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Predicting lncRNA-disease 
associations and constructing 
lncRNA functional similarity 
network based on the information 
of miRNA
Xing Chen1,2

Accumulating experimental studies have indicated that lncRNAs play important roles in various 
critical biological process and their alterations and dysregulations have been associated with many 
important complex diseases. Developing effective computational models to predict potential disease-
lncRNA association could benefit not only the understanding of disease mechanism at lncRNA 
level, but also the detection of disease biomarkers for disease diagnosis, treatment, prognosis and 
prevention. However, known experimentally confirmed disease-lncRNA associations are still very 
limited. In this study, a novel model of HyperGeometric distribution for LncRNA-Disease Association 
inference (HGLDA) was developed to predict lncRNA-disease associations by integrating miRNA-
disease associations and lncRNA-miRNA interactions. Although HGLDA didn’t rely on any known 
disease-lncRNA associations, it still obtained an AUC of 0.7621 in the leave-one-out cross validation. 
Furthermore, 19 predicted associations for breast cancer, lung cancer, and colorectal cancer were 
verified by biological experimental studies. Furthermore, the model of LncRNA Functional Similarity 
Calculation based on the information of MiRNA (LFSCM) was developed to calculate lncRNA 
functional similarity on a large scale by integrating disease semantic similarity, miRNA-disease 
associations, and miRNA-lncRNA interactions. It is anticipated that HGLDA and LFSCM could be 
effective biological tools for biomedical research.

Based on the assumption of the central dogma of molecular biology, genetic information is stored in 
protein-coding genes and RNA is just an intermediary between a DNA sequence and its encoded pro-
tein1,2. However, sequence analysis shown that there were only ~20,000 protein-coding genes in the 
human genome and more than 98% of the human genome does not encode protein sequences3–10 , 
yielding tens of thousands of non-coding RNAs (ncRNAs). Based on accumulating experimental evi-
dences, these ncRNAs have played very fundamental and critical roles in various biological processes11. 
Based on whether transcript lengths are larger than 200 nucleotides, ncRNAs can be further divided 
into small ncRNA (such as miRNA, siRNA, and piRNA) and long ncRNA (lncRNA). Long non-coding 
RNAs (lncRNAs) are a heterogeneous class of ncRNAs with non-protein-coding transcripts longer than 
200 nucleotides8,12,13. In comparison with protein-coding genes, lncRNAs have the following differences: 
(1) lncRNAs have less conservation across species14,15; (2) lncRNAs have relatively lower expression 
level and much more tissue-specific pattern16–18. (3) lncRNAs have longer, but fewer, exons. In the early 
1990 s, H19 and Xist were first identified based on traditional gene mapping approaches19–21. In the 
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recent few years, there has been rapid development in both experimental technology and computational 
prediction algorithm for lncRNA discovery. Thousands of lncRNAs have been discovered in eukaryotic 
organisms ranging from nematodes to humans15,16,22,23. For example, based on tiling arrays, HOTAIR 
(HOX antisense intergenic RNA) and HOTTIP (HOXA transcript at the distal tip) were discovered in 
the homeobox gene regions (HOX clusters)24,25. Guttman, et al.23 discovered 1600 novel mouse lncRNAs 
by integrating gene expression data, the presence of chromatin marks for promoter regions and gene 
bodies, and the known annotations of coding transcripts. Cabili, et al.14 generated the human lincRNA 
catalog across 24 different human cell types and tissues based on chromatin marks and RNA-sequencing 
(RNA-seq) data.

