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Suppressed N2O formation during 
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Emission of N2O from mobile and off-road engine is now being currently regulated because of its high 
impact compared to that of CO2, thereby implying that N2O formation from the exhaust gas after-
treatment system should be suppressed. Selective catalytic reduction using vanadium supported 
TiO2 catalyst in mobile and off-road engine has been considered to be major source for N2O 
emission in the system. Here we have demonstrated that vanadium catalyst supported on zeolitic 
microporous TiO2 obtained from the hydrothermal reaction of bulk TiO2 at 400 K in the presence of 
LiOH suppresses significantly the N2O emission compared to conventional VOx/TiO2 catalyst, while 
maintaining the excellent NOx reduction, which was ascribed to the location of VOx domain in the 
micropore of TiO2, resulting in the strong metal support interaction. The use of zeolitic microporous 
TiO2 provides a new way of preparing SCR catalyst with a high thermal stability and superior catalytic 
performance. It can be also extended further to the other catalytic system employing TiO2-based 
substrate.

Ever increasing demand for the reduction of greenhouse gas results in the more stringent regulation on 
its emission and also the corresponding research and development to capture or convert into inert mol-
ecule1. Compared to that of a major greenhouse, CO2, N2O has a high greenhouse gas effect up to 300 
times2. Therefore, the impact of N2O emission can be comparable to that of CO2 though the emission 
concentration of N2O is relatively low. Most recent diesel engine emission regulation is now started to 
include N2O because of its high impact and stability in stratosphere3. For diesel engine emission control 
under lean condition, urea SCR (selective catalytic reduction) system is the state of art technology for 
the reduction of NOx in most engine companies4. Under lean condition where the air to fuel ratio is far 
beyond the stoichiometric condition, the N2O formation can be suppressed readily while the system has 
been maintained under oxidizing condition. However, the emission of N2O from diesel engine can be 
increased when the reducing agent for NOx is introduced in the SCR system following the reactions, such 
as 2NH3 +  2NO +  O2 =  N2O +  N2 +  3H2O, 2NH3 +  2O2 =  N2O +  3H2O and NH4NO3 =  N2O +  2H2O3. 
The former two reactions were believed to be the major pathway for N2O formation in which bimolec-
ular reaction can occur.

For NOx abatement, VOx catalyst supported on TiO2 has been used widely in most diesel engines5–8. 
There are numerous investigations on the improvement of the catalytic performance using additives 
such as Ce or W and also using peculiar TiO2 synthesized using sol-gel method or organic or inorganic 
templating method9–15. However, VOx supported on TiO2 of relatively low surface area is the state of 
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art technology catalyst. Indeed the current VOx/TiO2 catalyst emits N2O when the reducing agent is 
present in the stream. The current emission level of N2O is 50 mg per mile, which also depends on the 
catalyst composition and the system configuration such as diesel oxidation catalyst-selective catalytic 
reduction-diesel particulate filter3. The N2O emission characteristics of the VOx/TiO2 catalyst should be 
improved under reducing condition. For this purpose, the economically viable catalyst has to be devel-
oped in near future.

It has been demonstrated that the hydrothermal conversion of commercially available TiO2 in the 
presence of alkaline hydroxide produces unique TiO2 structures differently depending on the species of 
alkaline hydroxide16–19. Recently, the addition of LiOH, NaOH and KOH to the hydrothermal medium 
was reported to be resulted in the formation of zeolitic microporous TiO2, nanotube and nanorod, 
respectively19–21, which seems to be a cost effective process. The obtained microporous nanocrystalline 
TiO2 showed large surface area of 250 m2g−1 with the pore volume of 0.15–0.20 ccg−1, which was similar 
to those of zeolites and also suitable for catalyst preparation.

The formation mechanism of TiO2 nanotube by hydrothermal synthesis in the presence of NaOH 
has been studied extensively but it is not clarified yet16,22. Initial work on the formation mechanism of 
TiO2 nanotube suggested that the nanotube is obtained with an acid washing and subsequent Na+ ion 
exchange after the formation of amorphous TiO2 during hydrothermal reaction between NaOH and 
bulk TiO2

16,20,22–24. The other mechanism proposed that the bond breaking of 3-dimensional TiO2 struc-
ture formed layered 2-dimensional structure and finally 1-dimensional nanotubes through sheet folding 
mechanism22. The removal of Na+ cation from the nanotube also deteriorates readily the thermal stability 
when it is heated at high temperature.

