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Myocardial Iron Loading 
Assessment by Automatic Left 
Ventricle Segmentation with 
Morphological Operations and 
Geodesic Active Contour on T2* 
images
Yun-gang Luo1, Jacky KL Ko2, Lin Shi3,4, Yuefeng Guan1, Linong Li4, Jing Qin4, Pheng-
Ann Heng4,5, Winnie CW Chu2,6 & Defeng Wang2,6,7

Myocardial iron loading thalassemia patients could be identified using T2* magnetic resonance 
images (MRI). To quantitatively assess cardiac iron loading, we proposed an effective algorithm 
to segment aligned free induction decay sequential myocardium images based on morphological 
operations and geodesic active contour (GAC). Nine patients with thalassemia major were recruited 
(10 male and 16 female) to undergo a thoracic MRI scan in the short axis view. Free induction decay 
images were registered for T2* mapping. The GAC were utilized to segment aligned MR images with 
a robust initialization. Segmented myocardium regions were divided into sectors for a region-based 
quantification of cardiac iron loading. Our proposed automatic segmentation approach achieve a 
true positive rate at 84.6% and false positive rate at 53.8%. The area difference between manual and 
automatic segmentation was 25.5% after 1000 iterations. Results from T2* analysis indicated that 
regions with intensity lower than 20 ms were suffered from heavy iron loading in thalassemia major 
patients. The proposed method benefited from abundant edge information of the free induction 
decay sequential MRI. Experiment results demonstrated that the proposed method is feasible in 
myocardium segmentation and was clinically applicable to measure myocardium iron loading.

Congestive heart failure is the main cause of death in thalassemia major patients and is traditionally 
referred as myocardial iron overload1–3. Iron chelation therapy is an efficient treatment to remove exces-
sive iron from the human body4,5,6. To treat thalassemia major in its early stage, the myocardium iron 
loading should be assessed by T2* measurements based on the segmentation results of the endocardium 
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and epicardium7,8. However, accurate segmentation of the myocardium in cardiac MRI is a labor inten-
sive work for an experienced cardiologist, which limits its applications.

Manual segmentation of the myocardium is subjective depending upon the operators’ knowledge 
and experience. To overcome such a drawback, various semi-automatic and fully- automatic segmen-
tation techniques were developed to improve the segmentation performance. In 2005, Montagnat and 
Delingette9 extended the deformable surface framework by introducing time-dependent constraints, and 
it was successfully applied to 4D cardiac image segmentation. McInerney and Terzopoulos proposed a 
dynamic finite element surface model for segmentation and tracking in multidimensional medical images, 
and achieved satisfactory performance cardiac 4D image analyses10. Recently, the active shape model 
(ASM) and active appearance model (AAM) were adopted for 2D/3D medical image segmentation11–13.

In the maximum likelihood framework, Rousson and Paragios introduced the shape priors into level 
set representations for 2D image segmentation. The level set representation has been widely used in 
image processing and computer vision due to its implicit, intrinsic, parameter and topology freedom14. 
To deal with the left ventricle segmentation in cardiac MRI, Paragios et al. presented a level-set-based 
shape model by combining the visual information, anatomical constrains, and a flexible shape-driven 
cardiac model15. Then Charpiat et al. proposed a distance function shape representation to further 
improve the segmentation performance16. However, significant challenges restricted the implementation 
of those techniques to provide a satisfactory performance with respect to the cardiac MRI segmenta-
tion. The endocardium boundary between the myocardium and the blood pool was difficult to define, 
because of the protruding papillary muscles (which should not be ignored), in the cardiac cavity. Poor 
boundary information prevented the epicardium from being easily distinguished from the cardiac and 
surrounding tissues in MR images17. Cordero-Grande, L. et al. suggested an unsupervised 4D myocar-
dium segmentation using a Markov Random Field which obtained results in good agreement with those 
from experienced cardiologists, but required long computational time18.

