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A learnable parallel processing 
architecture towards unity of 
memory and computing
H. Li*, B. Gao*, Z. Chen, Y. Zhao, P. Huang, H. Ye, L. Liu, X. Liu & J. Kang

Developing energy-efficient parallel information processing systems beyond von Neumann 
architecture is a long-standing goal of modern information technologies. The widely used von 
Neumann computer architecture separates memory and computing units, which leads to energy-
hungry data movement when computers work. In order to meet the need of efficient information 
processing for the data-driven applications such as big data and Internet of Things, an energy-
efficient processing architecture beyond von Neumann is critical for the information society. Here we 
show a non-von Neumann architecture built of resistive switching (RS) devices named “iMemComp”, 
where memory and logic are unified with single-type devices. Leveraging nonvolatile nature and 
structural parallelism of crossbar RS arrays, we have equipped “iMemComp” with capabilities of 
computing in parallel and learning user-defined logic functions for large-scale information processing 
tasks. Such architecture eliminates the energy-hungry data movement in von Neumann computers. 
Compared with contemporary silicon technology, adder circuits based on “iMemComp” can improve 
the speed by 76.8% and the power dissipation by 60.3%, together with a 700 times aggressive 
reduction in the circuit area.

For decades, modern computers have been playing the central role in human society processing mas-
sive amounts of information every day. Behind every single operation our computers execute is the 
well-known von Neumann computer architecture1. In this architecture, the computing and memory 
units are separated and connected via buses, through which the instruction codes and computing data 
are consecutively transported between processors and memories. However, every joule of energy used 
for moving data between memories and processors consumes the limited budget, leaving less energy 
available for actual computation in our computers. This kind of frequent energy-hungry movement is 
thereby regarded as the “von Neumann bottleneck”2. Today, the need for energy-efficient information 
systems is as great as ever, covering various domains from big data processing and Internet of Things 
to wearable healthcare devices. Therefore, making a fundamental change from the bottom of the cur-
rent computer architecture is essential to support diverse societal applications3. Alternative approaches 
such as logic-in-memory4–6 might mitigate von Neumann bottleneck due to the colocation of logic and 
memory units, but the inherent boundary between these two parts in the whole system could still limit 
the potential of energy saving7. Aiming at breaking the bottleneck in both device and architecture levels, 
we develop and demonstrate a non-von Neumann architecture named “iMemComp” based on resistive 
switching (RS) devices.

Results
“iMemComp” architecture. Compared with the von Neumann architecture with separated mod-
ules, “iMemComp” uses a unified core to perform both memory (“Mem”) and computing (“Comp”) 
tasks, with the capability of parallel computing, learning and memorizing (“intelligent”) user-defined 
logic functions in situ (Fig.  1a). Instead of using modern complementary metal-oxide-semiconductor 
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(CMOS) transistors, “iMemComp” is built upon RS devices, a kind of sandwich-like emerging device 
whose resistance can be modulated via applying external voltage (Supplementary Fig. S1)8–11. Owing to 
a series of advantages such as simple structure, low operation power, high switching speed and great 
scalability12–16, RS devices have been widely studied for both future memory technology12–20 and com-
puting applications12,21,22 where the state variable is cell resistance rather than voltage or charge in tradi-
tional logic circuits23. By combining the nonvolatile memory and Boolean logic functions, “iMemComp” 
enables new features beyond von Neumann architecture: (i) parallel computing and (ii) logic learning 
(Fig.  1b,c). For (i) parallel computing, specifically, we employ the crossbar RS arrays as the building 
blocks in “iMemComp” (Fig. 1b). During the operation of RS arrays, data are stored within RS cells in a 
nonvolatile form as device resistance, and logic functions are performed via pulse-train operations at bit 
lines (Supplementary Fig. S2). Inspired by the structural parallelism of crossbar arrays, we have found 
that this kind of high-density circuit structure can lead to parallel computing ability. Prior to computing 
operations, different input combinations (IN) are stored independently at multiple rows along word lines 
in the RS array. With pulses applied at bit lines to execute computing, computation can be carried out in 
parallel among different rows to yield multiple results (OUT). Hence, in a single array we have multiple 
processors, and all of them serve as memories as well (Fig. 1b); for (ii) logic learning, once user-defined 
logic functions are computed in RS arrays, the results together with input combinations will be stored  
in situ and remain nonvolatile. Regarding basic Boolean logic and other user-defined functions as train-
ing sets, RS arrays are able to learn the logic operations. Moreover, the answers that have been remem-
bered by RS arrays can be read out for the following multi-bit computation and large-scale repeated 
tasks (Fig. 1c).