However, the use of zeolitic microporous TiO2 prepared from alkaline condition has not explored 
yet. Thus, it is interesting to know whether the zeolitic microporous TiO2 has a high thermal stability 
or not and also is suitable for catalytic application as a substrate. For the first time in the present work, 
the zeolitic microporous nanocrystalline TiO2 has been demonstrated as a catalyst support for VOx over 
selective catalytic reduction of NOx using ammonia in order to decrease the N2O formation.

Results
Figure 1 shows the scanning electron micrographs and transmission electron micrographs of the zeolitic 
microporous TiO2 after the hydrothermal treatment. The morphology of the particle after the hydrothermal 

Figure 1. Morphology of the zeolitic microporous TiO2. (a) Scanning electron micrographs,  
(b,c) transmission electron micrographs and (d) the argon adsorption-desorption isotherm of the zeolitic 
microporous TiO2 with the pore size distribution (inset) obtained from Horvath-Kawazoe method. The solid 
and open symbols indicate the adsorption and desorption branch, respectively.
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conversion contained sharp edges, suggesting the formation of the well-crystallized TiO2, which was con-
sistent with the literature19–21. The obtained TiO2 had the typical argon adsorption-desorption isotherm 
consistent with the Langmuir isotherm type containing micropore mostly where the micropore area 
estimated from t-plot was ~200 m2g−1, corresponding to 80% of the total surface area of which the pore 
size was estimated to be ~7 Å. The corresponding surface area and pore volume were controlled to be 
250 ±  20 m2g−1 and 0.20 ±  0.05 ccg−1, respectively, depending on the hydrothermal reaction condition. 
Also, the presence of the mesopore was observed above P/P0 >  0.9 but its portion can be decreased with 
the increase of hydrothermal reaction time. Such mesopore formation was also shown clearly in Fig. 1(c) 
where the mesopore was formed with several interconnecting crystalline TiO2 frameworks of which the 
thickness was 3–4 nm.

Therefore, the results of the transmission electron micrograph observation supported the correspond-
ing unique TiO2 structure containing the micropore and also the mesopore of which the size was 5–7 nm, 
which was consistent with the result of argon and nitrogen adsorption-desorption measurement.

The hydrothermal conversion of the bulk TiO2 into zeolitic microporous TiO2 in the presence of 
LiOH seems not to follow the sheet folding mechanism like TiO2 nanotube. The intercalation of Li+ ion 
into the TiO2 structure leads to the formation of the Li+-O-Ti bond similar to that of Na+ case, resulting 
in the partial delamination of the TiO2 layer where the interaction between the layers is high enough to 
induce the combination of the corresponding layers25,26.

The thermal stability of the zeolitic microporous TiO2 under ambient condition either with the pres-
ence or absence of the saturated water was also investigated using the X-ray diffraction pattern (XRD) 
and N2 adsorption and desorption isotherms as a function of heating temperature. Nearly up to 773 K, the 
microporous structure was retained as evidenced from the results of the nitrogen adsorption-desorption 
isotherm for the sample shown in Fig. 2 even though the microporous structure was collapsed signifi-
cantly with the increase of temperature in the presence of water. The XRD of the sample also showed that 
the crystalline anatase structure appeared to be the major phase when the samples were heated above 
773 K. The combined results from XRD and nitrogen adsorption-desorption isotherm confirmed the 
transformation of microporous TiO2 to macroporous TiO2. The moderate thermal stability of the zeolitic 

Figure 2. Phase and surface properties of the zeolitic microporous TiO2. X-ray powder diffraction pattern 
of the zeolitic microporous TiO2 heated at (a,e) 673 K, (b,f ) 773 K, (c,g) 873 K and (d,h) 973 K for 4 h, 
respectively, in ambient air with (upper right panel) and without saturated water (upper left panel). The tick 
mark corresponded to anatase phase. Nitrogen adsorption-desorption isotherm for the zeolitic microporous 
TiO2 heated at (,•) 673 K, (,) 773 K, (□ ,■) 873 K, and (, ◆) 973 K, respectively, in ambient air with 
(lower left panel, A) and without saturated water (lower right panel, B). The open and solid symbols indicate 
the adsorption and desorption branch, respectively.
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microporous TiO2 due to the crystal growth into anatase in the presence of water may limit the catalytic 
application at higher temperature. However, many catalytic applications including photocatalysis or solar 
energy harvesting can adopt the present zeolitic microporous TiO2