To further improve the segmentation performance, the level set based active contour model has 
drawn the attention from a wide range of researchers from different fields. Lynch et al. adopted a coupled 
level-set based active contour model to accurately perform left-ventricle myocardium segmentation19. It 
had two advantages. 1. The evolution contour could change its topology during the level set evolution; 2. 
The hybrid method with level set and active contour could be easily extended to higher dimensions. But 
this technique also suffered from a long computational time cost. In this study, we proposed to complete 
the segmentation process based on the integrated edge information of different signal intensity peak 
images during T2* data acquisition and to use a geodesic active contour (GAC) method to improve the 
performance of the myocardium segmentation for iron loading assessment.

According to the segmentation result, the T2* value of the myocardium was calculated to analyze iron 
loading in patients with thalassemia major. High reproducibility of manual myocardium segmentation 
was resource demanding for experienced operators. Here, we demonstrate the consistently superior seg-
mentation performance with our fully-automatic process approach.

Materials and methods
The methods were carried out in accordance with the approved guidelines of Scientific Reports.

Subjects and MRI data acquisition. The study protocol was approved by the Clinical Research 
Ethics Committee and carried out in accordance with the approved guidelines. Informed written consent 
was obtained from all subjects. 26 patients (male: 10, female: 16, mean age = 22.7 years, s.d. =  7.3 years, 
range: 10.0–38.1 years) with thalassemia major were recruited.

All cardiovascular MRI examinations were performed on a 1.5T whole body human platform 
(MEGNETOM Sonata, Siemens Medical System, Erlangen, Germany). Eight-peak spectral model T2* 
value was evaluated by a cardiac-gated single breath-hold technique. Eight images were collected at 
tele-diastolic phase in short axis view with repetition time TR =  160 ms, echo times TE =  {2.6, 4.6, 6.6, 8.7, 
10.7, 12.7, 14.7, 16.7}± 0.1 ms, echo train length =  1, flip angle =  20°, and matrix =  144 (left-right) ×  256 
(anterior-posterior), pixel spacing =  1.5625 mm ×  1.5625 mm, number of slices =  1, bandwidth =  815 Hz/
pixel. Data were processed using an in-house developed algorithm from MATLAB (version 2012a, The 
Math Works Inc., Natick, Massachusetts, US).

Image registration. Cardiac MR Images possessed slight deformations due to heart beating motion. 
In our research, individual echo time images were aligned to the first echo time image of each scan. The 
alignment was achieved by using the mutual information (MI) linear registration technique20.

Left ventricle detection. The left ventricle in the short axis view possessed two characteristics which 
allowed for automatic localization. The detection algorithm aimed to search for both hyperintensity and 
a large circular blood pool in the thoracic MR image. The image with the shortest echo time was chosen 
for it has the highest contrast among all images within a single scan. Before the feature extraction pro-
cess, noise reduction procedures were performed with contrast enhancement (Fig.  1b), morphological 
opening (Fig. 1c) and morphological reconstruction (Fig. 1d).

Feature extraction was achieved by combining foreground masks, background masks, and gradient 
magnitude images. The foreground mask was defined as a threshold mask (Fig. 1g) of a morphologically 
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reconstructed dilate image (Fig.  1e,f). A watershed segmentation (Fig.  1i)21 was applied on the noise 
reduced image with the Euclidean distance transformation (Fig. 1h)22 as the background mask. The fea-
ture image was generated by combining the inverted foreground mask, background mask, and gradient 
magnitude (Fig.  1j) images with regional minimum intensities (Fig.  1l). The watershed algorithm was 
applied again on the feature image and hence a clear segmentation image resulted (Fig. 1m). Moreover, 
centroids and boundary-to-centroid information was obtained for individual segments. By excluding 
segments in contact with image edges and choosing the regions near the image center with average 
intensity higher than customized threshold value. (Fig. 1n).

