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Hong-Ou-Mandel Interference with 
a Single Atom
K.A. Ralley1, I.V. Lerner1 & I.V. Yurkevich2

The Hong-Ou-Mandel (HOM) effect is widely regarded as the quintessential quantum interference 
phenomenon in optics. In this work we examine how nonlinearity can smear statistical photon 
bunching in the HOM interferometer. We model both the nonlinearity and a balanced beam splitter 
with a single two-level system and calculate a finite probability of anti-bunching arising in this 
geometry. We thus argue that the presence of such nonlinearity would reduce the visibility in the 
standard HOM setup, offering some explanation for the diminution of the HOM visibility observed 
in many experiments. We use the same model to show that the nonlinearity affects a resonant two-
photon propagation through a two-level impurity in a waveguide due to a “weak photon blockade” 
caused by the impossibility of double-occupancy and argue that this effect might be stronger for 
multi-photon propagation.

The Hong-Ou-Mandel (HOM) interferometer1,2 is one of the main tools in registering biphotons (i.e. 
entangled photon pairs) created by SPDC (spontaneous parametric down-conversion)3–11. The ideal 
HOM protocol comprises a four-port interferometer with two incoming and two outgoing channels, a 
spectrally-flat, balanced beam splitter and the coincidence counter (see Fig. 1). When uncorrelated pho-
tons arrive at the incoming port, the outgoing photons split equally between the two detectors resulting 
in a signal in the coincidence counter. However, when two photons arrive simultaneously at both the 
incoming ports, the outgoing photons are bunched together leaving the interferometer through only 
one of the outgoing ports1,2, so that the counter detects no signal. As the entangled photons are simul-
taneously created by SPDC, their arrival at the two incoming ports (against the background of uncorre-
lated arrivals of non-entangled photons) is manifested by a dip in a signal registered by the coincidence 
counter.

In this work we argue that characteristics of such a dip can be substantially affected by the presence 
of a nonlinearity that leads to an effective interaction between two photons14–19 that simultaneously 
enter the beam splitter in the HOM device. The nonlinearity might be due to a single two-level impurity 
embedded in the device. The interplay between such a nonlinearity and HOM interference leads to a 
novel mechanism of the suppression of the photon bunching which might obscure information about 
biphoton generation.

An alternative geometry where nonlinearity is also essential is illustrated in Fig.  2a: a two-level 
impurity is embedded in a waveguide. Such an impurity would practically not affect the propagation of 
off-resonance photons but result in a full reflection of a single photon at the resonant frequency, acting 
similarly to the side-attached resonant impurity for electrons propagating through a conducting wire12. 
In this geometry the nonlinearity suppresses the resonant reflection and leads to a partial propagation 
for the photon pair at the resonance. A feasible “dual” geometry, Fig. 2b, comprises two waveguides sep-
arated by an optically opaque region with an embedded two-level impurity. There is no propagation of 
non-resonant photons through such a weak link but an ideal resonant transmission of a single photon, 
which is again suppressed by the nonlinearity. We show that all such geometries can be described within 
essentially the same model where the nonlinearity substantially alters two-photon propagation.
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The Model
We consider a wave-guided few-photon beam interacting with a single near-resonant atom that can be 
described as a two-level system (TLS). We assume that both incident and transmitted or reflected pho-
tons can propagate along two channels. Such a model mimics (under conditions specified below) the 
HOM geometry of Fig. 1 when the incoming channels are different, and corresponds to a TLS embedded 
into a 1D photonic crystal waveguide when photons enter through the same channel, Fig. 2. The corre-
sponding Hamiltonian is reduced in the usual rotating wave approximation to
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b̂ k and bα,k are the photon creation and annihilation operators with the index α =  1,2 labelling 
the channels; ω  =  k is the photon energy (counted from the upper energy level of the TLS) in the units 
where both ћ and the group velocity of light in the medium are set to 1; the TLS is described by Pauli’s 
rasing and lowering matrices, σ σ σ= ±±ˆ ˆ ˆix y; and γ  is the atom-photon coupling strength, with γ 

Figure 1. Traditional Hong-Ou-Mandel interference scheme. Two identical photons arriving 
simultaneously at a balanced, broadband beam splitter (BS) will be conveyed along only one of the possible 
outgoing channels—and so, in contrast to the general case, no coincidence counts will be accumulated.

