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The Double Jones Birefringence  
in Magneto-electric Medium
Waqas Mahmood & Qing Zhao

In this paper, the Maxwell’s equations for a tensorial magneto-electric (ME) medium are solved, 
which is an extension to the work on the uniaxial anisotropic nonmagnetic medium. The coefficients 
of the dielectric permittivity, magnetic permeability, and of the magneto-electric effect are 
considered as tensors. The polarization is shown lying in the plane of two perpendicular independent 
vectors, and the relationship for the transverse polarization is given. The propagation of an 
electromagnetic wave through a ME medium gives rise to double Jones birefringence. Besides, the 
condition for an independent phenomenon of D’yakonov surface wave in a magneto-isotropic but 
with magneto-electric medium is given, which is measurable experimentally when the incident angle 
is π

4
. Lastly, it is shown that the parameter for the magneto-electric effect plays a role in the damping 

of the wave.

In 1888, Röntgen observed a connection between the electric and magnetic field by his observation, that 
a moving dielectric gets magnetized when it is placed in an electric field1. His observation was followed 
by an entirely opposite phenomenon of the polarization of a moving dielectric in the presence of the 
magnetic field almost two decades later2. After these couple of findings, the inducement of polarization 
with magnetic field, and the inducement of magnetization with electric field became famous. The fact, 
that symmetry operations could be responsible for the coupling of both of these fields was raised by 
Curie for non-moving crystals3. Though Curie realized, that his proposed intrinsic coupling based on 
symmetry operations between the fields is possible in non-moving crystals, but there was not enough 
explanation for that. Debye coined the magneto-electric (ME) effect4, and years later Landau and Lifshitz 
proposed that the ME behavior is possible in time-asymmetric media5. This time-reversal symmetry 
was violated in antiferromagnetic Cr2O3

6 and it was verified experimentally7–10. In all observations, the 
electric field induced magnetization and the magnetic field induced polarization both are linear in the 
applied fields5.

The observations, that the electrostatic fields carry a link with optical effects have been discussed 
earlier. The most prominent of these optical effects is the linear birefringence that has been discussed 
by many authors11–17. There has been lots of discussion on the media, that possibly show birefringence. 
From a popular calculus based formulism proposed by Jones to study the optical effects18, it is clear that 
the uniaxial medium has the property of showing different fundamental optical effects such as isotropic 
refraction and absorption, linear birefringence and dichroism, and circular birefringence and dichroism. 
Another phenomenon initially predicted by Jones as the Jones effect was later observed experimentally 
by Roth et al.19.

Now the idea has been extended to BiFeO3 materials20 in which Di =  εijEj +  αijHj
5 (repeating indices 

mean summation). For antisymmetric αij i.e., αij ~ εijkυk, it is equivalent to a moving medium with veloc-
ity υi. The propagation of light in a moving medium has been extensively discussed in prior published 
articles21,22. Along a different line, very interesting developments have been made by setting α θ δ∼ ( , )

r tij ij 
(θ may depend on time or constant only). It leads to axion electrodynamics when θ is regarded as a 
dynamical variable23,24, and gives rise to topological surface state related to the Lagrangian ⋅

�� ��
E B with θ 

being constant. Besides, the relativistic nature of the magneto-electric modulus of Cr2O3 has been dis-
cussed by Heyl et al. and the four dimensional relativistic invariant pseudoscalar has been 
calculated25,26.
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On the other hand, the propagation of electromagnetic (EM) wave in an anisotropic media has been 
widely investigated. Under the eikonal approximation ( = ψ�� ��

E E ei
0 , ψ= ∇



k , and ω = − ψ∂
∂t

)5, many ref-
erences are essential extension of the Fresnel’s picture. The article by Ignatovich et al.27 and the references 
there in, reviewed and proposed the analytical description of EM waves in nonmagnetic anisotropic 
media by setting Di =  εijEj, where ε ε δ ε= + ′ˆ ˆa aij ij i j1 . Here ai and aj are orthogonal unit vectors describ-
ing the anisotropic axes. ε1 and ε′  are the dielectric permittivity of isotropic and anisotropic media, and 
both are constants. This approach to describe the permittivity tensor using the addition of an axes is new, 
and it is used to study the optics of uniaxial anisotropic dielectric medium. The dispersion relation 
obtained from the Maxwell’s equations for a nonmagnetic anisotropic medium has been studied in many 
aspects beyond the Fresnel’s picture, and surface wave is proposed for certain angles27.

