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Implementation of genome-
wide complex trait analysis to 
quantify the heritability in multiple 
myeloma
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A sizeable fraction of multiple myeloma (MM) is expected to be explained by heritable factors. 
Genome-wide association studies (GWAS) have successfully identified a number of common 
single-nucleotide polymorphisms (SNPs) influencing MM risk. While these SNPs only explain a 
small proportion of the genetic risk it is unclear how much is left to be detected by other, yet to 
be identified, common SNPs. Therefore, we applied Genome-Wide Complex Trait Analysis (GCTA) 
to 2,282 cases and 5,197 controls individuals to estimate the heritability of MM. We estimated 
that the heritability explained by known common MM risk SNPs identified in GWAS was 2.9% 
(±2.4%), whereas the heritability explained by all common SNPs was 15.2% (±2.8%). Comparing 
the heritability explained by the common variants with that from family studies, a fraction of the 
heritability may be explained by other genetic variants, such as rare variants. In summary, our results 
suggest that known MM SNPs only explain a small proportion of the heritability and more common 
SNPs remain to be identified.

Multiple myeloma (MM) is a malignancy of the plasma cells1. In the United Kingdom, approximately 
4,800 individuals are diagnosed each year with MM and approximately 2,700 die from the cancer (http://
www.cancerresearchuk.org/cancer-info/cancerstats/types/myeloma/uk-multiple-myeloma-statistics). 
Monoclonal gammopathy of undetermined significance (MGUS; a pre-malignant clone of plasma cells 
producing a monoclonal paraprotein) is present in ~2% of individuals older than 50 years, and the risk of 
progressing to MM increases by 1% each year2. The increased risk of MM in the relatives of individuals 
with MGUS is consistent with MGUS being a marker of genetic susceptibility3,4. To date, no lifestyle or 
environmental exposure factors have been consistently linked to an increased risk of MM or MGUS4.

Recent genome-wide association studies (GWAS) have provided the first unambiguous evidence for 
genetic susceptibility to MM identifying single nucleotide polymorphisms (SNPs) affecting risk at chro-
mosomes 2p33.3, 3p22.1, 3q26.2, 6p21.33, 7p15.3, 11q13, 17p11.2, and 22q13.15–7. It is not however 
apparent how much of the heritability of MM these SNPs collectively explain. Moreover as the SNPs 
identified by GWAS have to pass a very stringent significance threshold, there are likely to be multi-
ple SNPs with weak effect sizes that do not pass the threshold but still contribute to the heritability. 
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Quantifying the heritability explained by both known and potential susceptibility SNPs is important in 
explaining the aetiological basis of MM and understanding its genetic architecture.

Genome-wide Complex Trait Analysis (GCTA) estimates the polygenic variance (i.e. heritabil-
ity) ascribable to all GWAS SNPs simultaneously irrespective of whether they pass a certain signifi-
cance threshold8–10. GCTA calculates the genetic similarity between subjects and uses the restricted 
maximum-likelihood approach to estimate narrow sense heritability. An alternative approach based on 
phenotype correlation-genotype correlation (PCGC) regression has been developed to avoid the bias 
introduced by GCTA when applied to case-control studies11. It has been proposed that for disease traits 
GCTA introduces an error when making the necessary conversion from the heritability calculated on the 
observed binary disease phenotype to the unobserved liability scale. In this article we have explored the 
MM heritability explained by common SNPs using both GCTA and PCGC approaches.

Results
As previously advocated when calculating the heritability of a disease such as a cancer12,13 we used life-
time risk rather than prevalence to transform data to the liability scale. After applying this procedure to 
account for the lifetime risk of MM (0.00739 ±  0.00014) and ascertainment the heritability of MM which 
can be explained by considering all SNPs using GCTA was estimated to be 15.2% (± 2.8%). Heritability 
was found not to be sensitive to our assumed lifetime risk within 1 standard error (15.1% to 15.2%). The 
estimated heritability from PCGC regression was 16.8% (± 4.1%). Due to the similarity of the two results 
we focus further analyses and discussion solely on the GCTA results, but report the PCGC estimates for 
completeness. To adjust for the underestimate of heritability caused by the array SNPs not being in com-
plete LD with the causal SNPs we follow the procedure of Yang et al.14. The MAF distribution of causal 
SNPs affects this estimate, and as we do not know the true distribution we calculate the adjustment for a 
range of MAF thresholds (Table 1). Assuming that causal SNPs and array SNPs have the same distribu-
tion (MAF threshold of 0.5) the adjusted heritability was calculated to be 17.3% (± 3.2%) which is close 
to the unadjusted value of 15.2% (± 2.8%). Conversely if causal SNPs are assumed to have MAF <  0.1 
then the adjusted heritability is 27.8% (± 5.1%) which is significantly higher than the unadjusted value. 
While it is expected from neutral and selection theories of quantitative genetic variation that causal SNPs 
will on average have lower MAF than those on the array15 the exact distribution of MAF for MM causal 
SNPs is unknown.

