly in time similarly to the scenario described in27.
In d = 3 the average of the generalized degrees of faces, links and nodes follow respectively the Fermi-Dirac, Boltzmann and Bose-Einstein distributions.
The average of the generalized degrees of -faces of energy
, in a CQNM of dimension d=3, follow the Fermi-Dirac
, the Boltzmann
or the Bose-Einstein distribution
according to Eqs. (23)–(25), as long as the chemical potential
is well-defined, i.e. for sufficiently low value of the inverse temperature β. Here we compare simulation results over CQNM of N = 103 nodes in d = 3 and theoretical results for β = 0.01, 0.1, 1. The CQNMs in the figure have a Poisson energy distribution
with average z = 5. The simulation results are averaged over
CQNM realizations.
In summary, we have shown that Complex Quantum Manifolds in dimension d > 2 are scale-free, i. e. they are characterized by large fluctuations of the degrees of the nodes. Moreover the -faces with
follow the Fermi-Dirac, Boltzmann or Bose-Einstein distributions depending on the dimensions
and
. In particular for d = 3, we find that triangular faces follow the Fermi-Dirac distribution, links follow the Boltzmann distribution and nodes follow the Bose-Einstein distribution. Interestingly, we observe that the dimension d = 3 is not only the minimal dimension for having a scale-free CQNM, but it is also the minimal dimension for observing the simultaneous emergence of the Fermi-Dirac, Boltzmann or Bose-Einstein distributions in CQNMs.
Methods
Quantum network states
The Quantum Network State is an element of an Hilbert space Htot associated to a simplicial complex formed by gluing -dimensional simplices of
nodes. This Hilbert space is given by

with indicating the maximum number of (d−1)-dimensional simplices in a network of
nodes. Here a Hilbert space
is associated to each possible node
of the simplicial complex and two Hilbert spaces
and
are associated to each possible (d−1)-dimensional simplex of a network of
nodes. The Hilbert space
is the one of a fermionic oscillator of energy
, with basis
, with
. These states can be mapped respectively to the presence (
) or the absence (
) of a node
of energy
in the simplicial complex. We indicate with
respectively the fermionic creation and annihilation operators acting in this space. The Hilbert space
associated to a (d−1) simplex
is the Hilbert space of a fermionic oscillator with basis
, with
. The quantum number
is mapped to the presence of the simplex
in the network while the quantum number
is mapped to the absence of such a simplex. We indicate with
respectively the fermionic creation and annihilation operators acting in this space. Finally the Hilbert space
associated to a (d−1) simplex
is the Hilbert space of a fermionic oscillator with basis
, with
. We indicate with
respectively the fermionic creation and annihilation operators acting in this space. The quantum number
is mapped to a saturated
simplex, i. e. incident to two
-dimensional simplices, while the quantum number
is mapped either to an unsaturated
simplex (if also
) or to the absence of such a simplex (if
.
A quantum network state can therefore be decomposed as

where with we indicated all the possible (d−1)-faces of the CQNM of
nodes.
We assume that the quantum network state follows a Markovian evolution as it has been proposed already in the literature8,41. In particular we assume that at time t = 1 the state is given by

with enforcing the normalization condition
. The quantum network state at each time
is updated according to the Markov chain

with the unitary operator given by

where indicates the set of all the
-simplices
formed by the node
and a subset of the nodes in
. The quantity
present in the definition of the unitary operator
enforces the normalization condition
and can be interpreted as a path integral over CQNM evolutions determined by the sequence
of the energy values
of the nodes added at time
and the energy values
, together with the sequence
of the
-faces where the new
-dimensional simplex is added at time
. In fact we have.

