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Impact of the Interdecadal Pacific 
Oscillation on Tropical Cyclone 
Activity in the North Atlantic and 
Eastern North Pacific
Wenhong Li1, Laifang Li1,* & Yi Deng2

Tropical cyclones (TCs) are among the most devastating weather systems affecting the United States 
and Central America (USCA). Here we show that the Interdecadal Pacific Oscillation (IPO) strongly 
modulates TC activity over the North Atlantic (NA) and eastern North Pacific (eNP). During positive 
IPO phases, less (more) TCs were observed over NA (eNP), likely due to the presence of stronger 
(weaker) vertical wind shear and the resulting changes in genesis potential. Furthermore, TCs over 
NA tend to keep their tracks more eastward and recurve at lower latitudes during positive IPO 
phases. Such variations are largely determined by changes in steering flow instead of changes in 
genesis locations. Over the eNP, smaller track variations are observed at different IPO phases with 
stable, westward movements of TCs prevailing. These findings have substantial implications for 
understanding decadal to inter-decadal fluctuations in the risk of TC landfalls along USCA coasts.

Tropical cyclones (TCs) are among the most devastating weather systems to affect the United States 
(US) and Central America. If a TC makes landfall, it can have substantial socio-economic impacts. Thus, 
understanding and predicting variations and long-term changes in TC movement and frequency is a 
topic of profound societal significance and intense scientific interest1,2.

Previous studies have shown that both natural and anthropogenic factors can impact the varia-
bility in TC track, although it is premature to conclude that human activities have caused detectable 
changes3. Using fine-resolution global atmospheric models, Murakami and Wang (2010)4 suggested that 
warmer climate due to anthropogenic forcing is projected to reduce probabilities of TC landfall over the 
Southeastern U.S., but increase the influence of TCs on the Northeastern U.S., mainly due to changes in 
TC genesis locations. North-Atlantic natural modes of climate variability could also modulate TC tracks 
over the basin. For example, a negative North Atlantic Oscillation (NAO) tends to be associated with 
more TCs making landfall along the US East Coast, especially those TCs that form outside of the main 
hurricane development region (10°–25°N, 80°–20°W)5–11. The Atlantic Meridional Mode (AMM) also 
has a significant correlation with North Atlantic TC activity, particularly its frequency12,13. By inducing 
the AMM at decadal scales, the Atlantic Multi-decadal Oscillation (AMO) also influence TC activity. 
Additionally, Pacific modes, such as the El Nino Southern Oscillation (ENSO), impact TC activity over 
the North Atlantic and eastern Pacific14–21. La Niña appears to increase hurricane landfall relative to 
neutral years from Georgia northward in the U.S.16, and more hurricanes make landfall in Florida than 
along the East coast during neutral years14.

However, whether and how Pacific decadal modes, specifically the Interdecadal Pacific Oscillation 
(IPO)22 (See Methods for more detail) influences the variabilities of TC frequency and track in the 
North Atlantic and eastern North Pacific has not been systematically investigated although a few studies 
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discussed multi-decadal variability of vertical wind shear over tropical Atlantic and central Pacific23,24. 
The current work aims to fill this gap in the knowledge base. Results presented here will help to untangle 
the interplay between long-term changes in the TC activity due to the natural forcing and anthropogenic 
climate change. This will eventually lead to improved TC predictions and projections over the North 
Atlantic and eastern North Pacific, especially in the near-term predictions.

Results
This study mainly addresses the variations of TC activity over the North Atlantic and eastern North 
Pacific, respectively, during different IPO phases using the best-track data compiled by the National 
Hurricane Center25 for the period 1949–2012 when TC data are available over both basins (See Methods 
for details). The analysis considers TCs with tropical storm intensity (i.e., Maximum sustained winds 
greater than 39 mph) and stronger. Corresponding large-scale environmental flows are analyzed using 
the NCEP/NCAR reanalysis.

IPO impact on TC frequency. Table  1 shows variations in TC frequency at different IPO phases 
over the two basins. On average, there are 7.3 TCs (4.5 hurricanes) per year over the North Atlantic 
when IPO index is negative. TC frequency decreases to 4.3 per year during IPO positive phases, about 
70% reduction compared to those in IPO negative phases. The correlation coefficient between the North 
Atlantic TC frequency and the IPO index is − 0.27, significant at the 95% level.

