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An information-theoretic model 
for link prediction in complex 
networks
Boyao Zhu & Yongxiang Xia

Various structural features of networks have been applied to develop link prediction methods. 
However, because different features highlight different aspects of network structural properties, it is 
very difficult to benefit from all of the features that might be available. In this paper, we investigate 
the role of network topology in predicting missing links from the perspective of information theory. 
In this way, the contributions of different structural features to link prediction are measured in terms 
of their values of information. Then, an information-theoretic model is proposed that is applicable to 
multiple structural features. Furthermore, we design a novel link prediction index, called Neighbor 
Set Information (NSI), based on the information-theoretic model. According to our experimental 
results, the NSI index performs well in real-world networks, compared with other typical proximity 
indices.

The problem of link prediction aims at estimating the likelihood of the existence of a link in a given 
network on the basis of observed information1–3. Link prediction in complex networks has been studied 
by researchers in disparate scientific fields because of its significance in research and applications4–10. On 
the one hand, studies of link prediction have scientific significance. Link prediction could provide a use-
ful method for evaluating the models that uncover the mechanisms that drive the growth and evolution 
of networks4. Although many network evolving models have been proposed to characterize the network 
evolving process11–14, it is very difficult to measure which model captures the real evolving process the 
most. Studies of link prediction inspired us to evaluate different evolving models by comparing the evolv-
ing likelihoods of the given network driven by these models5. In Ref. 6, the authors proposed the link 
predictability problem which characterizes the extent to which the links in a network can be predicted. 
Furthermore, an index called structural consistency was developed to numerically quantify the link 
predictability of networks. The study of link predictability can further help us evaluate link prediction 
algorithms and monitor sudden changes in the network evolving process. On the other hand, excellent 
link predictors have broad applications in different domains, such as checking possible protein-protein 
interactions in biological networks7,8, finding promising candidate friendships between users in social 
networks9, and providing personalized recommendations in E-commerce systems10.

The link prediction problem has received much attention in the field of network science1,4,6–8,15–21. 
Among various link prediction methods, the simplest framework is the set of similarity-based algo-
rithms, where each node pair is assigned a score to estimate the similarity between two nodes1,2. These 
methods assume that the more similar two nodes are, the more likely the two nodes tend to be con-
nected. Similarity-based methods can be further classified as node similarity-based methods and struc-
ture similarity-based methods1. The former supposes that two nodes sharing more common features 
tend to be connected22. However, entity’ attributes such as the user’s personal information in social 
networks may be unavailable for privacy reasons or unreliable for making predictions1. Compared with 
the attributes of nodes, the structural features of networks are easier to obtain and more reliable. Hence, 
similarity-based algorithms in complex networks mainly focus on structural similarity. A wealth of algo-
rithms based on structural similarity have been proposed in the past years. For example, Common 
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Neighbors (CN) is a basic index based on local network structural properties but has a relatively high 
prediction accuracy15. Indices that are the variants of the CN index, such as Adamic-Adar (AA)23, 
Resource Allocation (RA)15, are called CN-based methods. Many other structural similarity-based meth-
ods have also been designed to estimate the similarity of nodes24–27. Moreover, many algorithms based 
on maximum-likelihood methods7,8,17 and probabilistic models28 have also been proposed. For the hier-
archical structure of networks, Clauset et al. proposed a Hierarchical Structure Model that estimates 
the connection likelihood by using a dendrogram8. Guimerà et al. developed a Stochastic Block Model 
to capture the community structure and estimate the probability that two nodes are connected7. Liu  
et al. recently proposed a Fast Blocking probabilistic Model based on a greedy strategy, which can reduce 
the computation complexity and improve the prediction accuracy17. In this model, link likelihoods are 
estimated by considering link densities within and among communities. Friedman et al. developed a 
Probabilistic Relational Model to handle the cases in which databases are relational28.

Thus far, the aim of previous proposed frameworks has been to quantify the likelihood of candidate 
links existing. In other words, the problem of link prediction can be treated as predicting the likelihood 
of the event that two nodes are connected. In information theory29,30, the information quantifies the 
uncertainty associated with the outcome of a random variable or an event. Hence, the link likelihood 
between a pair of nodes can be estimated by the information from the viewpoint of information theory. 
Recently, Tan et al. proposed a Mutual Information method which can significantly enhance the predic-
tion accuracy in large networks31. In the Mutual Information index, the feature of common neighbors 
is considered to facilitate prediction and the link likelihood of a node pair is denoted as the conditional 
self-information of the event that the node pair is connected when their common neighbors are given.