Figure 2. Two additional geometries described by the model of Eq. (1): (a) a single atom (TLS) 
embedded in a 1D photonic crystal waveguide leads to reflection of resonant photons in the channel 
(off-resonant photons are freely transmitted); (b) an interstitial TLS provides a resonant link between 
two waveguide channels.
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being the TLS relaxation rate. Neglecting the nonlinearity, i.e. considering two- or multi-photon scattering 
from the TLS as totally independent, this model describes—with a proper choice of γ and ω  specified 
below—both a 50:50 (balanced) beam splitter for the HOM geometry and ideal resonant reflection or 
transmission for the geometry of Fig. 2(a,b), respectively.

We will describe how the effects of the nonlinearity caused by indirect photon interaction via scatter-
ing from the TLS change the probability αα ββ′ ′P  of two photons entering via channels β and β′  and 
exiting via channels α and α′  in the Results below. In both cases of the HOM geometry (β ≠ β) and the 
resonance geometry (β β= ′) we calculate the probability of photons leaving through different channels: 

= +P P PHOM 12 12 21 12 and = +ββ ββP P Pres 12 21 . The former describes the suppression of photon 
bunching in the HOM experiment while the latter describes a “weak photon blockade” of the resonant 
two-photon reflection from or transmission through TLS.

Before describing the nonlinearity effects, we express the probability αα ββ′ ′P 0  of independent 
two-photon scattering from the TLS via parameters of the model. One-photon scattering from a TLS is 
described by the scattering matrix Ŝ ≡ αβs{ } connecting incident and outgoing photons in the two 
channels:

α β= , =




′
′


, = .
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The unitarity of S-matrix requires the equality of the reflection and transmission amplitudes, = ′t t  
and = ′r r . In a system with reflection symmetry the choice r =  r′  and t =  t′  is assumed in what 
follows.

For a monochromatic photon in the resonant transmission geometry of Fig.  2(b), the transmission 
and reflection amplitudes in Eq. (2) become
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where ω  is a photon detuning from the resonance, and the TLS is assumed to be initially in its ground 
state. The dual geometry of Fig. 2(a) is obtained by swapping the reflection and transmission amplitudes, 
r t. In both these cases (choosing the incoming channel β β= ′ = 1), αα′P 11

0  is just a product of 
one-photon probabilities so that =P 111 11

0  in the geometry of Fig. 2(a) (both the photons are resonantly 
reflected), or =P 122 11

0  in the dual geometry of Fig. 2(b) (both are resonantly transmitted). Only non-
linearity will lead to distinct features in two-photon scattering (as compared to single-photon) in this 
geometry.

For the HOM geometry (β β≠ ′), the probability of anti-bunching without nonlinearity is

= + = + = ( − ) , ( )P s s s s t r T R 4HOM
0

11 22 12 21
2 2 2 2 2

where =T t 2 and =R r 2 are the single-photon transmission and reflection probabilities. Thus a per-
fect bunching, =P 0HOM

0 , occurs when = =T R 1
2
 so that the model of Eq. (1) would emulate an ideally 

balanced beam splitter when the frequency ω  of monochromatic incoming photons coincides with the 
resonance width γ. For realistic time-resolved photons, an almost balanced beam splitter will be emu-
lated if both photons have spectral functions centred at ω  =  γ of width σ much smaller than γ. The 
limitation γ σΓ ≡ /  1 is essential for the model we consider here.

This result holds for two identical photons. If the photons become distinguishable, e.g. by a delay τ 
between their arrival times, they would be uncorrelated for τ σ−



1 and thus have equal probabilities 
to go to ports 1 or 2. Therefore, one expects a dip in τ( )PHOM

0  at τ =  0 with a non-universal shape 
dependent on the spectral function. When the latter is Gaussian, one has

τ( ) = − . ( )
στ−( )P 1

2
[1 e ] 5HOM

0 2

The depth of such a dip is thus used, e.g., to characterise a rate of the SPDC biphoton production, as 
the shape of the entangled photons is identical and they are created simultaneously.

Here we argue that a non-ideal dip may result from the nonlinearity in the HOM beam splitter like 
that described by the Hamiltonian (1).