In recent several years, accumulating experimental studies have shown that lncRNAs play important 
roles in various critical biological process, such as cell proliferation, differentiation, chromatin remode-
ling, epigenetic regulation, genomic splicing, transcription, translation and so on9,12,18,22,23,26–29. Specifically, 
lncRNA can bind to proteins or miRNAs, resulting in functional inhibition of proteins and titration of 
miRNAs, respectively30. According to the molecular mechanism of lncRNAs, the emerging archetypes 
of molecular functions of lncRNAs could be divided into signals, decoys, guides, and scaffolds31. It has 
been demonstrated that lncRNA have a very complicated regulation network, but the underlying mech-
anism of lncRNA-related regulation is still remain unclear. In the light of important biological functions 
of lncRNAs, the alterations and dysregulations of lncRNAs have been associated with the development 
and progression of many different complex diseases12,18,26, including cardiovascular diseases32, neurolog-
ical disorders33, diabetes34, HIV35 and various types of cancers, such as breast cancer36,37, hepatocellular 
cancer38,39, prostate cancer40,41, lung cancer42,43. In the past few years, many researchers have focused 
their researches on lncRNA-disease associations, and they have found some specific lncRNAs associated 
with various diseases. For example, lncRNA HOTAIR has 100 to approximately 2,000 times expression 
levels in breast cancer metastases based on quantitative PCR37,44, and its expression level are correlated 
with metastasis and progression of other various cancers, such as colorectal cancer45,46, gastric cancer47,48, 
liver cancer49, lung cancer47 and so on. Therefore, HOTAIR was considered as potential biomarker in 
various types of cancers45. Except for HOTAIR, the dysfunction of lncRNA H19 is also involved in 
various diseases. For example, H19 could be used as a potential prognostic tumour marker for the early 
recurrence of bladder cancer50. Furthermore, it has been demonstrated that down-regulation of H19 sig-
nificantly decreases breast and lung cancer cell clonogenicity and anchorage-independent growth based 
on a knockdown approach36. Several experimental studies have also shown that lncRNA BCAR4 is asso-
ciated with breast cancer, which is expressed in 27% of primary breast tumors51–53. Specifically, in human 
ZR-75-1 and MCF7 breast cancer cells, the forced expression of BCAR4 causes cell proliferation in the 
absence of estrogen and in the presence of various antiestrogens, indicating BCAR4 could considered as 
a proper target for the treatment of antiestrogen-resistant breast cancer51.

Considering the important roles of lncRNAs in various biological processes regulation and complex 
diseases development and progression, potential disease-lncRNA associations identification could not 
only benefit the underlying disease mechanism mining at lncRNA level, but also facilitate disease bio-
markers detection and drug discovery for disease diagnosis, treatment, prognosis and prevention29,54. 
Computational models and tools can effectively decrease the time and cost of biological experiments 
by quantifying the association probability of each lncRNA-disease pair and verifying most promising 
lncRNA-disease pairs with high scores based on further biological experimental validation. Nowadays, 
developing effective computational models by integrating various kinds of biological datasets to prioritize 
disease-related lncRNAs has become one of the most important and attracting topics in the fields of both 
lncRNAs and complex diseases.

Some computational models have been developed to infer novel disease-lncRNA associations. In the 
previous study, Chen et al.54 presented a semi-supervised learning method, LRLSLDA, to infer novel 
human lncRNA-disease associations. LRLSLDA was developed based on the assumption that similar 
diseases tend to interact with functionally similar lncRNAs and the framework of Laplacian Regularized 
Least Squares. LRLSLDA is a reliable tool for lncRNA-disease association prediction. More importantly, it 
does not need negative samples. However, the parameter selection problem and the problem of combin-
ing two different classifiers into the final classifier exist in this method. Based on the same assumption, 
Sun et al.55 presented a method to constructed a lncRNA-lncRNA functional similarity network, then 
they proposed a global network-based computational method named RWRlncD by integrating disease 
similarity network, lncRNAs functional network and known lncRNA-disease associations. However, 
this method can’t be applied to the lncRNAs without any known associated diseases. Li et al.56 devel-
oped a simple genomic location based bioinformatics method for the prediction of novel associations 
between lncRNAs and vascular disease. However, not all of the lncRNAs are related with their neigh-
bor genes and no statistical tests were used, which resulted in limitations of this method. Yang et al.57 
investigated lncRNA-disease associations by constructing the lncRNA-disease association network and 
coding-non-coding gene-disease bipartite network based on known associations between diseases and 
disease genes. Then, a propagation algorithm was applied to infer the underlying lncRNA-disease asso-
ciations. This method also has some limitations, such as the lack of the information of non-coding 
genes and protein coding genes interactions and similarities and lncRNA functional annotation. Zhao 
et al.58 developed the naive Bayesian classifier to identify cancer-related lncRNAs based on the integra-
tion of genome, regulome and transcriptome data. The important limitation of this method is that they 
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regard the unknown lncRNA-disease associations as negative samples, which would largely influence the 
predictive accuracy of the method. Recently, based on the findings that lncRNAs that sharing signifi-
cantly enriched interacting miRNAs tend to be associated with similar diseases, Zhou et al.59 proposed 
a novel method named RWRHLD to identify candidate lncRNA-disease associations by integrating 
miRNA-associated lncRNA-lncRNA crosstalk network, disease-disease similarity network, and known 
lncRNA-disease association network into a heterogeneous network. Then, a random walk was imple-
mented on this heterogeneous network. This method can only predict associations for the lncRNAs that 
have lncRNA-miRNA interaction datasets, limiting the wide application of RWRHLD. Aforementioned 
methods all need the prior information of known experimentally verified lncRNA-disease association. 
So far, although plenty of biological datasets about lncRNA sequence and expression have been gener-
ated and stored in some publicly available databases, such as NRED60, lncRNAdb28, NONCODE61, the 
number of lncRNAs reported to be associated with diseases is still very limited. Liu et al.62 developed a 
method by integrating human lncRNA and gene expression profiles, and human disease-associated gene 
data. This method didn’t rely on known lncRNA-disease associations and obtained an AUC of 0.7645 for 
non-tissue-specific lincRNAs. However, too many false positives would be brought based on the ROC 
curve in that paper.