In fact, any structural feature of a network can provide information to facilitate link prediction. Based 
on this idea, we develop an information-theoretic model for link prediction, which is applicable to var-
ious structural features. The Mutual Information approach31 can be considered as an example of this 
model when only one feature, i.e., common neighbors, is considered. Furthermore, the proposed model 
can also handle the cases in which multiple structural features are available. As an example, we design 
a novel link prediction index called Neighbor Set Information (NSI), which uses two types of local 
structural features. We test the NSI index in twelve real-world networks and find that it performs well 
compared with other structure based indices.

Results
An information-theoretic model for link prediction.  In previous studies, different structural fea-
tures have been used to facilitate link prediction. Two typical examples of structural features are common 
neighbors of a node pair and community structure in a network. However, most previous prediction 
algorithms focus only on one or two structural features. If many features are given at the same time, there 
is no good way to benefit from all of the information available. In our information-theoretic model, in 
contrast, any structural feature can be used to provide information to facilitate link prediction, and the 
information from different features can be combined easily. In this sense, the proposed method can make 
better use of all of the information available.

We begin with the case where just one feature is available. For a feature F associated with the candi-
date node pair, the set of feature variables is denoted as Ω , and ω is one feature variable of Ω . For exam-
ple, if we choose the common neighbors of a node pair (x, y) as the available feature F, then the variable 
set Ω  is denoted as ∩ω ωΩ = = ∈ Γ( ) Γ( )O x y{ : }xy , where Γ (x) is the neighbor set of node x and ω  
is one common neighbor of node pair (x, y).

Given a disconnected node pair (x, y) and one feature F associated with (x, y), the event of node pair 
(x, y) being connected is denoted as Lxy

1 . Hence, the link prediction problem can be described as estimat-
ing the uncertainty of event Lxy

1  from the information supplied by feature F. According to information 
theory29,30 (please refer to the Supplementary Information (SI) for details), the existence likelihood of a 
link can be estimated by the conditional self-information which is defined as

( ) = − ( ( )), ( )I a b p a blog 1i j i j

where ai and bj are two events that belong to event sets A and B, respectively, and p(ai|bj) is the proba-
bility that event ai happens given that event bj has already happened. The conditional self-information 
indicates the uncertainty of event ai when event bj is given.

According to the above definition, for the link prediction task, the likelihood score can be defined as

= − ( Ω), ( )
Ωs I L 2xy xy

1

where ( Ω)I Lxy
1  indicates the conditional self-information of the connection of node pair (x, y) when 

feature variable set Ω  is available. According to its definition29, the smaller ( Ω)I Lxy
1  is, the higher the 

probability of a link between nodes x and y tends to be. Therefore, we define the score as the negation 
of ( Ω)I Lxy

1 . If the feature variables in Ω  are assumed to be independent of each other, then
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where ( )I Lxy
1  is the self-information of the event that node pair (x, y) is connected, and ω( )I Lxy

1  denotes 
the conditional self-information of the event that node pair (x, y) is connected when a feature variable 
ω is known (please refer to the SI for a detailed derivation). Because we are primarily focusing on the 
structural properties of the network, ( )I Lxy

1  and ω( | )I Lxy
1  can be calculated by the statistical structural 

properties. It should be noted that feature F is not specified in the algorithm and can be any structural 
feature that we can obtain from the network.