Geodesic active contour (GAC). The fundamental objective of GAC model was to track a closed 
surface Γ (s), for which Γ (s):[0:∞] →  RN as it evolved in data space23. Such an interface was represented 
as a closed curve C(s) in 2D or a set of points on the boundaries of the region of interest Ω  . Initially 
introduced by Osher and Sethian24, the level set (geodesic) method performed well at capturing dynamic 
interfaces and shapes. The basic idea of this method was that the contour could be embedded as the zero 
level set of a high-dimensional function φ(x, y, t) known as a zero level set function (LSF). Assuming a 

Figure 1. Workflow of automatic left ventricle detection .
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dynamic parametric contour C p t : [0 1] [0 2( , ) , × , ∞) → R  with a spatial parameter p ∈  [0, 1] , and t 
was a temporal variable t ∈  [0, ∞), then the target contour was described as the zero level set function

C p t x y x y t{ 0} 1φ( , ) = ( , ) ( , , ) = ( )

Embedding level set function φ which was described by the continuous Lipschitz function with signed 
distance d from (x, y) to the initial curve C0. Such a Lipschitz function implied that the existence of a 
bounded first derivative. The distance was given a positive sign outside the initial boundary (DΩ ), a 
negative sign inside the boundary (Ω \∂Ω ) and zero on the boundary (∂Ω ).
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In Riemannian space, length is defined as
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Where s denotes the arc length parameter, g represents a positive decreasing function, L(C) is the 
Euclidean arc length of C(s) . ∇ I in equation8 is a gradient value measured across a four connected 2D 
neighborhood. As the Riemannian length LR(C) is obtained by weighting the Euclidean length element 
ds by g(|∇ I(C(s))|) boundary information is intrinsically embedded. However, such a model would stop 
the curve evolution at any image minima. As a consequence, the GAC model is modified as

μ( ) = ( ) + ( ) ( )ΩE C L C g I dxdy 4TM

for μ is a positive real constant and the second term of equation (4) is considered as an area constraint.
The level set model aims to exchange Lagrangian formalization and replace with an Eulerian partial 

differential equation with initial values. To minimize the curve for the steepest descent approach, the 
above equation is equivalent to
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For κ is the Euclidean curvature, n̂ is the unit inward normal vector to the curve C . The curvature con-
stant μ describes the evolve direction of the active contour curve. For μ >  0, the GAC will evolve in the 
inward direction, or in opposite direction when μ <  0.

Expressing the curve evolution with inward normal vector n = φ
φ
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g I g I n g Iν κ κ μ( ) = ( ) − ∇ ( ) + ∇ ( )ˆ , the curve evolution equation (5) was finally expressed as
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For I is one of the eight sequential images, the edge indicator function g may be used to control the curve 
evolution and stop the curve from evolving when it arrives at an object’s boundaries. Such a function is 
defined to be
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 is a Gaussian kernel with standard 

deviation σ .With this definition, |∇ Gσ⊗ I|2→ 0 and g(I(x, y))→ 1 in homogenous regions without fine 
texture. In contrast, |∇ Gσ⊗ I|2→ 2552 and g(I(x, y))→ 0 at edge regions.

Image segmentation base on boundary information. Edge detector function. Edge information of 
the epicardium and endocardium was indistinctive in a single cardiac MR image due to additive/mul-
tiplicative noise and the surrounding tissues. To improve the myocardium segmentation result, we pro-
posed to integrate edge information from all eight sequential images. The edge detector function for the 
endocardium edge was defined as follows:

{ }g x y g I x y g I x y g I x ymin
8x y n nend 1 1 2 2( , ) = ( ( , )), ( ( , )), ... , ( ( , ))
( ),
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where (x, y) ∈  image domain, and the edge detector functions of the multi-sequential images g1, g2,...gn 
can be obtained respectively from Eq. (7). However, the epicardial-myocardial junction is difficult to be 
ascertained in clinical applications due to the right ventricle, liver, and other complex tissues in neigh-
bouring regions. In order to avoid these negative effects in our segmentation process, the epicardium 
edge indicator function was defined as

g x y g I x y g I x y g I x ymax
9x y n nepi 1 1 2 2( , ) =





( ( , )), ( ( , )), ... , ( ( , )))

( ),

The maximum value of the eight edge detector functions at the same point can be chosen to be the 
new edge indicator function, which can eliminate the impacts of weak edges. Combining Equation (6), 
(8) and (9), the initial contours of the endocardium φend and epicardium φepi will be described by the 
curve evolutions
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GAC initialization and parameter setting. To demonstrate the advantage of the hybrid segmentation 
method by combining GAC and level sets based on abundant edge information, the eight sequential 
images underwent image registration with the mutual information method. In the numerical implemen-
tation, we set Δ t =  0.1, μ =  0.5 and σ =  1.2 for both images.