21.
VOx was supported onto the corresponding unique TiO2 structure following the procedure reported 

in the literature27–32. However, the supporting VOx catalyst up to 5 wt% resulted in the lower surface area 
of 105 m2g−1 with 0.19 ccg−1 because of the high calcination temperature at 773 K though the sample still 
contained large surface area. These textural properties were maintained before and after the catalytic 
reaction measurement. The TEM observation of VOx incorporated TiO2 as shown in Fig. 3 suggested that 
most VOx particle are located inside the pores of the zeolitic microporous TiO2, ~7 Å without changing 
the corresponding morphologies. Thereby, the VOx particle was observed clearly as a spot in Fig.  3(c) 
while there was no particle on the external surface of the TiO2 though the elemental analysis showed the 
presence of V in the same region as shown in Fig. 3(d), which can be beneficial for the catalytic reaction. 
Further, increasing V content in the present also did not alter the location of V.

Figure  4 shows the catalytic performance of the V/TiO2 catalyst after the calcination at different 
temperatures also under various reaction conditions. Increasing V content in the catalyst improved the 
catalytic performance of the NOx reduction comparable to that of conventional V/TiO2 catalyst con-
taining 5 wt% V over the whole reaction temperature range while the N2O formation was much lower 
than that of conventional catalyst. The N2O formation from the present V/TiO2 was increased with 
the increase in the temperature where NH3 was combined with NOx to produce N2O. The effect of the 
calcination temperature was also pronounced to increase the N2O formation at high temperature but 
the N2O formation was still lowered than that of the conventional catalyst by more than 80%. Also, the  
V/TiO2 catalyst prepared from the microporous TiO2 resulted in the superior catalytic performance over 
the SCR reaction both in the presence of water in the reactant stream and after the aging in the presence 
of water at 773 K for 12 h, as shown in Fig. 4(c,d). In the presence of water in the stream the low temper-
ature catalytic activity was decreased while the high temperature catalytic activity was increased slightly 
because of competitive adsorption of NH3 and H2O suppressing the NH3 oxidation.

Under the present condition, the main reaction for N2O formation is believed to be 2NH3 +  2NO +  
O2 =  N2O +  N2 +  3H2O following the literature3. The catalytically active VOx inside the pore, ~7 Å was 
believed to have a strong metal support interaction with TiO2, resulting the smaller VOx particle size 

Figure 3. VOx encapsulated in the zeolitic microporous TiO2. Transmission electron micrographs of the 
microporous TiO2 containing 5 wt% heated at (a,c) 673 K and (b) 773 K, respectively. The elemental analysis 
in (d) showed the presence of V.
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as referred from Fig.  3. Thus, the strong metal-support interaction between TiO2 and VOx led to the 
formation of Bronsted acid site with high strength, which is beneficial for selective catalytic reduction 
of NO by NH3. The N2O formation can be suppressed up to ~80% because of the increased Bronsted 
acidity of the VOx small particle in the microporous zeolitic TiO2 where the superior SCR activity can 
be maintained as illustrated in Fig.  4(c). This result was partly consistent with the increased N2O for-
mation on the V/TiO2 catalyst when the catalyst deteriorates because of the sintering3. Also, it was 
possible to include NH3 oxidation by O2 as potential pathway for the following N2O formation reaction: 
2NH3 +  2O2 =  N2O +  3H2O where the catalyst deactivation was severe like the commercial V/TiO2 cata-
lyst in the presence of water or after hydrothermal aging. One possibility to explain the superior catalytic 
performance V supported on zeolitic microporous TiO2 over the SCR reaction was that the growth of the 
vanadium oxide particle size can be limited due to the pore size, implying the encapsulation of vanadium 
oxide particle surrounded by TiO2 matrix.

We have demonstrated that the zeolitic microporous TiO2 with moderate thermal stability can be 
prepared from the simple hydrothermal conversion from commercially available bulk TiO2 of low grade, 
98% or lower in the presence of LiOH at 400–440 K, which can be scaled up easily for industrial pro-
cess. The obtained zeolitic microporous nanocrystalline TiO2 contains the micropore up to 80% referred 
from the t-plot method. For the first time, it was proved that that the supporting VOx into such zeolitic 
microporous TiO2 resulted in the high NOx reduction activity with lower N2O formation, which was 
ascribed to the location of catalytically active VOx particles in the microporous TiO2, resulting the strong 
metal-support interaction and consequently the increased Bronsted acidity. Therefore, the zeolitic micro-
porous TiO2 has potential as a substrate for the SCR reaction below 773 K while the thermal stability of 
the microporous TiO2 was retained.