What we have considered above is the case in which only one feature of the network is obtained. In 
practice, various features may be available, and they may all be helpful for link prediction. However, 
different features show different aspects of network structural properties. For example, shortest path and 
clustering are features that are commonly used in link prediction. Most nodes in networks are connected 
by a very short distance2, which characterizes the famous “small world” property of networks. On the 
other hand, clustering indicates that a node with a dense neighborhood is more likely to have more links 
than one with a sparse neighborhood. Although both of these features are helpful to predict missing 
links, the properties they reflect are different. In this case, there is no direct way for traditional link 
prediction algorithms to simultaneously make good use of both features at the same time. In contrast to 
those algorithms, we use the value of information to evaluate the connection likelihood. The effects of 
structural features on prediction are unified to the values of conditional self-information. Hence, even 
with different features, the values of information brought by these features are additive. Therefore, Eq. (3) 
can be easily extended to the case of multiple features. Under this condition, the variable set for feature 
i is denoted as Ω i. Then, we adopt a parameter λ i to reckon the contribution of feature i to the final 
connection likelihood, and define the likelihood score as

∑λ=
( )

Ωs s
4xy

i
i xy

i

Altogether, we obtain the information-theoretic model to evaluate the connection likelihood when 
any structural feature is given. In this sense, Ref. 31 can be considered as an example of our model for 
which only the feature of common neighbors is applied.

An information-theoretic approach based on neighbor set.  In this subsection, we will intro-
duce an information-theoretic approach based on neighbor set, as an example of the application of our 
information-theoretic model.

The neighbor set of node x is defined as the node set consisting of the neighbors of node x, i.e., Γ (x). 
For a candidate node pair (x, y), our fundamental hypothesis is that the more strongly their neighbor 
sets are connected, the more likely they are connected. The link likelihood of two nodes can thus be 
estimated by the information brought by the “connections” between their neighbor sets. In particular, the 
“connections” involve two categories: overlap nodes of two neighbor sets, i.e., common neighbors of the 
candidate node pair, and the links across two neighbor sets. Formally, the common neighbors of node 
pair (x, y) are denoted as ∩= ∈ Γ( ) Γ( )O z z x y{ : }xy  and the links across neighbor sets Γ (x) and Γ (y) 
are defined as = ∈ , ∈ Γ( ), ∈ Γ( )P l l E s x t y{ : }xy st st , where E denotes the link set of the network. Both 
features are helpful for predicting missing links. In social networks, for instance, the neighbor set of node 
x denotes the friends associated with x. If two people have many common friends, or if their friends are 
also mutual friends, these two people are more likely to be friends in the future. This agrees well with 
our intuition. In Fig. 1, an example is provided to further illustrate the relationship of two neighbor sets.

Based on the motivation described above, the information given by the features extracted from the 
“connections” between two neighbor sets, i.e., the common neighbors and the links across two neighbor 
sets, is used to facilitate link prediction. According to the information-theoretic model described in Eq. (4), 
the link likelihood of a node pair is defined as

λ λ= − ( | ) − ( | ). ( )s I L O I L P 5xy xy xy xy xy1
1

2
1

From this equation, the score can be locally calculated by the neighbor sets of nodes x and y based on 
the information-theoretic model, so we call it the Neighbor Set Information (NSI) index (please refer to 
the SI for the detailed derivation). For a simpler formalization, we define the ratio λ as λ2/λ1, and obtain

λ= − ( | ) − ( | ). ( )s I L O I L P 6xy
NSI

xy xy xy xy
1 1
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To demonstrate the performance of the NSI index, twelve networks from disparate fields are con-
sidered in our experiments (see SI for details). Two widely used metrics called area under the receiver 
operating characteristic curve (AUC)32 and Precision33 are considered to evaluate the accuracy of the 
link prediction algorithms (please refer to the Methods section for details). Indices for comparison are 
summarized in the Methods section. The prediction accuracy results are presented in Tables 1 and 2.

Table  1 shows the prediction accuracy measured by AUC. According to the AUC results, our NSI 
index performs the best or nearly the best in most networks. Because the AA index and RA index are 
variants of CN, they have nearly the same AUC values in most networks. The PA and MI indices provide 
better prediction accuracy in EPA and Router, while in other networks, they perform worse than the NSI 
index. Compared with LP, the NSI index always performs better (or at least the same). In contrast with 
AUC, the Precision metric focuses on the most likely latent links. According to Table 2, the NSI index 
achieves competitive performance in most networks. In the definition of Precision, its value depends 

Figure 1.  Illustration of the relationship between two neighbor sets. The neighbors of node x and node y 
can be denoted as neighbor set x and neighbor set y, respectively. There are two common neighbors between 
neighbor sets x and y, and these are colored in yellow. Lines emphasized in purple describe the links across 
two neighbor sets. The “connections” between two neighbor sets are mainly divided into two categories: 
common neighbors and links across two neighbor sets.