In this paper, we extend this approach to a uniaxial anisotropic magneto-electric (ME) medium. As it 
is prior mentioned, that the magneto-electric effect exists in linear relationship between the electric and 
magnetic fields in matter, therefore we introduce the same notation already given in ref. 27 to describe 
our uniaxial anisotropic magneto-electric (ME) medium. The tensors εij and μij describe the dielectric 
permittivity and the magnetic permeability respectively. Obviously the tensor αij in ME effect plays the 
role of anisotropic axes in the language of anisotropic media. Extending the idea given in refs. 23,24 with 
θ taken as a constant and αij be considered as a symmetric constant tensor, we conclude that symmetric 
αij under certain conditions when light is incident onto the ME surface gives rise to D’yakonov surface 
wave. We study how the ME effect terms appear in the final matrix, and what role they are playing in 
the underlying effect. We also propose the observation of surface wave under ME effect for certain angles 
and under special conditions.

The paper is organized as follows. In Section 2, we discuss the calculations of the Maxwell’s equations 
in a ME media, with constant tensors εij, μij and αij. We are interested in to find the polarization (

��
E) 

with respect to the equation ∇ ⋅ =
��
D 0. In Section 3, some important cases are discussed with the solu-

tions, the numerical plots of these results are given, and the expressions for permittivity and permeability 
matrix are compared with that given by Hehl et al.25.

Magneto-electric (ME) effect in a magnetic uniaxial anisotropic medium
To transform the Maxwell’s equations under a ME medium, we consider linear ME effect, and restrict 
our work to simpler terms by ignoring the higher order terms. Doing this, the typical relations for the 
ME effect take the form

ε α= + , ( )D E H 1i ij j ij j

and

α μ= + . ( )B E H 2i ji j ij j

In the equations mentioned above, εij is the anisotropic dielectric permittivity and μij is the aniso-
tropic magnetic permeability. The tensor αij is the magneto-electric tensor and it is odd under time 
reversal5. The repeated indices mean summation. The simplest case is αij =  α(t)δij that has been studied 
extensively. In topological insulators, α can be a constant rather than a dynamic field. Therefore, it is a 
natural extension that the tensor αij is taken as a symmetric one.

The propagation of electromagnetic waves through any medium is described by the Maxwell’s equa-
tions, and the behavior of the waves at the interface of two media is governed by the boundary con-
ditions, imposed by these Maxwell’s equations. Hence, the four Maxwell’s equations for the case of no 
charges and current density can be written as

∇ ⋅ ( , ) = , ( )
�� �D r t 0 3

∇ ⋅ ( , ) = , ( )
�� �B r t 0 4

∇ × ( , ) = −
∂ ( , )

∂
, ( )

�� �
�� �

E r t
B r t

t 5

and

∇ × ( , ) =
∂ ( , )

∂
. ( )

�� �
�� �

H r t
D r t

t 6

As it is mentioned earlier, that F. V. Ignatovich et al. have reviewed the case of a nonmagnetic ani-
sotropic medium by introducing an additional axes to the dielectric permittivity, we here use the same 
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technique of adding an additional axes to the dielectric permittivity and so on, to solve the case of a 
magnetic ME medium. This significant method of adding vectors make important the role of vectors.