Figure 4. SCR activity of VOx encapsulated in the zeolitic microporous TiO2. Catalytic activity of V/
TiO2 catalyst calcined at (a) 673 K and (b) 773 K for over NOx reduction using ammonia: (,•) 1wt%, 
(,) 3 wt% and (□ ,■) 5 wt%. The long and short dashed lines also represent the N2O concentration and 
NOx conversion from conventional V/TiO2, respectively. The open and solid symbols were corresponded 
to NOx conversion and N2O formation, respectively. The dashed line was the catalytic performance of 
commercial V/TiO2. The reactant consisting of 500 ppm NO, 500 ppm NH3, 2% O2 balanced with N2 was 
flowed through the V/TiO2 catalyst bed containing 0.15 g at GHSV =  40,000 h−1. The catalytic activity of (c) 
5 wt% V/TiO2 catalyst and (d) conventional V/TiO2 catalyst calcined at 773 K were measured in the different 
reaction conditions : (,•) dry reaction condition, (,) wet reaction condition and (□ ,■) dry reaction 
condition with hydrothermal aging at 773 K for 12 h in the presence of 5% water. In order to achieve the wet 
condition, the reactant consisting of 500 ppm NO, 500 ppm NH3, 2% O2 and 3% H2O balanced with N2 was 
flowed through the V/TiO2 catalyst bed at GHSV =  40,000 h−1.
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Methods
Synthesis of zeolitic microporous TiO2. TiO2 anatase (Aldrich, 98%) of 2–8 g was added to the 
solution containing 10 M or more LiOH in the Teflon lined autoclave for hydrothermal heating at 400–
440 K for 72 hr under rotating condition at 40 rpm. After cool down to room temperature, the slurry was 
neutralized with 0.1 N HCl under stirring for 6 hr. The solution was filtered and washed with deionized 
water thoroughly. The acidification and filtration was repeated three times to remove the residual trace 
metal hydroxides. The obtained product was dried at 330 K in an oven and calcined under flowing 
oxygen at 673 K for 4 h. The inductively coupled plasma analysis of the obtained sample showed that 
the residual Li was ~6 ppm level, indicating the complete removal of Li+ by the neutralization and sub-
sequent thorough washing. The scale up to ~100 g per batch was also demonstrated to give the same 
textural properties.

Preparation of VOx in zeolitic microporous TiO2. All catalysts were prepared by applying wet 
impregnation of vanadium precursor solution on titania. Ammonium metavanadate (99%, Sigma 
Aldrich) was dissolved in diluted oxalic acid solution (0.5 M) to produce the solution of vanadium pre-
cursor. Anatase TiO2 powder (DT-51 Millennium Chemicals) was used as support to prepare the con-
ventional catalyst containing 5 wt% V. The samples with 1 wt%, 3 wt% and 5 wt% V2O5 loading on TiO2 
were prepared. After impregnation process in a rotary evaporator, catalysts were dried and then calcined 
at 673 K or 773 K for 4 h in air.

SCR activity measurement of VOx in zeolitic microporous TiO2. SCR activity was measured in 
a fixed-bed quartz tubular reactor. Catalysts were sieved to 300–500 μ m in diameter then loaded in the 
reactor. 500 ppm NO, 500 ppm NH3, 2% O2 and balanced with N2 were introduced as reactants. In order 
to examine the catalytic activity in the presence of water, the reactant containing 500 ppm NO, 500 ppm 
NH3, 2% O2, 3% H2O balanced with N2 was used. The catalyst was further aged in the presence of 10% 
O2, 5% H2O balanced with N2 at 500 oC for 12 h before catalytic reaction.

Space velocity of inlet gas was maintained to be 40,000 h−1. We raised reaction temperature from 
423 K to 673 K by 50 K. NOx concentration of outlet gas by using NOx chemiluminescence analyzer 
(Model 42i High level, Thermo Scientific). Also, Fourier Transform Infrared (FT-IR) spectroscopy was 
applied to observe the N2O concentration in the gas. We used the average data of 16 scans at a resolution 
of 1.0 cm−1. A Nicolet 6700 (Thermo Scientific) with 2 m gas analysis cell heated to 120 °C to exclude the 
effect of H2O, was used for gas phase analysis.
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