Nowadays, plenty of experimentally confirmed miRNA-disease associations have been collected 
in various databases63–66. Therefore, the model of HyperGeometric distribution for LncRNA-Disease 
Association inference (HGLDA) was developed here to predict potential lncRNA-disease associations 
by integrating known miRNA-disease associations and lncRNA-miRNA interactions. Although HGLDA 
didn’t rely on any known disease-related lncRNAs associations, it still obtained a reliable AUC of 0.7621 
in the leave-one-out cross validation (LOOCV) based on known experimentally verified lncRNA-disease 
associations from the LncRNADisease database29. HGLDA was also applied to predict Breast Cancer, 
Lung Cancer, and Colorectal Cancer-related lncRNAs. Seven, seven, and five predicted potential associa-
tions with false discovery rate (FDR) less than 0.05 have been confirmed by recent biological experiments 
for these three important human complex diseases, respectively. Above results effectively demonstrated 
its potential ability of inferring disease-lncRNA associations and detecting biomarkers detection for 
human disease diagnosis, treatment, prognosis and prevention. Furthermore, the model of LncRNA 
Functional Similarity Calculation based on the information of MiRNA (LFSCM) was developed to quan-
titatively calculate lncRNA functional similarity on a large scale by integrating disease semantic similar-
ity, miRNA-disease associations, and miRNA-lncRNA interactions.

Results
Performance evaluation of potential lncRNA-disease association prediction. HGLDA was 
applied to the known experimentally verified lncRNA-disease associations in the lncRNADisease data-
base in the framework of LOOCV. Each known disease-lncRNA association was left out in turn as test 
sample. How well this test sample was ranked relative to the candidate samples (all the disease-lncRNA 
pairs without the evidence to confirm their association) was evaluated. When the rank of this test sam-
ple exceeds the given threshold, this model was considered to provide a successful prediction. When 
the thresholds were varied, true positive rate (TPR, sensitivity) and false positive rate (FPR, 1-speci-
ficity) could be obtained. Here, sensitivity refers to the percentage of the test samples whose ranking 
is higher than the given threshold. Specificity refers to the percentage of samples that are below the 
threshold. Receiver-operating characteristics (ROC) curve was drawn by plotting TPR versus FPR at 
different thresholds. Area under ROC curve (AUC) was further calculated to evaluate the performance 
of HGLDA. AUC =  1 indicates perfect performance and AUC =  0.5 indicates random performance. As 
a result, HGLDA achieved an AUC of 0.7621 (see Fig.  1). One important fact must be pointed out is 
that HGLDA predict potential lncRNA-disease association without relying on the information of known 
disease-lncRNA associations. Although previous study of predicting potential lncRNA-disease associa-
tions by integrating disease-gene associations and gene-lncRNA co-expression relationship obtained a 
comparable AUC of 0.7645, the ROC curve in that study is much below the ROC curve in this study 
when FPR is small, which is particularly important for practical biological research. More importantly, 
available experimentally verified disease-miRNA associations are still comparatively rare relative to the 
known disease-gene associations. The performance of HGLDA would be further improved when more 
known miRNA-disease associations could be obtained in the future.