Functional completeness and experimental features. We first demonstrate a suite of logic func-
tions including AND, OR, INVERT (AOI), NAND and XOR, together with memory operations as a 
proof of functional completeness. As the elementary functions for other complex computing tasks, AOI, 
NAND and XOR logic functions can be realized within four RS cells (Supplementary Fig. S3). Figure 2 
shows the complete truth-table output results of AOI, NAND and XOR operations. Logic ‘1’ is assigned 
to low resistance states (LRS) and logic ‘0’ is assigned to high resistance states (HRS). For every kind of 

Figure 1. “iMemComp” architecture. (a) Compared with von Neumann architecture where central 
processing unit (CPU) and memory are separated by buses, “iMemComp” unifies both logic and memory 
functions realized by resistive switching (RS) devices, offering new features such as parallel computing 
and logic learning. (b) The “iMemComp” is entirely built upon crossbar RS arrays. Parallel computing in 
“iMemComp” capitalizes on the structural parallelism of crossbar arrays. Different input combinations stored 
at multiple rows are simultaneously involved in the computation under pulse-train operations, and therefore, 
various results are obtained and stored in situ. In this context, a single row represents an independent 
processor. All of the processors together serve as in situ memories meanwhile. (c) “iMemComp” is equipped 
with “logic learning” capability owing to the nonvolatile nature of RS devices. Boolean logic and other user-
defined functions train the RS arrays at the time of computation, leaving the answers memorized by RS cells. 
These learned logic functions, which are easy to readout from crossbar arrays through decoding, can be 
reused for multi-bit logic and large-scale repeated tasks.
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logic herein, the states of output cells (OUT) before and after the computation are read out. The correct 
results shown in Fig. 2 verify both logic and memory functions realized by RS devices. Different from 
the case of CMOS logic gates where logical output responds to the changing of input during power 
supply, the nonvolatile logic operations in ‘iMemComp’ are re-triggered by pulse operations at crossbar 
arrays once input has changed. In a modern central processing unit (CPU) where CMOS transistors 
serve as digital switches for computing, information flows in a volatile manner since the voltage at nodes 
cannot be kept without global voltage supply. This fundamental limitation leads to the requirements of 
registers, memory caches, and external data storage modules. Meanwhile, the data stored in these mem-
ories cannot “respond” to computing instructions themselves, which finally causes the energy-hungry 
communication between CPU and memories. Coming back to Fig.  2, comparing the cell states read 
out before and after each operation, RS devices serve as a kind of special memories which can directly 
respond to computing instructions and in situ update their nonvolatile states. As shown in Fig. 3, there 
are three important features of the nonvolatile logic operations in “iMemComp”: reproducibility, recon-
figurability, and parallelism. Figure 3a gives the box plot of the measured AND operations, where each 
operation with a certain input combination is repeated for 20 cycles. Between each cycle, RESET and 
SET pulses are used to clear the stored data and set up new input. Although there exist resistance var-
iations in HRS and LRS of RS devices, the statistical results reveal that the computation based on RS 
devices still functions correctly. The HRS/LRS window leads to the distinct logical results after pulse 
operations (Supplementary Fig. S2). Hence, the measured logical window in Fig.  3a is a result of the 
resistance window rather than the specific resistance values of individual RS devices. In addition to the 
repeatability of a certain operation, the logic in ‘iMemComp’ is also reconfigurable, which means the 
flexible switch between different logic functions is supported. Figure 3b shows the measured resistance 
evolution of input and output RS cells switching from AND operation to NAND operation. Unlike 
CMOS logic circuits whose structure and layout vary with the designed functions, here reconfigurable 
feature of “iMemComp” does not require changing circuit topology. Instead, different logic operations 
are performed in the same RS array (Fig. 3b), and the switch among logic functions is realized by clearing 
previously stored data (RESET operation) and applying new operating pulses (Supplementary Fig. S3). 
In this way, circuit resources can be fully utilized. Moreover, the intrinsic parallelism of “iMemComp” is 
experimentally demonstrated in Fig. 3c. Initially, all input combinations of A & B are stored in different 
rows, and output cells store ‘0’. Pulse-train operation for NAND logic (Supplementary Fig. S3) is then 
carried out at bit lines to trigger the parallel NAND computation. Correct results are in situ stored in the 
OUT cells and read out forming a complete NAND truth table.