Networks CN AA RA PA MI NSI0.1 LP* NSI*

Karate 0.697(52) 0.733(68) 0.74(71) 0.727(68) 0.736(68) 0.79(98) 0.793(57) 0.807(106)

Everglades 0.687(5) 0.695(5) 0.703(5) 0.813(5) 0.512(5) 0.851(5) 0.85(5) 0.87(5)

Celegans 0.848(2) 0.865(2) 0.869(1) 0.755(3) 0.84(2) 0.881(1) 0.866(1) 0.881(1)

NS 0.977(1) 0.98(1) 0.981(1) 0.659(8) 0.927(5) 0.989(0) 0.986(0) 0.99(0)

Email 0.857(1) 0.859(1) 0.858(1) 0.805(1) 0.892(1) 0.922(1) 0.92(1) 0.922(1)

PB 0.924(0) 0.927(0) 0.929(0) 0.909(0) 0.932(0) 0.942(0) 0.94(0) 0.942(0)

Yeast 0.916(0) 0.917(0) 0.917(0) 0.864(0) 0.936(0) 0.97(0) 0.97(0) 0.971(0)

SciMet 0.8(0) 0.802(1) 0.801(0) 0.807(1) 0.871(1) 0.913(0) 0.911(0) 0.913(0)

Kohonen 0.829(0) 0.836(0) 0.836(0) 0.866(0) 0.912(0) 0.928(0) 0.913(0) 0.928(0)

EPA 0.609(0) 0.61(0) 0.611(0) 0.915(0) 0.926(0) 0.883(1) 0.883(1) 0.885(0)

Power 0.625(1) 0.625(1) 0.625(1) 0.578(1) 0.609(1) 0.698(1) 0.698(1) 0.698(1)

Router 0.653(1) 0.654(1) 0.653(1) 0.956(0) 0.957(0) 0.946(0) 0.947(0) 0.947(0)

Table 1.   Comparison of the prediction accuracy under the AUC metric in twelve networks. Each value 
is obtained by averaging over 100 implementations with independent random divisions of the training set 
(90%) and the probe set (10%). The numbers in the brackets denote the standard deviations. For example, 
0.697(52) means that the AUC value is 0.697 and the standard deviation is 52 ×  10−4. NSI0.1 denotes the NSI 
index with a fixed ratio of λ =  0.1. The best performance is emphasized by bold font. The last two columns 
show the best performance of the LP and NSI indices shown in Fig. 3.
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on the number of top-L candidate links to be predicted. Here, we also investigate the dependence of 
Precision on the number of L and present the results in Fig. 2. For the convenience of comparison, the 
parameter ε of LP is set as 0.00134 and the ratio λ of NSI is fixed as 0.1. From the results in Fig. 2, we 
find that although L changes, the NSI index can achieve a high Precision accuracy in most networks, 
especially in SciMet and Epa. Combining the results above, the NSI index has the overall best perfor-
mance regardless of whether the metric used is AUC or Precision.

Because the performance of NSI depends on the ratio λ, we plot the AUC and the Precision accuracy 
of NSI index as functions of the ratio λ. In Figs. 3 and 4, although the prediction performance of NSI 
index changes with different trends in different networks when λ changes, we find that λ =  0.1 always 
produces a reasonable performance in the twelve real-world networks considered. In Tables 1 and 2, we 
list the performance of the NSI index with a fixed ratio λ =  0.1, and find that it performs well compared 
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Figure 2.  Illustration of the dependence of Precision on the number of L. The horizontal axis denotes 
that top-L links are used for the evaluation of Precision. Each value of Precision is a result averaged over 100 
independent implementations, and the error bars represent the standard deviations. The parameters of the 
NSI and LP indices are typically fixed as λ =  0.1 and ε =  0.001, respectively.
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with six other typical proximity indices. Therefore, the NSI index is highly valuable for applications 
because one can directly set λ to a fixed value, rather than searching for its optimal value, which in 
practice takes a significant amount of time.