Myocardium was assumed to be circular in shape. The centers of initial contours φend and φepi were 
defined as the left ventricle centroid found by the automated detection scheme. The initial radius of φepi 
was set as mean distance from centroid to boundary of left ventricle after watershed segmentation in 
automated detection scheme. Radius of φend was 75% of initial radius of φepi. Manual adjustments were 
implemented for a false left ventricle centroid identification. The curve evolution was iterated for 1000 
times then further analyzed with T2* value.

T2* analysis. Duo to inhomogeneity of iron deposits, the segmented left ventricle myocardium was 
further divided into 6 sectors according to the 16 myocardial standard segments25–27. The mean intensity 
value of each sector of the eight sequential images was implemented with a T2* analysis for iron loading 
assessment. To compute the T2* values in each sector, an exponential trend-line with the fitted equation 
was used

k eSI TE 11i
T
TEi

2( ) = × ( )
− ⁎

where k is a constant, TEi is the echo time of the i-th image, and SI represents the image intensity within 
the sector region.

The T2* relaxation time is inversely proportional to the slopes of the decay curves, thus the higher 
slope of decay curve, T2* value is a lower value. As discussed in28,29, the patients were diagnosed to be 
normal when the cardiac T2* value was more than 20 ms.

Result
Automatic left ventricle detection and segmentation result. The proposed method was tested 
on cardiac MR images from 26 patients with thalassemia major. To maintain the consistency of the 
results, the parameters were unchanged for all datasets assessed. Correction detection, or known as true 
positive detection, was defined as one of the detected centroids were lied within left ventricle blood 
pool. In contrast, false positive detection was defined as all detected centroids were lied outside the left 
ventricle blood pool. For the algorithm didn’t have a negative output, true negative and false negative 
was not applicable.

Base on this definition, the left ventricle detection scheme has a true positive detection rate of 84.6% 
and false positive rate of 15.4%. There are three types of false positive detections, 1. Mixing left ventri-
cle and left atrium as a whole (Fig.  2a), 2. Misidentifying left atrium as left ventricle (Fig.  2b), and 3. 
Detected centroid outside heart region (Fig.  2c). Results from traditional manual and proposed auto-
matic GAC segmentations were compared in terms of areal accuracy and computational speed. The aver-
age areal variation and CPU execution time for iterations 100 to 1000 was listed in Table 1. Segmentation 
results of one randomly selected patient at different echo times and iteration times were listed in Figs 3 
and 4 respectively.
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Myocardial iron loading was assessed based on our myocardium segmentation results. The segmented 
myocardium was divided equally between six sectors with equal an angular size base on the 16 myocar-
dial standard segments (Fig. 5). Measured T2* results by manual and automatic segmentation method 
of different patients were listed in Table 2. Mean T2* value of manual and automatic segmentation were 
whole myocardium region based and sectored region based respectively. Patients were diagnosed to have 
myocardial iron over-loading when the average cardiac T2* value was less than 20 ms. As the infracted 
tissues may only occupy part of the myocardium, T2* values varied among different sectors of the same 
scan. Instead of considering the segmentation region as a whole, a sectored diagnosis provided a more 
detailed approach in detecting abnormal parts of myocardium.

Discussion
Automatic organ detection was a challenging task for computer vision. The proposed left ventricle detec-
tion has a correct detection rate of 84.6%. False detections were mainly classified as (a) left ventricle 
and left atrium was detected as one segment, (b) the algorithm cannot distinguish left ventricle and left 
atrium. Possible reason of first type misidentification was caused by high image intensity at anterospetal 
myocardium region due to high iron accumulation. Low contrast between the blood pools and the myo-
cardium thus form a low local image gradient. The gradient magnitude, however, was one major element 
in the automatic detection scheme. A superior contrast enhancement algorithm was suggested to replace 
the histogram normalization method. More research should be conducted in order to find the optimal 
contrast adjustment method.

The proposed left ventricle detection method aimed to search for large, circular and hyperintensive 
blood pool in the image. However, both left ventricle and left atrium possessed similar morphological 
features as the left ventricle to the short axis view cardiac MRI. One solution suggested to use areal con-
strain to classify left atrium and left ventricle, but the hypothesis required more researches to support.