Parallel computing and logic learning. Regarding the functionally complete AOI, NAND and XOR 
functions together with the features of reconfigurability and parallelism, any other complex logic func-
tions are accessible in “iMemComp” architecture. Adder circuits, for example, play a key role in CPU. 
A large number of computing tasks are executed relying on the binary adding operations of digital ‘0’ 
and ‘1’. We then study the design of adder circuits to illustrate the parallel computing and logic learning 
features (Fig. 4). The adder circuit behaviors are simulated in HSPICE (a commonly used circuit simula-
tor with golden-standard accuracy) using a physics-based SPICE model of RS devices24,25. The compact 

Figure 2. Experimental demonstration of functional completeness in “iMemComp”. AND, OR, INVERT 
(AOI) together with NAND and XOR logic functions are demonstrated (from left to right). The states of 
the OUT cells before and after operations are read out as current values (high current represents ‘1’ and low 
current represents ‘0’) shown by the gray-scale maps. Despite the variations around ‘0’ due to the variability 
of HRS, the distinct computing results verify the feasibility of nonvolatile logic operations in “iMemComp”. 
The functionally complete AOI logic, NAND, and XOR can serve as building blocks for more complex 
computing tasks.
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model is based on the mechanisms of conductive filament evolution under the co-impact of electrical 
filed and Joule heating (Supplementary Note & Fig. S4). The model is verified by a series of electrical 
measurements data (Supplementary Fig. S5), and model parameters including parasitic components are 
all calibrated by the experimental behaviors of various logic functions demonstrated in Figs  2 and 3 
(Supplementary Table S1). Figure  4a shows the multi-row crossbar array configuration of full adder 
(FA) circuits, where for each FA there are fourteen RS cells along the row. Besides the cells for input 
and output (input A, B, carry-in Ci, sum S and carry-out Co), there are reduplicative cells for the input 
and output cells which are designed to guarantee the nonvolatile states of actual input/output cells will 
not be disturbed during computing. During the pulse-train operation, “A ≈ B” (XOR) and “AB” (AND) 
are also computed realizing a multi-function circuit, and logic output results are generated in paral-
lel among multiple rows (Supplementary Fig. 6), remaining nonvolatile by the cell resistance (Fig. 4b). 
Afterwards, the programmed cells along eight rows for all the input combinations form a “knowledge 
map” storing the information of logic functions of ADD, AND as well as XOR (Fig. 4c). This nonvolatile 
“knowledge map” can be reused for the following repeated computing tasks based on these three frequent 
logic functions. Thereby, we have an efficient circle of “logic learning and reusing” in “iMemComp”. 
Moreover, the reduplicative cells marked by ‘R’ are all reconfigurable (by clearing their states) for other 
user-defined tasks, and meanwhile the learned logic functions remain reusable for the following tasks. 

Figure 3. Experimental features: reproducibility, reconfigurability, and parallelism. (a) Box plot of 
the measured AND operations as a proof of reproducibility. Each AND operation with a certain input 
combination is repeated for 20 cycles. The computation in ‘iMemComp’ relies more on the resistance 
window between LRS and HRS than the specific resistance values of input or output. Therefore, the 
computation is well reproducible despite the variability of HRS and LRS. (b) Measured resistance evolution 
of input and output RS cells from AND operation to NAND operation. The logic functions carried out 
in “iMemComp” are reconfigurable by clearing previous states (RESET) and performing new pulse-train 
operations, without changing circuit topology like CMOS circuits. (c) Measured parallel NAND logic in a 
crossbar RS array. With single pulse-train operation for NAND logic, computation along multiple rows with 
different input combinations is correctly conducted in parallel, yielding the complete truth table of NAND 
logic.
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Logic learning is also feasible for multi-bit logic circuits. As a demonstration, a 4-bit adder circuit is 
designed (Supplementary Fig. 7) and simulated following the logic learning principle (Supplementary 
Fig. 8). The input combination for each bit is used to decode and select the target row in the “knowledge 
map” where the matched data are stored after 1-bit adder computation. With the stored results of sum 
and carry constantly read out for each bit (Fig. 4d), the multi-bit computation can be finished consuming 
little computational resource.