Discussion
In this paper, we develop an information-theoretic model that treats the link prediction problem as the 
evaluation of the uncertainty that a link exists. Furthermore, the proposed model is applicable to various 
structural features and can address the case in which multiple features are available.
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Figure 3.  AUC results of the LP and NSI indices in twelve networks. Each AUC value is averaged over 
100 independent implementations, and the error bars represent the standard deviations (please refer to 
Table 1 for the detailed values). The parameters of the LP and NSI indices range from 10−4 to 104 with a 
ratio of 10. The red cross marks represent the performance of the features of common neighbors (left cross 
mark) and links across two neighbor sets (right cross mark) separately applied by the information-theoretic 
model. The red plus marks stand for the performance of the indices of paths with length 2 (left plus mark) 
and 3 (right plus mark).
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The information-theoretic model has two advantages. The first is that, in contrast to traditional link 
prediction methods, the information-theoretic model evaluates the link likelihood via the value of infor-
mation. Even for features that belong to different structural properties, the values of information brought 
by these features are additive. In this way, the proposed model can easily make use of diverse features 
that are available. Although some indices, such as the LP index, can use more than one feature to make 
predictions, the chosen features often belong to the same type of structural property. Thus, the 
information-theoretic model can take advantage of all of the available features to make a better predic-
tion. The second advantage is that, when focusing on one feature of the network, the values of 
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Figure 4.  Precision results of the LP and NSI indices in twelve networks. Each Precision value is averaged 
over 100 independent implementations, and the error bars represent the standard deviations (please refer 
to Table 2 for the detailed values). The parameters of the LP and NSI indices range from 10−4 to 104 with 
a ratio of 10. The red cross marks represent the performance of the features of common neighbors (left red 
cross mark) and links across two neighbor sets (right cross mark) separately applied by the information-
theoretic model. The red plus marks stand for the performance of the indices of paths with length 2 (left 
plus mark) and 3 (right plus mark).
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information provided by different feature variables are still distinguishable. To obtain a better under-
standing, we return to Eq. (3), as it is used to calculate the contribution of each feature to the connection 
likelihood. In this equation, ( )I Lxy

1  is the prior information, which has nothing to do with the feature. 
Hence, the effect of the chosen feature on the connection likelihood is given by ω∑ ( )ω∈ΩI Lxy

1 . Although 
the feature variables are extracted from the same feature of the network, their contributions to the value 
of information can be different, i.e., ω( | )I Lxy

1  can be different for different ω. Actually, we can find similar 
settings in many other good link prediction methods. For example, the AA and RA indices differentiate 

Figure 5.  Illustration of an example network. Two dashed lines denote two possible links of node pair  
(3, 5) and node pair (4, 6). Measured by the LP index, they all have the same score because node pair (3, 5) 
and node pair (4, 6) both have two common neighbors and one path with length 3. For the NSI index, node 
3 and node 6 have different contributions in that the clustering coefficient of node 3 is 1

4
 and the clustering 

coefficient of node 6 is 1
3
, which means that the contribution of node 6 to the connection of node pair (3, 5) 

is greater than that of node 3 to node pair (4, 6).

Networks CN AA RA PA MI NSI0.1 LP* NSI*

Karate 0.0395(2) 0.0426(1) 0.0427(1) 0.0385(2) 0.043(2) 0.0529(2) 0.0493(2) 0.0575(2)

Everglades 0.157(6) 0.158(6) 0.169(8) 0.298(13) 0.136(6) 0.342(14) 0.378(12) 0.395(11)

Celegans 0.136(9) 0.135(10) 0.125(10) 0.0711(7) 0.137(10) 0.165(13) 0.158(13) 0.175(12)

NS 0.352(23) 0.53(18) 0.553(15) 0.0139(1) 0.416(24) 0.333(23) 0.305(36) 0.405(22)

Email 0.296(19) 0.319(17) 0.261(15) 0.0297(3) 0.325(16) 0.257(18) 0.289(17) 0.317(18)

PB 0.423(14) 0.381(13) 0.251(11) 0.0921(8) 0.488(15) 0.499(20) 0.508(20) 0.507(20)

Yeast 0.679(39) 0.701(29) 0.499(18) 0.497(32) 0.822(5) 0.858(2) 0.869(0) 0.868(0)