Now consider a monochromatic (single frequency) wave of the form

ω( , ) = ( ) (− ), ( )
�� � �� �E r t E r i texp 7

and further use an assumption, that no source (ρ =  0) and the current density ( =


j 0) exists. Substituting 
Eq. (1) and (2) into the Maxwell’s Eq. (3–6), we obtain

μ ω μ α αμ

ω ε αμ α

∇ × ⋅ (∇ × ) − ∇ × ( ) ⋅ − ( ) ⋅ (∇ × )

= − ( ) ⋅ , ( )

− − −

−

�� �� ��

��
E i E E

E

[ ] { [ ] }

[ ] 8

T

T

1 1 1

2 1

and

ε αμ α
ω
αμ= − ( ) ⋅ + ( ) ⋅ (∇ × ), ( )

− −�� �� ��
D E

i
E[ ] 1

9
T1 1

where ε, μ−1 and α represent the tensors with matrix elements εij, (μ−1)ij and αij. Since, we are dealing 
with an anisotropic medium, and for the characterization of anisotropic medium we consider ε, μ and 
α as symmetric tensors. Now setting

β αμ= , ( )− 101

and

ε ε βα= − ( ) , ( ) 11ij ij
T

ij

in Eq. (8) and (9), we obtain

μ ω β β ω ε∇ × ⋅ (∇ × ) − ∇ × ( ⋅ ) − ⋅ (∇ × ) = ⋅ , ( )− �� �� �� ��
�E i E E E[ ] { } 121 2

and

ε
ω
β= ⋅ + ⋅ (∇ × ). ( )

�� �� ��
�D E

i
E1

13

Next, we extend the anisotropic dielectric medium to an anisotropic magneto-electric medium. For 
such a medium, the isotropic dielectric permittivity is denoted by ε1, the strength of the anisotropy is 
represented as ε′ , the inverse of isotropic magnetic permeability is τ1, the inverse of anisotropic magnetic 
permeability is taken as τ′ , β1 is the isotropic ME coefficient and β′  is the anisotropic ME coupling coef-
ficient. Taking the role of additional vectors into account, and writing all the constant coefficients ε1, ε′ , 
τ1, τ′ , β1 and β′  in the tensors, the anisotropic medium takes the form

ε ε δ ε= + ′ , ( )
ˆ ˆa a 14ij ij i j1

μ τ δ τ( ) = + ′ , ( )
− ˆ ˆb b 15ij ij i j

1
1

and

β β δ β= + ′ , ( )ˆ ˆd d 16ij ij i j1

where the relationships for β1, β′  and the matrix form of αij usually used in experiments shown in ref. 25 
will be given later. The orthogonal unit vectors â, b̂ and d̂ introduced as additional axes in Eq. (14–16), 
are given by

θ φ θ φ θ= ( , , ), ( )â sin cos sin sin cos 17

ϕ ψ ϕ ψ ϕ= ( , , ), ( )b̂ sin cos sin sin cos 18

and

β δ β δ β= ( , , ). ( )d̂ sin cos sin sin cos 19

It is important to note that the angle β in Eq. (19) is different from the parameters β1 and β′  in Eq. 
(16). As a result of an added axes, we expect the off diagonal terms of the final matrix to be non-zero, 
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which in the case of nonmagnetic medium were equal to zero. The coefficient β′  appearing with the 
additional axes is assumed to play a crucial role. For convenience, we choose κ =



ˆ k
k

 along z −  axes to 
completely describe our system, and introduce a new set of vectors in the form

κ= × , ( )
 ˆ ˆe a 201

κ= × , ( ) ˆ ˆe b 21

and

κ= × , ( )
�� ˆ ˆg d 22

where e results in replacing θ and φ by ϕ and ψ.
For the plane wave, we can substitute ∇ →



ik. Using this substitution in Eq. (3), and further substi-
tuting Eq. (13) into it, we arrive at

ε κ ε κ ξβ κ( ⋅ ) + ′( ⋅ )( ⋅ ) + ′( ⋅ )( ⋅ ) = , ( )E a a E d g E 0 231

where =ω k
c 0, κ= ( × )

�� ˆ ˆg d  and ξ = =
ω

k
k

ck

0
.