where the probability of a given CQNM evolution
is given by

For the exact expression of see the Supplementary Information.
Generalized degree distribution for β = 0
The average number of faces of a
-dimensional CQNM of generalized degree
that are incident to the new
-dimensional simplex at a given time t is given, for
, by

where indicates the Kronecker delta while for δ < d − 1 is given by,

Using Eqs. (32), (33) and the master equation approach, it is possible to derive the exact distribution for the generalized degrees. We indicate with the average number of
-faces that at time
have generalized degree
. The master equation for
reads

with k ≥ 1. The master equation can be solved by observing that for large times we have
where
is the generalized degree distribution. In this way Eqs. (10)–(12), are obtained.
Generalized degree distribution for β = 0
For β > 0 the probability that a given
face of energy
and generalized degree
increases its generalized degree by one at time
can be expressed in terms of self-consistent parameters
called chemical potentials and defined in the Supplementary Material. Using these probabilities the master equations can be written for the average number of
-faces
that at time
have generalized degree
and energy
. These equations can be solved similarly to the case β = 0 obtaining for the generalized degree distributions Eqs. (17)–(19),.
Additional Information
How to cite this article: Bianconi, G. and Rahmede, C. Complex Quantum Network Manifolds in Dimension d>2 are Scale-Free. Sci. Rep. 5, 13979; doi: 10.1038/srep13979 (2015).
References
Rovelli, C. & Smolin, L. Discreteness of area and volume in quantum gravity. Nuclear Physics B 442, 593–619 (1995).
Rovelli, C. & Smolin, L. Loop space representation of quantum general relativity. Nuclear Physics B 331, 80–152 (1990).
Rovelli, C. & Vidotto, F. Covariant Loop Quantum Gravity (Cambridge University Press, Cambridge, 2015).
Ambjorn, J., Jurkiewicz, J. & Loll, R. Reconstructing the universe. Phys. Rev. D 72, 064014 (2005).
Ambjorn, J., Jurkiewicz, J. & Loll, R. Emergence of a 4D world from causal quantum gravity. Phys. Rev. Lett. 93, 131301 (2004).
Rideout, D. P. & Sorkin, R. D. Classical sequential growth dynamics for causal sets. Phys. Rev. D 61, 024002 (1999).
Eichhorn, A. & Mizera, S. Spectral dimension in causal set quantum gravity. Class. Quant. Grav. 31, 125007 (2014).
Antonsen, F. Random graphs as a model for pregeometry. International Journal of Theoretical Physics, 33, 1189–1205 (1994).
Konopka, T., Markopoulou, F. & Severini, S. Quantum graphity: a model of emergent locality. Phys. Rev. D 77, 104029 (2008).
Hamma, A., Markopoulou, F., Lloyd, S., Caravelli, F., Severini, S. & Markström, K. Quantum Bose-Hubbard model with an evolving graph as a toy model for emergent spacetime. Phys. Rev. D 81, 104032 (2010).
Cortês, M. & Smolin, L. Phys. Rev. D 90, 084007 (2014).
Cortês, M. & Smolin, L. Phys. Rev. D, 90, 044035 (2014).
Calcagni, G., Eichhorn, A. & Saueressig, F. Probing the quantum nature of spacetime by diffusion. Phys. Rev. D 87 124028 (2013).
Smolin, L. The life of the cosmos. (Oxford University Press, Oxford, 1997).
Bak, P. & Sneppen, K. Punctuated equilibrium and criticality in a simple model of evolution. Phys. Rev. Lett. 71, 4083–4086 (1993).
Jensen, H. J. Self-organized criticality: emergent complex behavior in physical and biological systems. (Cambridge University Press, Cambridge, 1998).
Albert, R. & Barabási, A.-L. Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002).
Newman, M. E. J. Networks: An introduction. (Oxford University Press, Oxford, 2010).
Dorogovtsev, S. N. & Mendes, J. F. F. Evolution of networks: From biological nets to the Internet and WWW. (Oxford University Press, Oxford, 2003).
Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D. H. Complex networks: Structure and dynamics. Phys. Rep. 424, 175–308 (2006).
Caldarelli, G. Scale-free networks:complex webs in nature and technology. (Cambridge University Press, Cambridge, 2007).