SciMet 0.143(10) 0.14(10) 0.124(10) 0.035(3) 0.166(10) 0.173(13) 0.207(13) 0.223(16)

Kohonen 0.169(12) 0.161(12) 0.151(13) 0.0423(3) 0.228(17) 0.198(13) 0.176(13) 0.198(13)

EPA 0.0147(1) 0.0266(2) 0.0345(2) 0.0086(1) 0.0577(4) 0.179(9) 0.4(28) 0.421(37)

Power 0.123(10) 0.106(7) 0.0873(8) 0(0) 0.187(12) 0.142(12) 0.14(13) 0.142(12)

Router 0.104(7) 0.109(6) 0.0822(6) 0.0185(1) 0.219(13) 0.349(12) 0.655(27) 0.655(33)

Table 2.   Comparison of the prediction accuracy under the Precision (Top-100) metric in twelve 
networks. Each value is obtained by averaging over 100 implementations with independent random 
divisions of the training set (90%) and the probe set (10%). The numbers in the brackets denote the standard 
deviations. For example, 0.0395(2) means that the Precision value is 0.0395 and the standard deviation is 
2 ×  10−4. NSI0.1 denotes the NSI index with a fixed ratio of λ  =  0.1. The best performance is emphasized by 
bold font. The last two columns show the best performance of the LP and NSI indices shown in Fig. 4.
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the effects of different common neighbors by considering their degrees. This is a wise method to make 
the prediction more accurate. In summary, the information-theoretic model can make use of different 
features, and with each feature, it can differentiate the contributions of different variables. Therefore, it 
can achieve good prediction accuracy.

To illustrate the above advantages more clearly, we take the NSI index as an example. For the NSI 
index, the features of common neighbors and links across two neighbor sets are used. First, we show how 
the use of two features facilitates link prediction. The performance of the NSI index is given in Figs. 3 
(for AUC) and 4 (for Precision) as functions of the free parameter λ. For comparison, in these figures, 
we also plot the results when only one of the two features is considered. The figures display the special 
cases when λ =  0 and λ →  ∞, respectively. We find that the use of two features provides better results or 
at least similar results, than the use of only one feature in most cases.

In addition, for comparison, we plot the performance of the LP index in Figs. 3 and 4. Because two 
features are used in LP, a similar free parameter ε is considered to measure the contributions of the two 
features. We find that the NSI index performs better than LP in almost all of the cases considered. This 
result demonstrates the second advantage of our information-theoretic model, i.e., this model differen-
tiates the impact of the feature variables on the connection likelihood via ω( )I Lxy

1 . More specifically, in 
the NSI index, we distinguish the contribution of each node and link through ( )I L zxy

1  and ( )I L lxy st
1 , 

respectively, whereas in the LP index, they are treated equally. In Fig. 5, we provide an example to further 
describe this effect. Node pairs (3, 5) and (4, 6) which are marked by dashed lines, are two links to be 
predicted. According to the definition of the LP index, these two possible links are indistinguishable 
because Eq. (18) produces the same score for both of them. However, by using the NSI index, the score 
for node pair (3, 5) is higher than that for node pair (4, 6), which means that node pair (3, 5) is more 
likely to be linked. This result is a good fit for the clustering mechanism35 in network evolving process. 
Clearly, the setting of NSI is more reasonable and is closer to the real case. As a result, we find that the 
performance of the NSI index is better than that of the LP index.

Methods
Link prediction algorithm.  Consider an undirected network G(V, E), where V and E are the node 
set and link set, respectively. Self-links and multi-links are not allowed. For each non-existent link, e.g., 
lxy ∈  U−E, where x, y ∈  V and U denotes the universal possible link set, our task is to assign a score to 
estimate its connection likelihood. Note that we do not differentiate connection likelihood and score 
here. If a rank for all non-observed links is given, for the most likely candidate links, one can choose the 
links with the highest ranks.

Given a predictor we can rank all of the non-observed links according to the scores they obtained. 
To validate the prediction performance of a predictor, the observed links of the network are randomly 
divided into two parts, i.e., the training set ET and the probe set EP. Here, ET is treated as known informa-
tion while EP is only used to test algorithms. Clearly, we have ET » EP =  E and ET « EP =  Ø. In this paper, 
the fraction of links in the training set is 90% and the remainder constitutes the probe set.