Case studies of potential lncRNA-disease association prediction. HGLDA was applied to pre-
dict potential disease-lncRNA associations for all the diseases investigated in this article. Potential predic-
tive associations with significant FDR values were publicly released to benefit the biological experimental 
validation (see Supplementary Table 1). It is anticipated that these potential lncRNA-disease associations 
which significantly share common miRNAs could be validated by biological experiments and provide 
important complementary for experimental studies. Especially, plenty of evidences have demonstrated 
that lncRNAs plays important roles in various kinds of human cancers36–41. Therefore, case studies about 
three kinds of important cancers were implemented to show the predictive performance of HGLDA. 
Predictive results were confirmed based on recent experimental literatures.

As the second leading cause of female cancer death, breast cancer comprises 22% of all cancers in 
women67,68. Breast cancer is caused because of multiple molecular alterations and traditionally diagnosed 
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based on histopathological features such as tumor size, grade and lymph node status69. Researches showed 
that lncRNA plays an important role in many biological processes and is strongly associated with the 
formation of various cancers including breast cancer69,70. To better diagnose and treat breast cancer, it 
is necessary to predict breast cancer-related lncRNAs and identify lncRNA biomarkers70. HGLDA was 
implemented to prioritize candidate lncRNAs for breast cancer. As a result, seven lncRNAs with signif-
icant FDR less than 0.05 have been confirmed based on recent experimental literatures (see Table  1). 
For example, XIST, KCNQ1OT1 and NEAT1 are there experimentally confirmed breast cancer related 
lncRNAs, which have been ranked 1st, 8th, and 12th in the predicted list based on the model of HGLDA, 
respectively. The XIST RNA signal variability in the BRCA1 breast tumor is correlated with chromo-
somal genetic abnormalities, and BRCA1 breast tumors often contain cells showing multiple XIST RNA 
domains per nucleus71. KCNQ1OT1 is induced by estrogen in estrogen receptor-alpha (ERα ) expressing 

Figure 1. Performance evaluation for the HGLDA in terms of ROC curve and AUC based on LOOCV. 
As a result, HGLDA achieved an AUC of 0.7621, demonstrating its reliable predictive ability even if potential 
lncRNA-disease associations were predicted without relying on the information of known disease-lncRNA 
associations in the model of HGLDA.

Disease lncRNA Evidence (PMID)

Breast cancer MALAT1 24525122;19379481

Breast cancer H19 16707459;14729626;12419837

Breast cancer CDKN2B-AS1 17440112;20956613

Breast cancer NEAT1 25417700;23825647

Breast cancer XIST 17545591

Breast cancer KCNQ1OT1 21304052

Breast cancer HOTAIRM1 25296969

Lung cancer EPB41L4A-AS1 BCYRN1 16973895;9490301

Lung cancer MALAT1 20937273;24757675;24667321

Lung cancer TUG1 24853421

Lung cancer GAS5 24357161;23676682

Lung cancer HOTAIR 25491133;24591352;24155936

Lung cancer H19 16707459;8838103;7700644

Lung cancer NEAT1 25010625

Colorectal cancer XIST 17143621;22879877

Colorectal cancer HOTAIR 24531795;21862635;24667321

Colorectal cancer MALAT1 21503572;25446987;25031737

Colorectal cancer KCNQ1OT1 16965397;11340379;23660942

Colorectal cancer H19 18719115;19926638;22121898

Table 1.  HGLDA was applied to three kinds of important cancer (breast cancer, lung cancer, and 
colorectal cancer). As a result, 19 predicted lncRNA-disease pairs with significant FDR less than 0.05 have 
been confirmed based on recent experimental literatures.
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breast cancer cells and further mediate CDKN1C repression through epigenetic repression72. The alter-
native splicing of NEAT1 may play important role in nicotine induced breast cancer development73 and 
breast cancer patients with high level of NEAT1 expression shows low survival rate74.