Compared to the North Atlantic, variations of TC frequency over the eastern North Pacific are the oppo-
site during different IPO phases. On average, 18.8 TCs (10.3 hurricanes) per year can be observed during 
the IPO positive phase. However, during the IPO negative phases, only 8.8 TCs (4.7 hurricanes) per year 
were found over the region, an 82% drop of TC numbers compared to the IPO positive phase. The correla-
tion between the eastern North Pacific TC frequency and the IPO index is 0.42, significant at the 99% level.

IPO impact on TC track variabilities. a) North Atlantic. Figure  1 shows the track composite 
of hurricanes and all TCs (tropical storms and hurricanes), respectively, at different IPO phases (see 
Methods for details). TCs become hurricanes at similar locations during both positive and negative IPO 
phases, around 50oW, 15oN (Fig. 1a). During the negative IPO phase, hurricanes tend to move west and 
northwestward from their first identified region (50oW, 15oN), then recurve at around 73oW, 30oN and 
finally move north to northeastward in the subtropics and mid-latitudes (Fig. 1a). Similarly, hurricanes 
first move west and northwestward in the tropics during positive IPO phases; but the hurricane tracks 
stay 5–10 degrees east compared to those during negative IPO phases, and the hurricanes tend to recurve 
at lower latitudes, about 20o to 25oN (Fig. 1a).

Similar changes in TC movement can be observed when comparing TCs in general (all tropical storms 
plus category 1–5 hurricanes) at different IPO phases (Fig. 1b). Specifically, during IPO positive phases, 
TCs tend to move west/northwestward from the genesis region, then recurve north/northeastward east 
of 60oW (Fig. 1b). TC tracks during the negative IPO phases are akin to those observed in positive IPO 
phases except that the composite track is about 10–15 degrees westward. We also notice that TCs are 
generated at slightly different regions at different IPO phases (about 6 degrees apart from the composite 
tracks) over the North Atlantic (Fig. 1b), but the difference is not significant at the 99% level.

b) Eastern North Pacific. Over the eastern North Pacific, TCs form in similar locations (15oN, 110oW) 
at different phases of IPO. Unlike those over the North Atlantic (Fig. 1a,b), tracks of TCs (hurricanes) 
over the eastern North Pacific are similar during positive and negative IPO phases, except that TC (hur-
ricane) motions are stably confined in the tropics and their tracks extend further westward during IPO 
negative phase (Fig. 1c,d).

What might cause the changes of TC activity over the North Atlantic and eastern North 
Pacific during different IPO phases? In order to understand the factors/processes contributing to 
the changes in TC track and frequency from one phase of the IPO to the other, we analyzed the main 
environmental factors responsible for variations of TC activity, including steering flows26, genesis poten-
tial index (GPI)27,28, and vertical wind shear28 in the section.

 IPO + IPO −

Hurricanes over E. North Pacific 10.3 4.7

Hurricanes over North Atlantic 1.3 4.5

TCs over E. North Pacific 18.8 8.8

TCs over North Atlantic 4.3 7.3

Table 1.  Variations of TC (hurricane) number per year during different IPO phase.
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a) Factors responsible for the variability in TC frequency. Figure 2 illustrates variations of GPI and ver-
tical wind shear anomalies at different IPO phases over the two basins. GPI is an empirical index that 
is developed to assess TC frequency from large-scale analyses27,28, and can reasonably capture observed 
seasonal variations and the location of TC genesis15,29–31. During the positive phase of IPO, GPI tends 
to decrease over the tropical North Atlantic, partly accounting for the decreased frequency of TC in the 
region (Fig. 2a). The decreased GPI is mainly caused by an enhanced vertical wind shear (Fig. 2b) since 
sea surface temperatures (SSTs) do not change substantially over the tropical North Atlantic across differ-
ent IPO phases (Fig. 2a,c). Over the eastern North Pacific, the opposite situation occurs where decreased 
vertical wind shear leads to increased GPI (Fig. 2a) that favors more frequent TC formation (Table 1).