Evaluation metrics.  In this study, we apply two widely used metrics called area under the receiver 
operating characteristic curve (AUC)32 and Precision33 to evaluate the accuracy of the link prediction 
algorithms.

	 • �AUC can be interpreted as the probability that a randomly chosen missing link (link in EP) has a 
higher score than a randomly chosen non-existent link (link in U− E). In real implementations, 
among n times of interdependent comparisons, if there are n′  times in which the score of the missing 
link is higher than that of the non-existent link and n″  times in which the two have the same score, 
the AUC value can be expressed as

=
′ + . ′′

. ( )AUC n n
n
0 5

7

	�� If all of the scores are generated from an independent and identical distribution, the AUC value 
should be approximately 0.5. Therefore, the extent to which AUC exceeds 0.5 indicates how much 
better the algorithm performs than pure chance.

	 • �Precision focuses on top-ranked latent links, while AUC considers the macroscopic accuracy. Each 
non-observed link is given a score, and we sort these scores in descending order. If there are Lr rel-
evant links in EP, when we choose the top-L links, then

= / . ( )Precision L L 8r

	 Clearly, higher Precision means higher accuracy.
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Benchmarks.  Here, six typical proximity indices are considered for performance comparisons, 
including Common Neighbors (CN)15, Adamic-Adar (AA)23, Resource Allocation (RA)15, Preferential 
Attachment (PA)35 Mutual Information (MI)31 and Local Path (LP)15.

The CN index assumes that two nodes sharing more common neighbors tend to be connected. It is 
defined as

∩= Γ( ) Γ( ) . ( )s x y 9xy
CN

The AA index supposes that the larger degree of the common neighbor, the less weight it can con-
tribute. Formally, it is denoted as

∑=
( Γ( ) )

.
( )∩∈Γ( ) Γ( )

s
z

1
log 10

xy
AA

z x y

The RA index is similar to AA, but is motivated by the process of resource allocation. The penalty 
for a high degree common neighbor is more sufficient in RA than it is in AA. The score is defined as

∑=
Γ( )

.
( )∩∈Γ( ) Γ( )

s
z

1

11
xy
RA

z x y

Originating from the network evolving mechanism, the PA index supposes that the probability that 
two nodes are connected is proportional to the product of their degrees. Thus, it is defined as

= Γ( ) ⋅ Γ( ) . ( )s x y 12xy
PA

The MI index estimates the effect of common neighbors on the link probability via information the-
ory. In the MI index, the prior probability that node pair (x, y) is connected can be calculated by

( ) =
−

,
( )

−
p L

C C

C 13
xy

M
k

M k
k

M
k

1
x

y
x

x

where kx and ky are the degrees of nodes x and y, respectively, and M is the number of links in the train-
ing set. Thus, the likelihood score can be described as

∑
= − ( | )

= ( ) − ( ),
( )∈

s I L O

I L z I L;
14

xy
MI

xy xy

z O
xy xy

1

1 1

xy

where ( )I L z;xy
1  is estimated by

( ) ∑≈
Γ( ) ( Γ( ) − )

( ).
( ), ∈Γ( )

≠
I L z

z z
I L z; 1

1
;

15
xy

m n z
mn

1 1
m n

( )I L z;mn
1  can be further derived as

( ) = ( ) − ( ), ( )I L z I L I L z; 16mn mn mn
1 1 1

where ( )I Lmn
1  can be calculated from Eq. (13). In particular, ( )p L zmn

1  can be estimated by the clustering 
coefficient of node z, which is denoted as

( ) =
+

,
( )

∆

∆ ∧
p L z

N
N N 17mn

z

z z

1

where NΔz  and ∧N z are respectively the numbers of connected and disconnected node pairs whose com-
mon neighbors include node z.

The LP index considers the information regarding the next nearest neighbors, which can remarkably 
enhance the prediction accuracy. It is described as

ε= ( ) + ( ) , ( )s A A 18xy
LP

xy xy
2 3

where ε is a free parameter. (A2)xy and (A3)xy are the numbers of different paths with length 2 and 3 
connecting x and y, respectively.
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