Now substituting ∇ →


ik into Eq. (12), and further solving it after using Eq. (21) into it, we obtain

τ ξ ε τ ξ κ κ τ ξ ε β ξ( − ) − ( ⋅ ) + ′ ( ⋅ ) − ′( ⋅ ) − ′ ( ⋅ ) + ( ⋅ ) = . ( )ˆ ˆE E e E e a E a g d E d g E[ ] 0 241
2

1 1
2 2

In the new basis,

κ= + + , ( )
�� �ˆ ˆE Aa B C e 251

where â, κ̂ and e1 form a right handed system. The coordinates A, B, and C are not independent. In order 
to find the value of the coordinate B, we substitute Eq. (25) into Eq. (23) (∇ ⋅ =

��
D 0), and obtain

η θ
η θ ρξ θ β β φ δ

ρξ θ β β φ δ

=
−

( + )
( + ) − ( − )

+ ( − ) , ( )

B A

C

1
1 cos

[ { 1 cos sin cos sin sin }

{ sin cos sin cos }] 26

2

where ρ = β
ε
′

1
, η = ε

ε
′

1
 and ξ = k

k0
.

Substituting B into Eq. (25), we obtain the polarization vector in the form

= + , ( )
�� � �E Ae C e 272 1

where

κ η θ

η θ
ξχ= −

( + )

( + )
( + ),

( )

 ˆ
ˆ

e a
1 cos

1 cos
1

28
2 2

and

χ
ρ
η

θ β β φ δ φ δ= −
( + )

( − )


 − ( − )



. ( )

C
A1

tan cos sin sin 1 cot
29

It is evident from Eq. (27), that the polarization vector (
��
E) lies in the plane of two independent 

orthogonal vectors e1 and e 2, where e 2 is given by Eq. (28). The transverse polarization can be found by 
replacing the vector â given in Eq. (25) by κ κ= − ( ⋅ )ˆ ˆ ˆ ˆ ˆa a at . In order to deal with the linear theory, we 
consider an interesting case when φ δ− = π

2
 i.e., the plane of â and κ̂, and the plane of d̂ and κ̂ are 

perpendicular to each other as shown in Fig. 1.
Hence Eq. (29) implies

χ
ρ
η

θ β β= −
( + )

.
( )1

tan cos sin
30

Substituting χ back into Eq. (28), we have

κ
ε θ
ε

θ
ρξ
η

θ β β= −
( ) 



−
( + )





,

( )

 ˆ ˆe a cos 1
1

tan cos sin
31

2
2

1
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where

ε θ
ε η

η θ
( ) =

( + )

( + )
.

( )

1
1 cos 32

2
1

2

In terms of

λ
ε θ
ε

θ
ρξ
η

θ β β=
( ) 



−
( + )





,

( )
cos 1

1
tan cos sin

33
1

2

1

we have

λ κ= − , ( )
 ˆ ˆe a 342 1

where it is important to note that ⋅ =
 e e 01 2 .

The meaning of Eq. (34) is obvious. Because of Eq. (3), the transverse condition has been satisfied. 
Therefore, 

��
E has two independent polarizations.

Multiplying Eq. (24) by e1 yields

τ ξ ε β ξ β( − ) + ( ′ ) = . ( )C A sin 0 351
2

1
2

Now multiplying Eq. (24) by e 2, using Eq. (33) into it, and performing a little lengthy calculations we 
obtain

β ξ β τ τ ϕ ξ ε θ ξ( ′ ) + ( + + ′ − ( ) − ) = , ( )C A F Gsin { sin } 0 362
1

2 2
2

where

β
ε

β β
ε θ
η

=




′ 




( )

( + )
,

( )
F cos sin

1 371

2
2 2 2

and

Figure 1. The unit vectors â and d̂ for the case when φ − δ = π
2

.
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ηρ β θ θ
ε θ
η

=
( )

( + )
.