To gain insight into the underlying basis of the heritability associated with common variation we 
investigated the relative contribution of individual chromosomes (Supplementary Table 1). In contrast 
to a trait such as height where there is a strong linear relationship between chromosome length and the 
variance explained by the chromosome10 we found no such relationship (R2 =  0.0063 from GCTA and 
R2 =  0.0016 from PCGC analysis) (Fig. 1).

To investigate further the distribution of heritability along the genome we estimate the heritability 
associated with the seven risk loci previously discovered from GWAS by including the risk SNP genotype 
as a covariate (Table 2). The total heritability of MM which is explained by the seven risk loci is 2.9% 
(± 2.4%). This is in good agreement with the value of 2.5% (± 0.4%) obtained by calculating the herita-
bility associated with the genetic relationship matrix (GRM) of risk loci. These estimates are substantially 
lower (by 12.3% and 12.7%) than the genetic variance associated with all the SNPs on the array. These 
data therefore suggest that a large proportion of the heritability in MM remains unaccounted for by 
current GWAS.

To quantify the importance of transcript regions to MM heritability, we partitioned the variance 
explained by all the SNPs onto transcript and non-transcript regions of the genome. The Variant Effect 
Predictor program was used to determine which SNPs were on transcript regions. We calculated the 
heritability due to transcript regions to be 9.7% (± 2.4%) and non-transcript regions to be 5.5% (± 2.1%). 
Transcript regions were shown to explain more variation than non-transcript regions despite covering 

MAF Threshold

Heritability

GCTA PCGC

No adjustment 0.152 ±  0.028 0.168 ±  0.041

0.5 0.173 ±  0.032 0.192 ±  0.049

0.4 0.180 ±  0.033 0.200 ±  0.049

0.3 0.192 ±  0.035 0.212 ±  0.058

0.2 0.212 ±  0.039 0.235 ±  0.070

0.1 0.278 ±  0.051 0.307 ±  0.079

Table 1.  Heritability of multiple myeloma adjusted for incomplete LD between causal SNPs and 
those used to compute the GRM. Various MAF thresholds were used to simulate different possible MAF 
distributions of the causal SNPs.
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a far smaller fraction of the genome. However, the error introduced from incomplete LD is a particular 
problem in this analysis because the majority of array SNPs map to transcripts (67%).

Multiple myeloma can be broadly classified into hyperdiploid and non-hyperdiploid subtypes, with 
further subdivision based on the presence of IGH@ translocations, the most common of which are 
t(11;14)(q13;q32) and t(4;14)(p16;q32)16. These translocations contribute directly to the development of 
the different MM subtypes. The observation that the CCND1 c.870G >  A polymorphism is a risk factor 
for t(11;14)(q13;q32) MM7 supports the hypothesis that the different MM subtypes are likely to have 
different aetiologic pathways. To explore the possibility that heritability basis of MM might be subtype 
dependent we conducted a stratified analysis. While heritability estimates showed differences these were 
not statistically significant. Respective estimates for hyperdiploid, translocation MM, t(11;14) and t(4;14) 
MM being: 0.143 ±  0.069, 0.077 ±  0.081, 0.068 ±  0.196 and 0.236 ±  0.250.

Discussion
In this study, we found that the MM susceptibility SNPs thus far identified by GWAS explain only a small 
proportion of the MM heritability. In contrast, the explained heritability was significantly greater when 
considering the combined effect of all common SNPs. Our estimates of phenotypic variance therefore 
provide unequivocal evidence of yet-to-be-discovered genetic variants contributing to the development 
of MM. The estimates are based on realized relationships between very distant relationships thereby 
breaking up possible correlation (i.e. confounding) between genetic and environmental risk factors. The 
liability threshold model upon which heritability is estimated assumes the distribution of MM liability 
is unimodal. Since no major gene for MM has been identified or no lifestyle or environmental factor 
robustly implicated our estimate of heritability is unlikely to be biased.