Discussion
From a perspective of power dissipation, today’s CPU performance is around the order of 100 
Giga-operands/sec, and a 30 times increase over the next 10 years would boost this performance to 3 

Figure 4. Parallel computing and logic learning. (a) Array configuration of full adder (FA) circuits and 
simulated pulse-train waveforms applied at bit lines for adding operation. Different input combinations 
(input A, B, and carry-in Ci) are stored at multiple rows in the array, operated under the same pulse-train 
sequence to perform parallel computing. The output results (sum S and carry Co) under various input 
combinations are stored in situ once computation is finished. (b) Simulated evolution of the cell states 
during parallel computing procedure for three typical input combinations (#1: 1 +  1 +  1; #2: 0 +  1 +  1; #3: 
0 +  0 +  0). T0 to T4 correspond to the five milestone time nodes marked in the waveform of Fig. 2A, among 
which T0 and T4 are initial and final stages respectively and T1 to T3 are all intermediate stages.  
(c) Complete “knowledge map” learned by FAs after parallel computing. Multiple functions are included 
in the logic learning, such as AND, XOR and ADD operations. Cells marked by ‘R’ are reconfigurable for 
other user-defined computing and learning tasks, while the logic functions that are already learned by other 
cells remain unchanged. (d) Simulated computing results of a 4-bit adder capitalizing on logic learning. For 
each bit of input, binary A[i]B[i]C[i-1] is decoded (Supplementary Fig. 7) to find the results stored in the 
“knowledge map” shown in Fig. 4c. The sum S[i] and carry C[i] are read out directly for the following bits.
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Tera-operands/sec, which finally requires 576 Tera-bits (assuming 64-bit per operand) to be moved each 
second from memories to processors4. Considering the energy consumed due to data movement in an 
order of 0.1 pJ/bit, moving 1 mm on average (10% die size) consumes almost 58 W. For “iMemComp” 
where no such communication between memory and CPU exists, this is the first big part of energy that 
can be saved. Owing to the unique features introduced by RS devices into this architecture, large-scale 
computing tasks are no longer conducted by CMOS processors with a large amount of energy-consuming 
repetition. Instead, RS arrays can learn user-defined logic functions for the constant reuse, which is 
energy-efficient for massive data processing since read power is much lower than write power for RS 
devices9–12. Figure  5a shows the comparison between RS-based circuits and the state-of-the-art 15-nm 
CMOS technology predicted by International Technology Roadmap for Semiconductors26. The compar-
ison focuses on the core modules for computation. Thus, peripheral control circuitry required by RS 
arrays and external buffer and register circuits required by CMOS circuits are not included in the com-
parison. The overall power dissipation of RS-based 32-bit adder circuit is directly obtained from transient 
circuit simulations taking into account interconnect wire resistance and capacitance (Supplementary 
Table S1). Then, power per cycle can be calculated with the number of computing cycles. Larger scale 
of computing tasks leads to lower power per cycle in ‘iMemComp’ (Fig. 5a), since adding function can 
be learned after the first cycle and the read power begins to dominate the average power per cycle with 
more computing cycles involved. RS-based 32-bit adders can achieve 60.3% reduction in average power 
dissipation per cycle (Fig. 5a) compared with CMOS circuits after 105 cycles, which is a small amount 
of computation4. Additionally, zero stand-by power in nonvolatile RS arrays would enable normally-off 
systems and benefit the battery life.

From a perspective of computing speed, parallel structure is able to boost the data processing in 
‘iMemComp’. Figure 5b shows the speed comparison between RS-based adders and CMOS-based adders 
predicted by ITRS26. The impact of parallelism, which is defined as the number of bits involved in the 
parallel adding, is evaluated based on the RS array simulations. Higher degree of parallelism leads to 
larger number of array rows involved in the computation, with a fixed pulse-train duration to finish the 
operation. Therefore, the equivalent computing speed improves significantly with higher degree of paral-
lelism (Fig. 5b). Compared with 15-nm high-performance CMOS circuits, a 76.8% improvement in the 
speed can be achieved by RS-based circuits. Furthermore, theoretical analysis indicates the possibility of 
femtosecond-level computing speed under a higher degree of parallelism (Fig. 5b), which may require 
robust design of large-scale crossbar RS arrays.