( )
G sin2 cos sin

1 38
2

The Eq. (35) and (36) can be written in the matrix form as

τ ξ ε β ξ β

β ξ β τ τ ϕ ξ ε θ ξ









− ′

′ ( + + ′ ) − ( ) −














 = .

( )F G
C
A

sin

sin sin
0

39
1

2
1

2

2
1

2 2
2

Eq. (39) is the general form of the propagation of transversal EM wave in a ME media for φ δ− = π
2

. 
We shall discuss the meaning of Eq. (39) in Section 3. It should be noted that for DC (ω →  0), ξ is very 
large. However, for AC, we consider low frequencies and the correction of linear terms of ξ. In our work, 
the light propagation is taken into account, however, the theory works for any frequency in principle.

Particular cases and propo sed surface wave
Let’s start with a trivial case, when there is no magneto-electric effect i.e., when β′  =  τ′  =  0. The matrix 
given in Eq. (39) reduces to

τ ξ ε

τ ξ ε θ









−

− ( )














 = ,

( )

C
A

0

0
0

40
1

2
1

1
2

2

which can be written in the equations form for τ1 =  1 as

ξ ε= , ( )412
1

and

ξ ε θ= ( ). ( )422
2

The Eq. (41) and (42) are nothing but the relationships of the wave vector for an anisotropic dielectric 
medium already discussed in27, when there exists only one anisotropic axes â. When tensorial ME effect 
is considered, the off diagonal terms are non zero, however, the term β′ ξsin2β appears in the off diagonal 
term’s place, which is constrained by the Maxwell’s Eq. (5) and (6).

Another interesting and special case is, when η =  0 i.e., the medium is with magnetic structure and 
magneto-electric effect only. Rewriting Eq. (39) using this assumption, we have

τ ξ ε β ξ β

β ξ β νξ ε









− ′

′ −














 = ,

( )

C
A

sin

sin
0

43
1

2
1

2

2 2
1

where

= , ( )G 0 44

ε θ ε( ) = , ( )452 1

ν τ τ ϕ= ( + + ′ ), ( )F sin 461
2

and

β
ε

β βε=




′ 




.
( )

F cos sin
471

2
2 2

1

To find the dispersion relation satisfied by the matrix given in Eq. (43), we set the determinant of the 
matrix equal to zero, and arrive at

τ νξ τ ε νε β β ξ ε− ( + + ′ ) + = . ( )sin 0 481
4

1 1 1
2 4 2

1
2

Recalling

ξ = ,
( )

k
k 490

and denoting
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= + , ( )⊥k k k 502 2 2

where k  denotes the parallel component, and k^ denotes the perpendicular component to the boundary 
z =  0 of the media. If light is incident on the boundary, k  remains unchanged for z >  0 and z <  0 because 
of the continuity. The Eq. (48) recasts to

( )τ ν τ ν ε τ ν+ − + + − = , ( )⊥ ⊥k k k D k k k k k D2 0 511
4 2

1 0
2 2

0
4

1
2

1
4 2

0
2

where

τ ε νε β β= + + ′ . ( )D sin 521 1 1
2 4

Solving Eq. (51) as a quadratic equation in ⊥k
2, we obtain the solution

( )τ ν
τ νε= ± − − .

( )⊥k
k

D D k
2

4
53

2 0
2

1

2
1 1

2 2

The component k 2 is invariant and the squared term D2 in Eq. (53) is always larger than the second 
term in the square root. The dispersion relation depends on the axes of magneto-electric effect and for 
negative k 2, only surface wave is survived.