Results
In the HOM geometry, when the identical photons come from the opposite (β β≠ ′) channels without 
a time delay, the nonlinearity results in a nonzero probability τ( = )P 0HOM  of detecting the two photons 
in different outgoing channels. We find the probability of the coincidence counter clicking as a function 
of the time delay τ between two photons hitting the TLS as
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τ τ δ τ( ) = ( ) + ( ), ( )P P P 6HOM HOM
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where the last term corresponds to the nonlinearity-induced photon-photon interaction. In particular, 
for photons with narrow Gaussian spectral function, when Γ  1, we find

δ τ
π

στ
γ
σ
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Γ
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Since δ ( )P 0HOM  does not vanish (which is true for any photon spectral function), the HOM dip is no 
longer ideal. A more general case, not restricted to Γ  1, is illustrated in Fig. 3 while general expres-
sions for both factors in Eq. (6) will be given in Methods below.

In the geometries of Fig. 2 two incident photons tuned into the resonance ω  =  0 are coming through 
the same channel (β β= ′ = 1). As the two geometries are dual, we give the results on that of Fig. 2b. 
In this case the nonlinearity suppresses the resonant transmission as two photons cannot simultaneously 
excite the TLS. Such a “weak photon blockade” by TLS results in the nonzero probability, Pres, of one 
photon transmitted and the other reflected. This probability is peaked for simultaneous photon arrival, 
Δ  =  0. For photons with narrow Gaussian spectral function we find

δ ζ
π

= − = =
Γ +

,
( )Δ

P P P 1 1

1 e 8res res res
0

bl 2

In this limit the blockade is weak even in the absence of the time delay τ since the TLS re-emits photon 
over the time interval γ−1 which is much shorter than the time interval σ−1 over which each photons 
arrives. However, with Γ  decreasing both the nonlinearity becomes weaker and a trivial single-photon 
off-resonant scattering plays a bigger role. Thus the full anti-bunching probability has a maximum at 
Γ  ~ 1 as shown on the inset in Fig. 4.

Methods
The multi-photon scattering states for the model (1) can be described in terms of the Bethe ansatz eigen-
states, see e.g. refs 13,20, each state parameterised by a string of complex quasi-momenta. The physical 
implication of these complex-valued quasi-momenta is the emergence of many-photon states weakly 
bound to the atom (TLS). The asymptotic scattering states constructed out of these eigenstates will be 
affected by such binding.

For the two-photon scattering states we will use a more straightforward and physically transparent 
approach based on the scattering matrix. Note that in two-photon (or multi-photon) scattering described 
by the model (1) two opposing tendencies compete: the statistical photon bunching clearly demonstrated 
by the dip in the coincidence counter in the idealised HOM geometry, and the nonlinearity caused by 
the fact that at any moment only a single photon can go through the TLS. It is this competition that 
spoils the ideal antibunching in the HOM geometry and the ideal resonant transmission (or reflection) 
in the geometries of Fig. 2.

Figure 3. The anti-bunching probability in the HOM geometry. Neglecting the nonlinearity (independent 
scattering), it goes to 0 with Γ → ∞ (the monochromatic limit), which corresponds to the balanced beam 
splitter. The nonlinearity makes the probability of anti-bunching finite for any value of Γ  (the solid line 
describes the exact numerical solution); the analytic asymptotics (the strong-coupling—monochromatic—
limit) practically coincides with the exact solution for Γ  2.
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Scattering properties of the atom-light interaction described by Hamiltonian (1) are encoded in the 
S-matrix, Eqs. (2)-(3), which links asymptotic incoming states to the corresponding outgoing states. 
Inevitable spontaneous emission means that in both the incoming and outgoing asymptotic state the 
TLS is in its ground state so that in specifying the asymptotic states one needs to refer explicitly only 
to their photonic part. To allow for time-resolved photons, in what follows we consider photons with a 
spectral function g(ω  −  ω 0), centred around ω 0 with a spectral width σ. For analytic calculations it can 
be chosen Gaussian,

ω ω
σ π

ω ω

σ
( − ) =







−

( − ) 





,

( )
g 1 exp

2 9
0

0
2

2

but in general all we need to know is its centre, ω 0, and width, σ. As we are considering on-shell scat-
tering, ω  =  q (in the units where the group velocity of light is 1), we may also refer to this function as 
g(q −  ω 0).