From a perspective of circuit area, the highly compact crossbar structure of “iMemComp” systems 
eliminates the complex routing and layout that are necessary for CMOS-based logic circuits, and is able 
to achieve the smallest possible cell area (4 F2/cell), where F is the minimum feature size allowed by 

Figure 5. Evaluation of power dissipation, speed, and circuit area. (a) Comparison of power dissipation 
per computing cycle of 32-bit adder circuits based on RS devices and 15-nm CMOS technology. Thanks 
to the nonvolatile nature and logic learning capability, average power dissipation per cycle of RS-based 
adders goes down with computing cycles. Compared with the state-of-the-art 15-nm CMOS technology, 
“iMemComp” architecture enables a 60.3% reduction in power dissipation after 105 cycles. Additionally, 
leakage power dissipation is inherently zero in “iMemComp” using nonvolatile RS devices, whereas CMOS 
transistors face severe leakage power issues. (b) Comparison of computing speed of 32-bit adder circuits 
based on RS devices and 15-nm CMOS. Parallelism of ‘iMemComp’ is defined as the number of bits 
involved in the parallel adding based on crossbar arrays. Large-scale circuit simulation shows that the 
equivalent computing speed improves significantly with higher degree of parallelism. Compared with high-
performance 15-nm CMOS circuits, a 76.8% improvement can be achieved. Theoretically, aggressive speed 
boosting up to femtosecond level may be possible with massively parallel implementation in large-scale 
arrays. (c) Area comparison of RS-based and CMOS-based circuit units. With the complexity of a CMOS 
circuit increases, the circuit area grows dramatically. However, the increase in the area of RS-based circuits 
is moderate, and the circuit topology does not change with different functions. The area of a RS-based 32-bit 
adder is less than 1/700 of a CMOS adder’s area.
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lithography. Figure 5c shows the area comparison between RS-based circuits and CMOS circuits26. For 
more complex circuits, the area increase for RS circuits is more moderate (Fig. 5c) than that of CMOS 
circuits, since the reconfigurable logic in ‘iMemComp’ does not need complex design of circuit topol-
ogy, layout and routing. Compared with the CMOS solution, the area of RS-based 32-bit adders can be 
reduced by over 700 times.

As a non-von Neumann architecture, “iMemComp” capitalizes on both device-level and circuit-level 
properties for parallel computing, and the reconfigurable logic learning architecture mimics the way 
human brain works in terms of learning knowledge through practice and accepting new ideas. The 
experimentally demonstrated nonvolatile logic and memory features together with superior performance 
in power, speed and area have proven the feasibility of high-density, massively parallel, ultra-low-power 
information processing systems with memory and logic unified by single-type devices. The important 
lesson we have learned from this research, is that one should explore the use of novel device properties 
in architectural innovations and fully exploit the computational potential of emerging technologies for 
the increasing demand of our information society.

Methods
Device fabrication and packaging. Fabrication of Pt/HfOx/Ti/TiN resistive switching devices was 
performed without high thermal budget process. Firstly, a 20-nm Ti adhesion layer and a 50-nm Pt bot-
tom electrode were prepared on an 8-inch silicon substrate by electron beam evaporation. Then, 4-nm 
HfOx was deposited by reactive sputtering in argon and oxygen ambient. After that, thin Ti capping layer 
of 2 nm was sputtered. After a 50-nm TiN top electrode was deposited by reactive sputtering in high vac-
uum and patterned with 248 nm lithography, dry etch was performed to form the square-shape devices. 
Finally, post-metal dielectrics of plasma enhanced chemical vapor deposition (PECVD) SiN/SiO2 and Al 
metallization were used to complete device fabrication. The fabricated devices were packaged using dual 
inline-pin package (DIP) technique.

Electrical measurements. The device electrical measurements were performed using an Agilent 
B1500A semiconductor parameter analyzer together with a Cascade Probe Station. During device 
measurements, the top electrode TiN was applied with voltage source and the bottom electrode Pt was 
grounded. The measurements of AOI logic operations were carried out on the packaged test chip using 
Agilent 93000 SoC Series platform. During testing, pulses for computing were applied at top electrodes 
(bit lines) and the common bottom electrodes (word lines) in series with a load resistor was grounded.
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