Surface wave in uniaxial anisotropic ME medium. It is mentioned earlier, that surface wave exists 
in a uniaxial anisotropic dielectric medium under certain incident angles27. Consider now the case of a 
uniaxial anisotropic magneto-electric medium. Let’s consider a region of two halves separated by the 
plane z =  0. The region z >  0 is vacuum, and the region z <  0 is the magneto-electric medium. Due to 
the continuity of 

��
E, the parallel component (k ) does not change. However, the only change occurs in the 

perpendicular component (k^). Suppose a plain wave propagates towards a plane at z =  0 (Fig. 2).
For the general case, the roots of the fourth order algebraic equation looks complicated. Hence, we 

consider a special case with η ≠ 0 and θ = π
2

. For this case, the anisotropic axes for the dielectric tensor 
mentioned in Eq. (14) is perpendicular to the propagation direction κ̂, or only an incident wave propa-
gating along the direction perpendicular to â is taken into account.

Substituting θ = π
2

 in the Eq. (39), it is simplified to

τ ξ ε β ξ β

β ξ β νξ ε η









− ′

′ − ( + )














 = ,

( )

C
A

sin

sin 1
0

54
1

2
1

2

2 2
1

where

ν τ τ ϕ= + + ′ , ( )F sin 551
2

and

Figure 2. Numerical plot of an electromagnetic wave with time harmonic form and exp(−iωt) 
dependence. 
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β
ε

β βε=




′ 




.
( )

F cos sin
561

2
2 2

1

Magneto-isotropic but with magneto-electric tensor. Let’s consider another special case in 
which b̂ and α both don’t play any role. However, only d̂ is survived. Suppose ε′  =  0 and τ′  =  0. The 
matrix in Eq. (39) becomes

τ ξ ε β ξ β

β ξ β νξ ε









− ′

′ −














 = ,

( )

C
A

sin

sin
0

57
1

2
1

2

2 2
1

where

= , ( )G 0 58

ε θ ε( ) = , ( )592 1

ρ
β
ε

=




′ 



,

( )60
2

1

2

ν τ= ( + ), ( )F 611

and

ρ β βε= . ( )F cos sin 622 2 2
1

Taking the determinant of the matrix given in Eq. (57), and setting it equal to zero, we arrive at

τ νξ τ ε νε β β ξ ε− ( + + ′ ) + = . ( )sin 0 631
4

1 1 1
2 4 2

1
2

Using ξ = k
k0

, and further solving Eq. (63), we arrive at

τ ρ β β ε ε
β
τ

β
ε
τ

+ ( )( ) −





+
′ 



+ = .

( )
k k k k k k kcos sin 2 sin 0

64
1

4 2 2 2 2 2
1 0

2
1

2
2

1

2 2
0
4 1

2

1

Introducing the components form, we have

β = ( ⋅ ) + ( ⋅ ), ( )⊥
ˆ ˆ ˆ ˆk k l d k n dcos 65

which on squarring both sides yields

β = ( ⋅ ) + ( ⋅ )( ⋅ ) + ( ⋅ ) , ( )⊥ ⊥
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆk k l d k k l d n d k n dcos 2 662 2 2 2 2 2

where l̂  is the unit vector in the direction parallel to the surface and n̂ is the unit vector in the direction 
perpendicular to the surface.

Similarly

( ) ( )β = − ( ⋅ ) + − ( ⋅ ) − ( ⋅ )( ⋅ ). ( )⊥ ⊥
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆk k l d k n d k k l d n dsin 1 1 2 67

2 2 2 2 2 2

Multiplying Eq. (66) and (67), we have

( )( ) ( )

( )

( )

( )

( )

β β = ( ⋅ ) − ( ⋅ )

+ ( ⋅ )( ⋅ ) − ( ⋅ )( ⋅ )

+ ( ⋅ ) + ( ⋅ ) − ( ⋅ ) ( ⋅ )

+ ( ⋅ )( ⋅ ) − ( ⋅ ) ( ⋅ )

+ ( ⋅ ) − ( ⋅ ) . ( )