Then the incoming one-photon state is given by

∫β
π

ω= ( − ) ( ) . ( )β
ˆ†q

g q b q
d
2

0 10in 0

When the spectral function centres at ω γ=0 , it corresponds to the scattering emulating the bal-
anced beam splitter in the HOM geometry, while the zero detuning, ω 0 =  0, corresponds to the exact 
resonance (or antiresonance) in the geometry of Fig. 2. In the time-resolved representation the photon 
amplitude, which is a Fourier transform of g(q −  ω 0), is a running wave, ( − )g x t  centred at x =  t of 
width of order 1/σ.

A two-photon incoming state can be represented as

∫β β
π

β β| , ′ =
( )

( , ′) , ′, ′
( )

ββ ′
q

B q q q q
d
2

;
11

in

2

2

where ( , ′)ββ ′B q q  is a two-photon amplitude of the state β β, ′, ′ ≡ ( )
′
( ′)β β

ˆ ˆ† †
q q b q b q; 0 . For uncorre-

lated incoming photons ( , ′)ββ ′B q q  is a direct product of their spectral functions. For two identical 
photons in the HOM geometry, scattering from the TLS with time delay τ, the amplitude is given by

( , ′) = ( ) ( ′) , ( )τB q q g q g q e 12iq
12

while for the ‘weak blockade’ geometry the appropriate function ( , ′)B q q11  differs from the above by 
symmetrising with respect to q and q′ .

The q-dependent one-photon scattering matrix is given by

α β π δ≡ , , = ( − ) ( ), ( )αβ αβ
ˆS k q k q s qS 2 13kq

Figure 4. Weak photon blockade. Here δPres is the nonlinearity-induced anti-bunching probability in the 
resonance geometry of Fig. 2(b), i.e. the probability of reflecting one out of two photons, as a function 
of their relative delay Δ  =  στ. The inset shows a non-monotonic behaviour of the total anti-bunching 
probability due to a trivial off-resonance reflection at smaller Γ .
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where the on-shell q dependence is equivalent to the ω  dependence given in Eq. (3). To separate statisti-
cal and interaction effects, one relates the two-photon S-matrix with the appropriate T-matrix,

= − = − − ≡ − ,ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆS T T T S Ti i i i1 1
0

int
0

int

where Ŝ
0
 (or T̂

0
) describes scattering of non-interacting photons while T̂i int represents the nonlinear-

ity contribution. The matrix elements of Ŝ
0
 are given by

α α β β〈 , ′, ′| | , ′, ′〉 = +
′

, ( )αβ α β αβ α β′ ′
′ ′ ′

′
′Ŝk k q q S S S S; ; 14

kq k q kq k q0

while those of T̂ are found by accounting for the phase space restriction on the TLS occupation by 
photons
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ε ξ γ= + ′ , = − ′ , Ω = + ,εk k k k i2k k k 2

k
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On substituting the incoming state of Eq. (11), one reduces the matrix element Eq. (15) to

∫α α β β
ξ

π ξ
, ′, ′ , ′ = −

Γ Ω
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The probability of finding outgoing photons in the channels α and α′  for the incoming state of Eq. 
(11) is

∫

∫
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Substituting the matrix elements of Ŝ, corresponding to the independent scattering, Eq. (14), and the 
nonlinearity induced scattering, Eq. (15), we can decompose the probability in each channel as the sum 
P0 +  δP, where δP is the nonlinearity induced change in the probability of photon bunching (α =  α′ ) or 
anti-bunching (α α≠ ′). Both in the HOM and resonance geometries we are interested in the 
anti-bunching probabilities, = +P P PHOM 12 12 21 12 and = +ββ ββP P Pres 12 21 .

We focus on the limit γ σΓ ≡ /  1 that corresponds to almost monochromatic photons strongly 
scattered by the TLS at the resonance. Let us stress that for a typical TLS (with γ− −~ s101 8 ) such ‘almost 
monochromatic’ photons can still be sharply time-resolved for all practical purposes as σ−1 can be much 
shorter than, e.g., the time resolution of a coincidence counter. In this case the two-photon spectral 
function of Eq. (12) is sharply peaked at ω= ′ =q q 0 while the matrix elements of S0, Eq. (14), are 
smooth functions of wave numbers so that their dispersion can be neglected. All further analytic results 
are found in this approximation.