Moreover, myocardium segmentation was composited by the distinct epicardium and endocardium 
boundary contours. Other tissue, however, usually has only one boundary. This aspect provides a clue to 
reduce the false positive rate in a future left ventricle detection programme.

The variation between the manual and automatic segmentation areas is about 25% for all iterations. 
By visual examination, the GAC segmentations generally have a larger endocardium boundary than the 
manual ones (Fig. 6). Since the automatic segmentation programme adopted the edge detector function 
with eight echo time images, boundary information was more abundant than with manual segmenta-
tion on a single echo time slice. The boundary between left ventricle and surrounding tissues may not 
be clearly defined in a single echo time image. During the free induction decay process, the differing 

Figure 2. Examples of false left ventricle detection (a) Left ventricle and left atrium is consider as one 
single segment. (b) Misidentify left atrium as left ventricle. (c) Detected centroid outside heart region.

Iteration number 100 200 300 400 500 600 700 800 900 1000

Average execution 
time for auto left 
ventricle detection 
(seconds)

28.1 34.7 41.3 43.5 49.3 53.8 60.3 65.9 73.9 77.5

Average area 
difference in 
comparison with 
manual segmentation 
(%)

25.5 25.7 25.5 25.1 25.1 26.0 26.8 25.7 25.5 25.5

Table 1. Average computational time in 100 iteration steps and area difference in comparison with 
manual segmentation.
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relaxation rates of various tissues, create an image contrast. The newly adopted edge-detecting function, 
was then enhanced by jointly using the images from different echo times. Benefiting from the abundant 
boundary information of the multi-echo images, the epi- and endocardium were better defined.

The iteration process was sensitive to the papillary muscles, which were excluded in the manual seg-
mentations. Although fine adjustment of GAC parameters can improve the endocardium segmentation 
results, this was impractical in a large data analysis. Sequence parameters would also affect the segmen-
tation results as adaptation of higher resolution and contrast images would provide finer edge details.

The computational speed of the GAC iteration was slower than the manual segmentations. The CPU 
execution speed depended upon the hardware and software programming. In comparison with tradi-
tional labor-intensive and experience-depending manual segmentation, the newly developed model can 
operate without any prior anatomical knowledge. The advantage of using the GAC as a segmentation 
algorithm is the high level of robustness for initializing a contour, given that the longer computation 
time in return. Also the proposed algorithm was more objective and reproducible. The major process 
which slowed down the proposed algorithm was the re-initialization of an active contour, which spent 
5.5 seconds for every 100 iterations on average. Comparing the average area difference between manual 
and automatic segmentation, it was found that the result did not improve much even more iterations 
were applied. The development of a faster and more accurate programme would be the major focus of 
work in the future.

In comparison with existing automatic/semi-automatic myocardium segmentation method, the pro-
posed scheme has shown its superiority in terms of computational speed and robustness. Unsupervised 
random Markov field method has obtained results with good agreement with cardiologists18. However, 
the method was computational demanding (~6 min for sever and ~56 min for PC). In contrast with 

Figure 3. Myocardium segmentation results generated with the registration process are represented 
by solid red lines. Both the segmented endocardial and epicardial contours have similar geometric 
features in the sequential cardiac MRI images (a-h). This segmentation procedure has the advantage of low 
computational cost and could enable the effective assessment of myocardium iron loading.

Figure 4. GAC segmentation results with iteration number from 100–1000 (a–j).
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Figure 5. T2* curve fitting on one sector of myocardium. Green labeled region: anterior segment.