In GCTA, a prevalence parameter is required in order to transform the estimated heritability from 
the observed scale to liability scale. As has been previously advocated when calculating the heritability of 
disease we use the lifetime risk13. Previous work has however demonstrated that prevalence values have 
only a small impact on GCTA heritability estimates; for example Do et al.17 showed that 3-fold difference 
in assumed prevalence (0.005–0.015) affected estimates of heritability by only 6.7%.
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Figure 1. Variance explained by each chromosome as a function of chromosome length. 

Risk SNP Position

Fraction of Variance Explained

GCTA PCGC

rs6746082 2p23.3 0.00074 ±  0.011 0.005 ±  0.016

rs1052501 3p22.1 0.005 ±  0.010 0.005 ±  0.014

rs10936599 3q26.2 0.0074 ±  0.010 0.007 ±  0.014

rs2285803 6p21.3 0.0056 ±  0.0089 0.013 ±  0.013

rs4487645 7p15.3 0.0023 ±  0.0093 0.006 ±  0.013

rs4273077 17p11.2 0.000068 ±  0.0067 0.000 ±  0.011

rs877529 22q13.1 0.0078 ±  0.0059 0.007 ±  0.007

Total 0.029 ±  0.024 0.043 ±  0.034

Table 2.  Estimates of the variance explained by individual multiple myeloma risk SNPs.
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Large-scale cohort analysis has shown that the risk of MM is increased 2.45-fold in relatives of MM 
patients3. Our estimated heritability explained by all common SNPs is 15.2%, which translates to common 
variation accounting for approximately 62% of the familial risk associated with MM. This is likely how-
ever to be an underestimate since our estimate of heritability provides a lower bound for narrow-sense 
heritability, due to imperfect LD between genotyped SNPs and causal variants. Furthermore, indel and 
structural variants were not considered, although some may be tagged. In addition, the portion of var-
iance explained by GWAS SNPs is underestimated by GCTA, since the model imposes a prior centered 
zero as the effect size of the SNPs used in calculation of the GRM.

It is possible that some disease-causing variants which are very rare have a substantive effect on MM 
risk but there is no reason to believe that all of the unexplained genetic variance is solely explained by 
a restricted number of high-risk mutations. Analysis of additional ongoing GWAS of MM, which are 
based on higher density array technology, are therefore likely to be informative in refining estimates of 
heritability. Moreover, higher-density SNP genotyping would provide a higher probability of LD with 
functional disease-causing variants thus potentially affording the capturing of a higher proportion of the 
genetic variance—provided the characteristics of disease-causing variants do not differ systematically 
from the genotyped SNPs (e.g. because of lower MAF).

Here we have assumed that the genetic susceptibility to MM is defined by alleles inherited in a 
Mendelian fashion. It is entirely possible de novo copy number variants and/or methylation status var-
iants also contribute to MM risk. Furthermore, the heritability estimated in our analysis is simply the 
additive variance as a proportion of the phenotypic variance. Thus, it does not include non-additive 
genetic variance (gene-gene interactions or dominance effects) or gene-environment interactions impact-
ing on MM risk. Additionally, it has recently been proposed that epistatic gene-gene interactions may 
play a significant role in mediating the development of complex traits and underscore “phantom herit-
ability”, that is, the apparent missing heritability from purely additive genetic effects. It is therefore pos-
sible that our estimates of heritability are inherently conservative in terms of defining the contribution 
of the impact of inherited predisposition to MM. Notwithstanding such caveats the magnitude of the 
estimated heritability in our study is such that this polygenic susceptibility contributes significantly to 
the development of MM.

In summary, we report the first study to show that a large proportion of the heritability of develop-
ing MM can be ascribed to common genetic variation. Moreover, it is the first to show biologically and 
unequivocally that the risk of MM is highly polygenic. Not only do our findings provide quantification 
of the impact of common variation on MM risk, they also provide a strong rationale for continuing 
to search for additional novel risk variants through GWAS-based strategies. It is, therefore, likely that 
additional novel risk variants will have more modest effect on MM risk than those which have been 
so far discovered. Full mapping of all common SNPs associated with MM may plausibly offer utility in 
personalized risk profiling for the disease, through construction of polygenic risk scoring (PRS) models, 
as implemented in other cancer types18–20. A preliminary PRS model21 for MM assuming a log-normal 
relative risk distribution with a fully mapped set of common MM risk SNPs would mean individuals in 
the top 1% of the population distribution of risk would have a 6.29-fold increased risk, equating to a 5% 
lifetime risk of MM. In a future context where population level genomic testing may become routine 
practice, individuals at significantly elevated risk of MM would be identifiable through inspection of their 
common SNP risk profile.