⊥

⊥

⊥

⊥

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

k k k n d n d

k l d n d k l d n d k

k l d k n d k l d n d k

k l d n d k l d n d k

l d l d k

cos sin

2 4

6

2 4

68

2 2 2 2 4 2 4

3 3

2 2 2 2 2 2 2 2

3 3 3

2 4 4
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Recall

= + , ( )⊥k k k 692 2 2

and likewise

= + + . ( )⊥ ⊥k k k k k2 704 4 2 2 4

Let x =  k^, and substitute Eq. (68), (69) and (70) into Eq. (64). We arrive at the following fourth order 
algebraic equation in x

τ γ γ
β
ε

β
ε

γ γ

τ
β
ε

γ γ

ε
β
τ

γ
β
ε

γ γ

β
τ

γ τ
β
ε

γ γ

ε
β
τ

γ
ε
τ





+

′ 



+




−
′ 




+









+
′
( − )






−




+
′ 








+




′

+
′ 



+









+
′ 




−




+
′ 



+





= ,

( )

x k x

k

k x k

k k x k

k k
k

cos sin cos 2 sin 2

2 1 6cos sin

2 sin cos 2 sin 2

sin 2 cos sin

2 cos 0
71

1
2 2

2

1

4
2

1

3

2
1

2

1

2 2

0
2

1

2

1

2 2
2

1

3

2

1
0
2 4

1

2
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where γ is the angle between n̂ and d̂. The equation given above can be rewritten as

+ + + + = , ( )ax bx cx dx e 0 724 3 2

where

τ γ γ
β
ε

= +
′
,

( )
a cos sin

731
2 2

2

1

β
ε

γ γ= −
′

,
( )

b k cos2 sin2
74

2

1

τ
β
ε

γ γ ε
β
τ

γ=





+
′
( − )





−





+
′ 



,

( )
c k k2 1 6 cos sin 2 sin

75
2

1

2

1

2 2
0
2

1

2

1

2

β
ε

γ γ
β
τ

γ=
′

+
′

,
( )

d k k kcos2 sin2 sin2
76

2

1

3
2

1
0
2

and

τ
β
ε

γ γ ε
β
τ

γ
ε
τ

=




+
′ 



−





+
′ 



+ .

( )
e k k k

k
cos sin 2 cos

77
4

1

2

1

2 2
0
2 2

1

2

1

2 0
4

1
2

1

The general solution of the fourth order equation given in Eq. (72) is very complicated. To show the 
point, we consider a simple example for γ = π

4
 (Fig.  3), that can be checked experimentally in 

principle19.
Setting γ = π

4
 and finding the solutions, we have
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Now setting β″ = β ′
2

 and θ= =q sin
k

k in
2 2

2

0
2 , the four solutions given in Eq. (78–81) can be further 

simplified to

β
β β β β=

+ ″






′ − + ″ − ″ + ″ −






,

( )

⊥( )k

k
q q1

2 1
2 1 1

82

1

0 2
2 2 2

β
β β β β=

+ ″






′ + + ″ − ″ + ″ −






,

( )

⊥( )k

k
q q1

2 1
2 1 1

83

2

0 2
2 2 2

β
β β β β=

+ ″






− ′ − + ″ + ″ + ″ −






,

( )

⊥( )k

k
q q1

2 1
2 1 1

84

3

0 2
2 2 2

and

β
β β β β=

+ ″






− ′ + + ″ + ″ + ″ −






.

( )

⊥( )k

k
q q1

2 1
2 1 1

85

4

0 2
2 2 2

The Eq. (82–85) show double Jones birefringence19. From the solutions if the incident angle falls in 
the range

( )θ β β β β= > + ″ ″ − ( + ″ ) ″ > , ( )q sin 1 1 for 0 86in
2 2 2

it gives rise to complex k^ that decays with z to generate the surface wave. The visualization of the four 
solutions mentioned above is given in Figs.  4–7. Figure  4 is the visualized surface for Eq. (82) gener-
ated in Mathematica. It is clear in the plot that the decay of the wave is constrained to β′ . If we further 

Figure 3. The region z > 0 is vacuum and the region z < 0 is magneto-electric medium. θin is the incident 
angle for k0. The parallel and perpendicular components are k‖ and k^ respectively. The range of θin is 
constrained by β and for γ = π

4
 surface wave along the plane z =  0 is shown.
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increase the values of β′ , the ends of the curve become more flat, however this does not influence the 
damping of the wave.