Lung cancer, which can be roughly divided into two groups: non-small cell lung cancer (80.4%) and 
small cell lung cancer (16.8%) considering disease patterns and treatment strategies, is the leading cause 
of cancer-related death worldwide in both men and women75,76. There are estimated 1.4 million deaths 
resulting from lung cancer each year77,78. Data show that the risk of lung cancer mortality is even greater 
than the combination of the next three most common cancers (colon, breast and prostate)75. Specially, 
five-year survival rate of lung cancer patients is only approximately 15%, which is much lower than other 
cancers types79,80. To diagnose and treat lung cancer in a better and more efficiently way, more attentions 
are focused on the deregulation of protein-coding genes to identify oncogenes and tumor suppressors in 
the last decades75,81,82. Recent researches have shown that lncRNAs play a critical role the development 
and progression of lung cancers75,82. Potential lung cancer-related lncRNAs were obtained by selecting 
candidate lncRNAs with FDR less than 0.05. Seven predicted lncRNAs have been confirmed by inde-
pendent experimental literatures (see Table 1). According to biological experiments in several studies, it 
has been confirmed that MALAT1 is a non-coding RNA which plays important roles in many different 
cancers47. Specially it has been shown to be highly associated with metastasis of lung cancer83–86 and 
promote lung cancer cell motility by regulating motility related gene expression87. Therefore, it could be 
an important biomarker for metastasis development in lung cancer49. TUG is another lung cancer related 
lncRNA, which can be regulated by P53 to affect non-small cell lung cancer (NSCLC) cell proliferation 
in part by epigenetically controlling the expression of HOXB788. GAS5, which can also be mediated by 
P53 pathway, is shown to be a tumor suppressor and down-regulated in NSCLC89. These three lncRNAs 
were all ranked in the top of prediction list for lung cancer (10th, 14th, and 41st, respectively).

As the third most common cancer in men and the second in women, colorectal cancer is one of the 
most common malignancies in the world and an important threat to human health90,91. Data shows that 
the 5.2% of men and 4.8% of women have the risk of colorectal cancer in the United States and the mor-
tality rate caused by colorectal cancer is nearly 33% in the developed world90–92. Some critical mutations 
underlying the pathogenic mechanism of colorectal cancer have been confirmed93. Especially, mutations 
and dysregulations of some lncRNAs have been linked with the development and progression of colorec-
tal cancer. Five predicted colorectal cancer-related lncRNAs have been confirmed by experimental litera-
ture (see Table 1). XIST, MALAT1, H19, and KCNQ1OT1 were ranked in the top four prediction list of 
colorectal cancer. As a result, recent biological experiments indicated these four lncRNAs all showed high 
correlation with colorectal cancer. For example, evidences show that expression level change of or DNA 
amplification of XIST is associated with colorectal carcinoma94,95. Also, MALAT1 plays important role 
in colorectal cancer development by promoting its invasion and metastasis96–99, and down-regulation of 
MALAT1 will inhibit colorectal invasion by attenuating Wnt/β -catenin signaling100. Moreover, the meth-
ylation state of H19 locus is highly related with colorectal cancer101–105, and the H19-derived microRNA 
also regulates colorectal cancer development106. Loss of imprinting of KCNQ1OT1 is considered as a 
useful marker for diagnosis of colorectal cancer because of its frequent occurrences in colorectal cancer 
samples107.

lncRNA functional similarity. LFSCM was applied to all the lncRNAs investigated in this study. 
Therefore, pairwise functional similarity among 1114 lncRNAs has been obtained (See Supplementary 
Table 2).

Discussions
Predicting potential disease-related lncRNAs by integrating various kinds of biological datasets is one 
of the most important and attracting topics for computational biology research, which is critical for 
understanding disease mechanism at the lncRNA level and disease biomarkers detection for disease 
diagnosis, prognosis and prevention. In this study, considering many miRNA-disease associations have 
been confirmed by recent biological experiments, the model of HGLDA was developed to predict poten-
tial disease-lncRNA associations on a large scale by selecting disease-lncRNA pairs which significantly 
share common miRNA partners. The important difference from previous computational researches about 
lncRNA-disease inference is that HGLDA doesn’t rely on any known lncRNA-disease associations. To 
validate the performance of HGLDA, LOOCV was implemented on lncRNA-disease association dataset 
obtained from lncRNADisease database and case studies were further implemented to three important 
cancers (Breast cancer, Lung Cancer, and Colorectal Cancer). Reliable performance has been obtained 
in the above validations. Therefore, to facilitate further biological experiment confirmation, significant 
lncRNA-disease pairs for all the diseases investigated in this study were publicly released. It is anticipated 
that HGLDA could further demonstrate its potential value for disease-lncRNA association inference and 
disease biomarker detection in the future.