Krioukov, D., Kitsak, M., Sinkovits, R. S., Rideout, D., Meyer, D. & Boguñá, M. Network Cosmology. Scientific Reports 2, 793 (2012).
C. A. Trugenberger, C. A. Quantum Gravity as an Information Network: Self-Organization of a 4D Universe. arXiv preprint. arXiv:1501.01408 (2015).
Barabási, A.-L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512 (1999).
Dorogovtsev, S. N., Goltsev, A. V. & Mendes, J. F. F. Critical phenomena in complex networks. Rev. Mod. Phys. 80, 1275 (2008).
Barrat, A., Barthelemy, M. & Vespignani, A. Dynamical processes on complex networks. (Cambridge University Press, Cambridge, 2008).
Bianconi, G. & Barabási, A.-L. Bose-Einstein condensation in complex networks. Phys. Rev. Lett. 86, 5632–5635 (2001).
Bianconi, G. Growing Cayley trees described by a Fermi distribution. Phys. Rev. E 66, 036116 (2002).
Bianconi, G. Quantum statistics in complex networks. Phys. Rev. E 66, 056123 (2002).
Aste, T., Di Matteo, T. & Hyde, S. T. Complex networks on hyperbolic surfaces. Physica A 346, 20–26 (2005).
Kleinberg, R. Geographic routing using hyperbolic space. In INFOCOM 2007. 26th IEEE International Conference on Computer Communications. IEEE. 1902–1909 (2007).
Boguñá, M., Krioukov, D. & Claffy, K. C. Navigability of complex networks. Nature Physics 5, 74–80 (2008).
Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A. & Boguñá, M. Hyperbolic geometry of complex networks. Phys. Rev. E 82 036106 (2010).
Narayan, O. & Saniee, I. Large-scale curvature of networks. Phys. Rev. E 84, 066108 (2011).
Taylor, D., Klimm, F., Harrington, H. A., Kramar, M., Mischaikow, K., Porter, M. A. & Mucha, P. J. Complex contagions on noisy geometric networks. arXiv preprint. arXiv:1408.1168 (2014).
Aste, T., Gramatica, R., & Di Matteo, T. Exploring complex networks via topological embedding on surfaces. Phys. Rev. E 86, 036109 (2012).
Petri, G., Scolamiero, M., Donato, I. & Vaccarino, F. Topological strata of weighted complex networks. PloS One 8, e66506 (2013).
Petri, G., Expert, P., Turkheimer, F., Carhart-Harris, R., Nutt, D., Hellyer, P. J. & Vaccarino, F. Homological scaffolds of brain functional networks. Journal of The Royal Society Interface 11, 20140873 (2014).
Borassi, M., Chessa, A. & Caldarelli, G. Hyperbolicity Measures Democracy in Real-World Networks. arXiv preprint arXiv:1503.03061 (2015).
Wu, Z., Menichetti, G., Rahmede, C. & Bianconi, G. Emergent network geometry. Scientific Reports, 5, 10073 (2015).
Bianconi, G., Rahmede, C. & Wu, Z. Complex quantum network geometries: Evolution and phase transitions Phys. Rev. E 92, 022815 (2015).
Costa, A. & Farber, M. Random Simplicial complexes. arXiv preprint. arxiv:1412.5805 (2014).
Kahle, M. Topology of random simplicial complexes: a survey. AMS Contemp. Math 620, 201–222 (2014).
Zuev, K., Eisenberg, O. & Krioukov, D. Exponential Random Simplical Complexes, arXiv:1502.05032 (2015).
Wilkinson, D. & Willemsen, J. F. Invasion percolation: a new form of percolation theory. Journal of Physics A 16, 3365–3376 (1983).
Barabási, A.-L. Fractal concepts in surface growth. (Cambridge University Press, Cambridge, 1995).
Kardar, M. Statistical physics of particles. (Cambridge University Press, Cambridge, 2007).
Acknowledgements
This work has been supported by SUPERSTRIPES Institute.
Author information
Authors and Affiliations
Contributions
G.B. and C.R. designed the research, G.B. wrote the codes, prepared figures. G.B. and C.R. wrote the main manuscript text.
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Electronic supplementary material
Rights and permissions
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
About this article
Cite this article
Bianconi, G., Rahmede, C. Complex Quantum Network Manifolds in Dimension d > 2 are Scale-Free. Sci Rep 5, 13979 (2015). https://doi.org/10.1038/srep13979
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/srep13979
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.