During the negative IPO phases, the eastern North Pacific has fewer TC formations due to decreased 
GPI (Fig.  2c), which results from both an increased wind shear (Fig.  2d) and decreased SST over the 
region (Fig.  2c). Over the North Atlantic, on the contrary, decreased wind shear (Fig.  2d) leads to an 
increased GPI (Fig. 2c), in favor of more TC formation. These changes occurring at decadal timescales 
resemble interannual fluctuations in TC activity found over the North Atlantic during ENSO years, i.e., 
TC formation is suppressed in El Nino years4,6,9,16.

b) Processes responsible for variability in TC tracks. Figure 3 shows the composite of TC steering flows 
over the two basins at different IPO phases. During the positive IPO phase, large-scale, anticyclonic 
steering flows are mainly easterlies in the tropical North Atlantic (Fig. 3a), causing TCs to move west-
ward. Strong southerly winds can be observed along 60oW, driving the northward movement of TCs 
around 60oW, 20oN (Fig. 1). TCs recurve between 20oN and 25oN and then move eastward north of 25oN. 
On the contrary, during negative IPO phases, large-scale anticyclonic steering flow is located more to the 
west and slightly to the north (Fig. 3b) compared to that during IPO positive phases (Fig. 3a). Southerly 
winds are only observed westward of 70oW. The large-scale environmental flows thus steer TCs further 
westward, and cause them to recurve at higher latitudes (25–30oN) during negative IPO phases (Fig. 3b).

Over the eastern North Pacific, there is no significant difference in large-scale steering flows at dif-
ferent IPO phases (Fig.  3a,b) except that much stronger tropical easterlies are observed during IPO 
negative phases. The anomalously strong easterlies likely reflect strengthened anticyclonic circulations in 
the region (Fig. 3b), responsible for a stably confined, more westward motion of TCs during the period.

Figure 1. IPO impacts on TC and hurricane Tracks. Track composite of hurricane and all TCs (tropical 
storms and hurricanes), respectively, during IPO positive (red) and negative (blue) phases over the North 
Atlantic (a,b) and eastern North Pacific (c,d). The maps in Fig. 1 were generated using NCAR Command 
Language (NCL) version 6.3.0, open source software free to public, by UCAR/NCAR/CISL/TDD,  
http://dx.doi.org/10.5065/D6WD3XH5.

http://dx.doi.org/10.5065/D6WD3XH5
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Murakami and Wang (2010)4 found that model-projected changes in TC tracks over the North Atlantic 
are not due to changes in large-scale steering flows, but rather due to changes in TC genesis location in a 
warming climate. We thus compared the locations of TC genesis during different IPO phases. Over the 
eastern North Pacific, TCs formed at similar regions (Fig. 1c,d), around 15oN, 105–110oW during differ-
ent IPO phases, thus the TC track difference is mainly a result of changing steering flows in the region. 
Over the North Atlantic, hurricanes are also identified at similar locations during positive and negative 
IPO phases (Fig. 1a), but tropical storms usually form 6 degrees apart (Fig. 1b), although the difference 
of the genesis locations is not significant. This indicates that the Pacific decadal mode may influence TC 

Figure 2. IPO influence on large-scale environmental factors for TC and Hurricane frequency. (a,b) 
GPI (shaded) and SST (contour, unit: oC); (c,d) magnitude of wind shear anomalies (shaded) and the 
shear anomalies (vector, unit: m s−1) during the IPO positive (top) and negative (bottom) phases. Stippling 
indicates regions exceeding 90% statistical confidence. Figure 2 is generated using NCAR Command 
Language (NCL) version 6.3.0, open source software free to public, by UCAR/NCAR/CISL/TDD,  
http://dx.doi.org/10.5065/D6WD3XH5.

Figure 3. IPO influence on basin-scale steering flows. Large-scale steering flows (vectors, unit: m s−1), 
magnitude of meridional wind (shaded, unit: m s−1), and track composite of TCs over North Atlantic and 
eastern North Pacific during the IPO positive (top) and negative (bottom) phases. Horizontal smoothing 
is applied to steering flow so that the spherical harmonic components with wavenumber larger than 11 
is filtered out. Figure 3 is generated using NCAR Command Language (NCL) version 6.3.0, open source 
software free to public, by UCAR/NCAR/CISL/TDD, http://dx.doi.org/10.5065/D6WD3XH5.

http://dx.doi.org/10.5065/D6WD3XH5
http://dx.doi.org/10.5065/D6WD3XH5
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tracks mainly through altering large-scale steering flow. The conclusion can also be validated by compar-
ing recurvature latitudes of the composite TC tracks over the North Atlantic during positive and negative 
IPO phases. The steering flow changes from southerly between 20°–25°N to westerly north of 25°N in the 
IPO positive phase (Fig. 3a), and most TCs recurve around 20°–25°N. During the IPO negative phase, 
dominant winds change from easterly to southerly at 70°W, 25°–30°N, and then to westerly north of 
30°–35°N (Fig. 3b), corresponding to a northward shift of TC recurving areas (Fig. 1b).