Future analyses incorporating denser genome and exome-wide assays in conjunction with newer 
sequencing technologies will likely see increased heritability estimates associated with MM and other 
complex traits, as a significantly larger genetic contribution to disease risk is identified. Such analyses are 
going to benefit greatly from the development of large consortia such as MAGIC22.

Materials and Methods
Subjects. The study is based on an expanded previously published GWAS of MM6. In brief, 1,371 MM 
cases were recruited through the UK Medical Research Council (MRC) Myeloma-IX trial23 and 1,008 MM 
cases through Myeloma-XI (http://ctru.leeds.ac.uk/myelomaXI). The Myeloma-IX trial was approved by 
the MRC Leukaemia Data Monitoring and Ethics committee (MREC 02/8/95, ISRCTN68454111) and 
the Myeloma-XI trial was approved by the Oxfordshire Research Ethics Committee (MREC 17/09/09, 
ISRCTN49407852).

Quality control. Detailed information and quality control procedures have been previously described 
in detail6. In brief, genotyping of cases was conducted using Illumina OmniExpress BeadChips. Genotype 
frequencies were compared with publicly accessible genotype data generated by the UK Wellcome Trust 
Case Control Consortium 2 (WTCCC2) study of 2,699 individuals from the 1958 British Birth Cohort 
(known as 58C)24 and 2,501 individuals from the UK Blood Service (UKBS) collections that had been 
genotyped using Illumina Human 1.2M-Duo Custom_v1 Array BeadChips.

Genotype data were filtered on the basis of pre-specified quality control measures. Individual SNPs 
were excluded if they showed deviation from Hardy-Weinberg equilibrium with P <  1.0 ×  10−6 in con-
trols, an individual SNP genotype yield < 95% or a minor allele frequency < 1%. After this filtering, 
408,422 SNPs common to both case-control series remained for further study. A total of 97 case sam-
ples were removed during quality control processing for several reasons, including if sample genotyping 

http://ctru.leeds.ac.uk/myelomaXI
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failed (call rate <  95%), if samples belonged to pairs of unknown duplicates or closely related individuals 
(IBS >  0.80) or if individuals were of different ancestry from the cohort of Utah residents of Northern 
and Western European descent (CEU) (Supplementary Figure 1). A quantile-quantile (Q-Q) plot of 
genome-wide association test statistics showed minimal inflation, rendering substantial cryptic popula-
tion substructure unlikely (genomic inflation factor25, λ =  1.028; Supplementary Figure 2). After QC the 
study comprised 2,282 cases and 5,197 controls.

Statistical analysis. We used GCTA to estimate MM heritability under a number of different sce-
narios; heritability being defined as the proportion of phenotypic variation in a population that is due 
to genetic variance between individuals. A genetic relationship matrix (GRM) of pairs of samples was 
used as input for the restricted maximum likelihood analysis to estimate the heritability explained by 
the selected set of SNPs. GCTA uses the disease prevalence to transform the estimated heritability to the 
liability scale. As previously advocated when calculating the heritability of a disease such as a cancer12,13 
we used the lifetime risk which for MM is estimated to be 0.00739 ±  0.00014 (http://www.cancerres-
earchuk.org/cancer-info/cancerstats/types/myeloma/incidence/uk-multiple-myeloma-incidence-statistics
#Lifetime). The analyses were not adjusted for eigenvectors from principal component analysis as the 
inflation factor was found to be close to 1.

We estimated the heritability under the following scenarios:

1. Heritability explained by the autosome. A single GRM is computed for all autosomal SNPs.
2. Heritability explained by individual chromosome. A GRM is computed for each chromosome 

individually and then fitting is done simultaneously for all chromosome GRMs using the REML 
approach.

3. Heritability explained by risk SNPs identified by GWASs as located within autosomal regions as-
sociated with MM. For each risk SNP the heritability is estimated for all chromosomes simultane-
ously using the risk SNP genotype as a covariate. The heritability associated with the SNP is taken 
to be the difference between the heritability of the chromosome on which it is found as calculated 
with and without covariate. As an alternative test a GRM is computed for all SNPs within 500 kbp 
of the seven identified risk SNP. The heritability associated with all these SNPs is calculated by 
fitting simultaneously this GRM and a GRM containing all autosomal SNPs excluding these.

4. Heritability explained by transcript and non-transcript regions. A separate GRM is computed for 
SNPs in transcript regions and those not on transcript regions as defined by the Variants Effect 
Predictor (VEP)26. Heritability is estimated simultaneously for the two GRM using the REML 
approach.

This analysis was repeated with PCGC using the same GRM as input to estimate the heritability using 
regression.
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