Patient
Sector 
1 (ms)

Sector 
2 (ms)

Sector 
3 (ms)

Sector 
4 (ms)

Sector 
5 (ms)

Sector 
6 (ms)

Average 
(ms)

Clinical 
Liver 
T2* 
(ms)

Clinical 
Heart 

T2* 
(ms) Remark

1 32.10 22.78 37.92 41.67 33.71 33.71 33.65 > 6.3 > 20

2 41.03 41.09 65.12 65.62 32.49 32.49 46.31 NA NA

3 23.78 21.31 19.32 19.92 19.56 19.56 20.58 1.44 22.07

4 40.16 35.34 62.10 62.34 32.49 32.49 44.16 NA NA

5 41.44 36.85 54.12 56.58 36.67 36.67 43.72 NA NA

6 25.54 24.94 37.05 27.64 31.72 31.72 29.77 1.89 33.61

7 19.43 17.49 20.20 20.97 20.06 20.06 19.70 1.01 16.92

8 30.07 29.87 36.89 57.10 25.90 25.90 34.29 NA NA

9 27.43 16.69 14.88 15.83 15.24 15.24 17.55 NA NA

10 20.93 21.35 20.46 14.13 13.07 13.07 17.17 NA NA

11 20.68 18.99 55.68 60.00 41.75 41.75 39.81 1.20 56.60 On iron chelation

12 35.81 33.44 33.38 81.16 60.96 60.96 50.95 1.23 61.62

13 11.84 8.62 12.34 17.31 16.94 16.94 14.00 2.30 9.03

14 24.60 21.46 22.25 42.16 72.21 72.21 42.48 10.56 43.63

15 40.12 25.97 47.66 60.39 34.66 34.66 40.58 2.69 49.23 On hydroxyurea

16 29.44 31.80 40.41 46.96 29.28 29.28 34.53 4.22 41.19 Post-splenectomy

17 40.18 70.40 41.37 57.82 25.68 25.68 43.52 2.05 45.70 High serum ferritin

18 38.94 30.85 41.07 53.22 37.79 37.79 39.94 2.25 41.13

19 54.51 39.40 60.06 56.37 39.57 39.57 48.24 3.14 53.02

20 59.43 60.29 81.39 52.51 29.50 29.50 52.10 5.93 38.22 Extramedullary hematopoiesis

21 52.46 44.53 43.95 42.48 34.78 34.78 42.16 6.38 34.74

22 22.82 22.61 26.63 26.80 18.14 18.14 22.52 1.68 21.22 High serum ferritin

23 33.62 21.26 45.96 59.33 33.79 33.79 37.96 3.20 40.94

24 31.76 13.02 17.06 16.52 15.18 15.18 18.12 7.40 12.39 on iron chelation

25 41.52 64.59 40.17 53.22 70.27 70.27 56.67 4.88 58.26

26 30.59 24.24 34.79 23.43 21.54 21.54 26.02 2.17 22.54

Table 2.  T2* measurement result of segmented myocardium. Clinical results were measured by 
experienced radiologist with manual segmentation. Sector 1: Anterior, Sector 2: Anterolateral, Sector 3: 
Inferolateral, Sector 4: Inferior, Sector 5: Inferoseptal, Sector 6: Anteroseptal.
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1 minute computational cost for the proposed method by using a typical desktop PC, the proposed 
method was clearly more clinical applicable.

Another advantage of the proposed scheme was the unsupervised algorithm, while most other arti-
ficial intelligent segmentation methods required a machine training process12,19,30,31. Segmentations 
result of those supervised methods were highly depending on the training data. In clinical environment, 
pre-trained models may not fit abnormal cardiac images. Robustness of the unsupervised scheme was 
believed to be clinically more applicable than supervised one. More researches should be conducted to 
give a solid statistical support in the future.

The correlation between myocardial T2* and transfusion duration has revealed an increased risk 
of cardiac symptoms32. The inhomogeneous distribution of iron deposits33 is accessible through our 
six sectored T2* analysis. In comparison with a cardiac biopsy, MR imaging allows a safe, whole heart 
assessments, showing a significant advantage compared to pathological examination.

Conclusion
The current cardiac iron loading assessments by MR images is labor intensive and operator dependent. 
We propose a fully automatic left ventricle segmentation process to improve the efficiency of myocar-
dium iron loading assessment. Instead of detecting the organ boundary with a single slice, the recently 
developed method was based on multi-echo sequential images. Though several technical issues remain 
to be solved, the proposed method was a pioneering research in radiology imaging for organ detection 
and segmentation. Cardiac iron loading assessment can now achieved without being dependent upon an 
operator’s prior knowledge of anatomical details.
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