In the HOM geometry, β β≠ ′, the noninteracting part of the probability matrix is governed by the 
transmission and reflection probabilities, = ωT t

2

0
 and = ωR r

2

0
 with the scattering amplitudes given 

by Eq. (3), and by the following coherence factor,

∫ν
ε
π

ξ

π
ε ξ ε ξ= ( , ) ( , − ), ( )

− RN B B
d
2

d
2 19

k k
k k k k12

1
12 12

which is easily found in the Gaussian case, using Eq. (12) and (16) as ν = −Δe
2
. In these terms we find 

ν= ( + ) −P T R TR2HOM
0 2 2 . For two identical photons in the absence of the delay between them 

(Δ  =  0) the coherence factor v =  1 so that = ( − )P T RHOM
0 2, which vanishes when the central photon 

frequency ω 0 =  γ (the point where the model emulates the balanced beam splitter).
The nonlinearity-induced correction to PHOM is found, using Eq. (15) and (18), as

δ ζ= − ( − ) ( )P T R2 1 4 20HOM 12
2

where
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∫ ∫ζ
ε
πγ

ξ

π
ε ξ= ′ ( , ) .

( )ββ ββ ββ′
−
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d
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k k
k k
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Calculating this integral for the Gaussian spectral function results in ζ12 given by Eq. (7).
In the resonance geometry, where both photons are incoming from the same channel (β β= ′ = 1), 

one finds =P TR2res
0  provided that Γ  1. In this limit in the geometry of Fig. 2(b) independent pho-

tons are both transmitted at the exact resonance, T =  1 and R =  1 −  T =  0. The nonlinearity correction is 
found similar to that for the HOM geometry as

δ ζ= ( − ) ( )P T R1 4 22res 11
2

where ζ11 is found from Eq. (21) and (18). In the exact resonance =P 0res
0  and the anti-bunching prob-

ability, describing the weak photon blockade, reduces to δ ζ ζ= ≡P res 11 bl. The expression for ζ bl for the 
Gaussian case is given by Eq. (8) in Results.

In the opposite limit, Γ  1, the resonance effects are weak since the spectral width σ greatly exceeds 
the resonance width γ. This trivial case is of little interest but in Fig. 4 we give numerical results for the 
weak photon blockade for intermediate values of larger Γ  up to Γ  =  1. On the inset in this figure we show 
the full reflection probability of one out of two simultaneously arriving photons. Its maximum at Γ  ~ 1 
is higher than ζ bl due to a trivial off-resonance reflection. Note that this result (i.e. in the absence of the 
delay) is in agreement with those earlier obtained by Zheng et al.21.

Summary
In this work we have analysed the role of nonlinearity in two-photon propagation in Hong-Ou-Mandel 
geometry and in the resonance geometry in photonic crystals. In the ideal HOM geometry two iden-
tical photons simultaneously arriving at a balanced beam splitter through different incoming ports are 
bunched together to leave the system through the same outgoing port. The HOM interferometer is thus 
used for measuring the degree of entanglement in biphotons produced by SPDC. Here we argue that 
the presence of the nonlinearity in the beam splitter results in partial anti-bunching of the photons thus 
potentially obscuring such a measurement. We model the nonlinearity by a two-level system (which at 
the same time emulates a balanced beam splitter) and calculate the anti-bunching probability induced by 
this nonlinearity. Our results are given by Eq. (20) and (21) and illustrated in Fig. 3.

We use the same model to illustrate the “weak photon blockade” of resonant two-photon propaga-
tion through a TLS. The blockade is due to the impossibility of double-occupancy of the TLS, and it is 
always weak due to inevitable spontaneous emission. However, exactly at the resonance this leads to a 
finite anti-bunching probability, as illustrated in Fig. 4 while two independent photons would be either 
both resonantly reflected (Fig. 2a) or both resonantly transmitted (Fig. 2b). We expect this effect to be 
considerably more pronounced for multiple photon propagation which requires further analysis.
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