Calculating lncRNA functional similarity could benefit lncRNA function inference and disease-related 
lncRNA prioritization. Therefore, based on the assumption that functionally similar lncRNAs tend to 
interact with functionally similar miRNAs, the model of LFSCM was further developed to quantitatively 
calculate lncRNA functional similarity. In this model, disease semantic similarity, miRNA-disease asso-
ciations, and miRNA-lncRNA interactions were integrated on a large scale.
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HGLDA obtained the reliable performance in both LOOCV and case studies about three kinds of 
important cancers, which could be largely attributed to the following several factors. Firstly, known 
experimentally verified disease-miRNA associations and lncRNA-miRNA interactions were integrated 
to infer the potential associations between lncRNAs and diseases. Secondly, both miRNA and lncRNA 
are ncRNAs, which don’t encode protein sequences. Therefore, predicting lncRNA-disease associations 
from miRNA-related datasets is more reasonable than previous study of integrating disease genes and 
gene-lncRNA co-expression relationship. More importantly, HGLDA doesn’t need the prior information 
of known lncRNA-disease associations, which ensure that this method could be applied to the diseases 
without any known related lncRNAs. Therefore, HGLDA represents a novel, effective, and important 
bioinformatics tool for the research of both complex diseases and lncRNAs.

Despite of the reliable performance of HGLDA, there are also some limitations in the model of 
HGLDA. Although HGLDA doesn’t rely on any known experimentally verified lncRNA-disease associa-
tions, its performance was not very satisfactory based on the evaluation of LOOCV and could be further 
improved by integrating more reliable biological datasets, such as disease semantic similarity, disease 
phenotypic similarity, lncRNA functional similarity, and lncRNA-related various interactions. Although 
the model of LFSCM can be applied to the lncRNAs without any known related diseases, it can’t be 
applied to those lncRNAs without any known miRNA interaction partners. Furthermore, lncRNA func-
tional similarity was calculated based on known miRNA-disease associations and lncRNA-miRNA inter-
actions, hence LFSCM tends to cause bias to lncRNAs with more miRNA interaction partners or/and 
lncRNAs with miRNA interaction partners which has been associated with more diseases. LFSCM would 
be further improved when more known datasets could be available and more reliable types of biologi-
cal datasets could be integrated. More importantly, as what has been pointed out in the literature108, it 
is unwise to use a single disease-related lncRNA to judge cancer risks for all the persons. Therefore, I 
planned to construct various cancer hallmark networks to effectively evaluate cancer risks based on the 
lncRNA profiles of each person108. Finally, obtaining the tumor recurrence and metastases probability, 
predicting potential consequences after applying a specific drug to the patients, and identifying molec-
ular signatures to evaluate and predict therapeutic results after cancer treatment in the framework of 
lncRNAs are three important problems in the personalized medicine108,109, which could be considered 
in the future.

Methods
Human miRNA-disease associations. The human miRNA-disease association dataset was down-
loaded from HMDD in January, 2015, which included 10368 high-quality experimentally verified human 
miRNA-diseases associations from 3511 papers about 572 miRNA and 378 diseases110. Then, duplicate 
associations with the different evidences were discarded and different miRNA copies were merged which 
produce the same mature miRNA. Finally, 5430 miRNA–disease associations were obtained, including 
383 diseases and 495 miRNAs (see Supplementary Table 3).

lncRNA–miRNA interactions. lncRNA–miRNA interaction dataset was downloaded from star-
Base v2.0 database in January, 2015, which provided the most comprehensive experimentally confirmed 
lncRNA–miRNA interactions based on large scale CLIP-Seq data111. After getting rid of duplicate inter-
actions, 10112 lncRNA-miRNA interactions about 132 miRNAs and 1114 lncRNAs were obtained (see 
Supplementary Table 4).

Disease-lncRNA associations. To validate the performance of HGLDA, the recent version of 
lncRNA-disease association dataset in the LncRNADisease database was downloaded29 and LOOCV was 
implemented based on this golden-standard dataset. For this dataset, I got rid of duplicate associations 
with different evidences and the lncRNA-disease associations involved with either diseases or lncRNAs 
which were not contained in the dataset used in this paper. As a result, 183 lncRNA-disease associations 
were obtained and LOOCV was implemented based on these experimentally verified high-quality asso-
ciations (see Supplementary Table 5).