Discussion
Why can the Pacific decadal mode influence wind and thus TC activity over North Atlantic and east-
ern North Pacific? Fig.  4 shows the composite 850 hPa stream function anomaly during different IPO 
phases. Corresponding to the Pacific heating associated with positive IPO, a typical Gill–Matsuno-type 
response32,33 of the atmosphere can be observed over the tropical Atlantic and Pacific (See Supplementary 
for the middle and upper level circulation). Equatorial Kelvin waves lead to circulation anomalies to the 
east of the heating whereas equatorial Rossby waves are responsible for the circulation changes occurring 
west of the heating center. At 850 hPa, intensified easterlies to the east of the heating are a prominent fea-
ture of such a response and are observed over the tropical Atlantic during positive IPO phases (Fig. 4a). 
The anticyclonic circulation anomalies over the eastern tropical and subtropical Atlantic are likely related 
to the large-scale diabatic cooling over North Africa induced by Sahel droughts, which have been shown 
to occur more often during positive IPO phases34. The circulation during the negative IPO phase is gen-
erally opposite to that in the IPO positive phase except that the Atlantic signal is slightly weaker (Fig. 4b). 
These results indicate that the Pacific decadal mode modulates TC activity over both basins by changing 
large-scale circulations in the regions.

Conclusions
Tropical cyclone frequency and movements over the North Atlantic and eastern North Pacific are of great 
socioeconomic significance to Central and North America. Previous studies investigated the impacts 
of the Atlantic natural modes and ENSO on TC activity over the regions. The results presented here 
demonstrate that the IPO also exerts profound impacts on the track and frequency of TCs over both 
the North Atlantic and eastern North Pacific basins. Specifically, positive phases of the IPO correspond 
to a significant decrease (increase) of TC numbers over the North Atlantic (eastern North Pacific) that 
is mainly driven by changes in wind shear and GPI. The IPO also influences TC movements: during 
the positive phase, TCs over the North Atlantic tend to keep their tracks eastward and recurve at lower 

Figure 4. Large-scale atmospheric circulation in response to IPO. 850 hPa stream function anomaly 
(shaded; unit: m2 s−1) and horizontal wind anomaly (vector; unit: m s−1) during the IPO positive (top) and 
negative (bottom) phases. Horizontal smoothing is applied to both stream function and horizontal wind 
so that the spherical harmonic components with wavenumber larger than 11 is filtered out. Figure 4 is 
generated using NCAR Command Language (NCL) version 6.3.0, open source software free to public, by 
UCAR/NCAR/CISL/TDD, http://dx.doi.org/10.5065/D6WD3XH5.

http://dx.doi.org/10.5065/D6WD3XH5
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latitudes compared to those during the negative IPO phases; over the eastern North Pacific, IPO leads 
to relatively small changes in the TC tracks. It is further shown that changes in the composite tracks at 
different IPO phases are largely determined by differences in steering flow patterns instead of genesis 
locations. The large-scale circulation changes that give rise to different steering flow patterns over both 
basins are in turn consistent with Gill-Matsuno-type responses excited by anomalous, SST-related diaba-
tic heating in the Pacific and by the anomalous latent heating over the North Africa (e.g., those associated 
with the Saharan drought in IPO positive phases).

Methods
The hurricane track data is obtained from the best track data (HURDAT2)25, which are available from 
http://www.nhc.noaa.gov/data/#hurdat. Previous studies showed that total hurricane counts for the 
North Atlantic became fairly reliable after aircraft reconnaissance began in 194435; over the eastern North 
Pacific, HURDAT2 from the National Hurricane Center are only available after 194936. Atmospheric cir-
culation regimes are derived from NCEP/NCAR reanalysis datasets37. The variables analyzed in this study 
include tropospheric wind, air temperature, relative humidity, and surface pressure. We thus choose the 
period 1949–2012 to analyze the large-scale environment fields for TCs over both basins.