The crucial role of β′  as we have mentioned earlier turns out the same way as expected and for an 
incident electromagnetic wave on to the plane z =  0, it is playing a role in the damping of the wave. 
However, the surfaces generated using Mathematica for other solutions are slightly different. Figure  5 
displays the surface generated for the Eq. (83). With an increase in the value of q, the k^ component is 
decreasing and the depth of the curve is also becoming less. When the value of q approaches nearly 0.8, 
the surface is seen to be almost flat.

The solutions given in Eq. (84) and (85) are plotted in Figs. 6 and 7 respectively. A common behav-
ior of damping for an electromagnetic wave is seen in both of the generated surface plots. These plots 
emphasize the role of β′  in our calculations for the uniaxial anisotropic magneto-electric medium and 
provide an illustration for the observation of physical phenomenon of surface waves in such a medium. 
This study on the magneto-electric medium using the additional axes in many aspects may give rise to 
the observation of more fundamental effects in optics.

The behavior of the incident angle (θin) with respect to β″  is shown in Fig. 8, where the angle is in 
degrees.

To make a comparison of the permittivity and permeability matrix with the tensorial form of ME 
based on the relativistic invarience25, consider that ε, α and μ, all are diagonal with first two entries same. 
For such a case, using Eq. (11) the permittivity matrix simplifies to
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α
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and the permeability matrix takes the form
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Now consider another case when ε, α and μ, all are diagonal, however with different matrix elements. 
The Eq. (10) can be rewritten in the form

Figure 4. Numerical plot of Eq. (82) with β″ = =β ′
2

b
2

 and =q
k

k0
.
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α β μ= . ( )89ik im mk

Using the definition of βij from Eq. (16) into αik, given in the last equation, we arrive at

α β δ μ β μ= + ′ , ( )ˆ ˆd d 90ik im mk i m mk1

which for only d̂, simplifies to

Figure 5. Numerical plot of Eq. (83) with β″ = =β ′
2

b
2

 and =q
k

k0
.

Figure 6. Numerical plot of Eq. (84) with β″ = =β ′
2

b
2

 and =q
k

k0
.
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Figure 7. Numerical plot of Eq. (85) with β″ = =β ′
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.

Figure 8. The incident angle θin as a function of β″, where θin is in degrees. 
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In comparison with ref. 25 it depends on the orientation of the unit vector â in Eq. (17) that comes 
from εij.

Conclusion
In this paper, we have solved the Maxwell’s equations with the typical definition of the linear 
magneto-electric effect given in Eq. (1–2), and extended the approach given in ref.  27 to describe the 
propagation of an EM wave through a uniaxial anisotropic magnetic ME medium. By considering the 
linear ME effect, and by introducing the new basis, it is shown, that for a plain electromagnetic wave of 
the form ω( ) (− )

�� �E r i texp , the polarization vector ( )
��
E  lies in the plane of two independent orthogonal 

vectors e1 and e 2. Further proceeding with the calculations, it is observed, that the terms for the 
magneto-electric effect appear in the off diagonal place in the Eq. (39), where the parameter β′  plays a 
crucial role. The solutions of the fourth order polynomial provide the condition for the physical phenom-
enon of D’yakonov surface wave at certain incident angle. The proposed surface wave is observable at an 
incident angle π

4
. From the condition of the surface wave, it is inferred, that the constant β′  is responsible 

for the damping of surface wave as shown in the figures. Lastly, the Eq. (87), (88) and (91) support the 
Dzyaloshinskii’s theory.
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