HGLDA. The model of HGLDA was developed to predict potential disease-related lncRNAs (See 
Fig. 2). The hypergeometric distribution test was implemented for each lncRNA-disease pair by exam-
ining whether this lncRNA and disease significantly shared common miRNAs which can interact with 
both of them. The significance was measured by the P-value defined as follows:
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where N is the total number of miRNAs which are associated with lncRNAs or diseases, M is the number 
of miRNAs interacting with this given lncRNA, L is the number of miRNAs interacting with this given 
disease, and x is the number of miRNAs that interact with both of them, respectively. Furthermore, FDR 
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correction was implemented to all calculated P-values and those lncRNA-disease pairs with FDR less 
than 0.05 were considered to be potential lncRNA-disease associations112.

LFSCM. LFSCM is composed of the following three steps (See Fig.  3): calculating disease semantic 
similarity based on the disease MeSH descriptors and their direct acyclic graphs (DAGs); calculating 
miRNA functional similarity based on disease semantic similarity and disease-miRNA associations; 
calculating lncRNA functional similarity based on miRNA functional similarity and lncRNA-miRNA 
interactions. For the disease semantic similarity calculation, the method in the literature113 was adopted. 
The semantic similarity between two diseases was calculated based on the nodes shared by their disease 

Figure 2. Flowchart of HGLDA, demonstrating the basic ideas of predicting potential disease-related 
lncRNAs by integrating miRNA-disease associations and lncRNA-miRNA interactions. Firstly, the 
hypergeometric distribution test was implemented for each lncRNA-disease pair by calculating the P-value 
to indicate whether this lncRNA and disease significantly shared common miRNAs which can interact with 
both of them. Then, FDR correction was implemented to all calculated P-values. Finally, those lncRNA-
disease pairs with FDR less than 0.05 were selected to be potential lncRNA-disease associations.
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DAGs. The variable S1 is denoted as disease semantic similarity matrix, in which the entity S1(i,j) in row 
i column j represents the semantic similarity between disease i and j.

For the miRNA functional similarity, the semantic similarity of their associated disease groups was 
measured. the similarity calculation between miRNA u and v is taken as an example to demonstrate the 
procedure, which consisted of three steps: obtaining all the known diseases associated with miRNA u 
and v, which are defined as variable D(u) and D(v) , respectively; calculating the similarity between each 
disease in one disease groups and the other disease groups; calculating the similarity between two disease 
groups as the functional similarity between miRNA u and v. In the second step, taking the similarity 
calculation between D(v) and disease D1 in the groups of D(u) as an example, similarity was defined as 
follows:

S D D v S D D1 1 max 1 1
2D D v

( , ( )) = ( ( , ))
( )∈ ( )

In the third step, the functional similarity between miRNA u and v was defined

S u v
S D D v S D D u

D u D v
2

1 1

3
D u D vD D

( , ) =
∑ ( , ( )) + ∑ ( , ( ))

( ) + ( ) ( )
∈ ( ) ∈ ( )

where S2 is the miRNA functional similarity matrix and the entity S2(i,j) in row i column j is the func-
tional similarity between miRNA i and j.

For the lncRNA functional similarity calculation, similar method as miRNA functional similarity 
calculation was adopted. Here, lncRNA i and j is take as an example. Firstly, all the miRNAs interacting 
with these two lncRNA as miRNA groups are defined as M(i) and M(j), respectively. Then, the similarity 
between miRNA group M(j) and miRNA M1 in the miRNA group M(i) was defined as follows:

S M M j S M M2 1 max 2 1
4M M j

( , ( )) = ( ( , ))
( )∈ ( )

Finally, the similarity between two miRNA groups was calculated and regarded as the functional simi-
larity between corresponding two lncRNAs.

FS i j
S M M j S M M i

M i M j

2 2

5
M M i M M j

( , ) =
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( ) + ( ) ( )
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Figure 3. Flowchart of LFSCM, demonstrating the basic ideas of calculating lncRNA functional 
similarity based on disease semantic similarity, disease-miRNA associations, and lncRNA-miRNA 
interactions. Firstly, disease semantic similarity among all the diseases investigated in this paper was 
calculated based on their disease DAGs. Then, disease set associated with each miRNA was identified and 
the similarity among these disease sets was calculated and considered to be miRNA functional similarity. 
Finally, lncRNA functional similarity was calculated based on miRNA functional similarity and lncRNA-
miRNA interactions.
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where FS is the lncRNA functional similarity matrix and the entity FS(i,j) in row i column j is the func-
tional similarity between lncRNA i and j.
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