NOAA Extended Reconstructed SSTs are used to calculate the IPO index. The IPO is a multidecadal 
scale SST pattern similar to ENSO, but is more symmetric about the equator and has more loadings in 
both North and South Pacific22. An empirical orthogonal function (EOF) analysis is applied to global 
SST to extract the IPO mode. Prior to EOF analysis, Lanczos filter (cut-off frequency is set to 0.3 years-1) 
is used to remove the high-frequency SST variability and thus obtain the decadal to multi-decadal scale 
variation of SST, following Dai (2013)38.

EOF analysis indicates that the first global SST mode reflects a planetary-scale warming (not shown). 
The second mode shows a typical IPO pattern with ENSO-like SSTA pattern in the tropical Pacific and 
substantial loading over the extra-tropical oceans (Fig. 5). The EOF mode 2 obtained in this study highly 
resembles those of the IPO modes as defined in various studies, such as Power et al. (1999)22 and Dai 
(2013)38.

To study the impact of IPO on TC genesis and movement, steering flow, vertical wind shear, and 
genesis potential index (GPI) are calculated. The steering flow is defined as the mass-weighted average of 
horizontal wind between 850 hPa and 500 hPa26, while the wind shear is the wind difference between 850 
hPa and 200 hPa28. GPI is originally developed by Emanuel and Nolan (2004)28, which is formulated as:

η=
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Figure 5. IPO index construction. The second leading empirical orthogonal functions (EOF) of the 3-year 
moving averaged SSTs from the NOAA Extended Reconstructed SST data set as in Dai (2013). Bottom panel 
shows the time series of the IPO index derived by applying the 9-year moving averaging twice to the (3-year 
smoothed) annual series. The percentage variance explained by the EOF is shown on top of panel. Figure 5 
is generated using NCAR Command Language (NCL) version 6.3.0, open source software free to public, by 
UCAR/NCAR/CISL/TDD, http://dx.doi.org/10.5065/D6WD3XH5.

http://www.nhc.noaa.gov/data/#hurdat
http://dx.doi.org/10.5065/D6WD3XH5
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In Eq. (1), η is 850 hPa absolute vorticity (s−1); RH is relative humidity (%) at 700 hPa; and V s is the 
magnitude of vertical wind shear between 850 hPa and 200 hPa. V pot is maximum potential intensity as 
defined in Emanuel (1995)27:

θ θ= ( − ) ( − ),
( )

⁎V C T T
T
T

C
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ln ln
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s s
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0

where T s is SST (K) and T 0 is air temperature at tropopause (K). sθ
⁎ and sθ  is surface saturation equivalent 

potential temperature and equivalent potential temperature, respectively. Equations  (1) and (2) suggest 
that GPI is sensitive to the changes in SST and the vertical wind shear; we thus analyze the contributions 
of IPO induced SST and wind shear to GPI over the two ocean basins. Specifically, the contribution of 
wind shear to GPI is quantified by setting SST to JJASON climatology in Eq. (2). In contrast, the contri-
bution of SST is quantified by setting V s to 1949–2012 climatology in Eq. (1).

Our analysis suggests that the influence of IPO on GPI and thus TC frequency is mainly through the 
changes in wind shear. Over the eastern North Pacific, changes in wind shear contribute to 70% of the 
GPI changes, while the SSTA contributes the remaining 30%. In addition, the wind shear contributes 
108% GPI change over the North Atlantic basin, and thus the contribution of SSTA is negligible.

We use the composite method to highlight the features of TC activity during IPO positive and negative 
phases, separately. To ensure the same number of composite samples in both cases, we select TC tracks 
(and all other key variables such as GPI, wind shear, and steering flow) using the following method. 
For the 64 (1949–2012) hurricane seasons (June to November, JJASON), TC tracks are first arranged 
according to IPO index values from positive (i.e., IPO positive phases) to negative (IPO negative phases). 
All variables related to TC activity (such as TC tracks, GPI etc) corresponding to the top (bottom) 
10-percentile of the JJASON IPO index are averaged to highlight the common features of TC activity 
during IPO positive (negative) phases. The composite results are not sensitive to difference percentile 
criteria (such as 15%, 20%, not shown).
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