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Geometric diffusion of quantum 
trajectories
Fan Yang1 & Ren-Bao Liu1,2,3

A quantum object can acquire a geometric phase (such as Berry phases and Aharonov–Bohm phases) 
when evolving along a path in a parameter space with non-trivial gauge structures. Inherent to 
quantum evolutions of wavepackets, quantum diffusion occurs along quantum trajectories. Here 
we show that quantum diffusion can also be geometric as characterized by the imaginary part of 
a geometric phase. The geometric quantum diffusion results from interference between different 
instantaneous eigenstate pathways which have different geometric phases during the adiabatic 
evolution. As a specific example, we study the quantum trajectories of optically excited electron-
hole pairs in time-reversal symmetric insulators, driven by an elliptically polarized terahertz field. 
The imaginary geometric phase manifests itself as elliptical polarization in the terahertz sideband 
generation. The geometric quantum diffusion adds a new dimension to geometric phases and may 
have applications in many fields of physics, e.g., transport in topological insulators and novel electro-
optical effects.

When a discrete quantum eigenstate is adiabatically driven in the parameterized state space, in addition 
to the familiar dynamical phase, the state can acquire a geometric phase which depends on the gauge 
structure of the quantum system. In particular, the geometric phase accumulated along a cyclic evolution 
is the famous Berry phase, which is gauge invariant1,2. The geometric phase has played important roles 
in many fields of physics, as demonstrated by, e.g., the Aharonov-Bohm effect3, quantum Hall effect4–8, 
anomalous Hall effect8–12 and topological insulators13,14.

In contrast to a discrete eigenstate, a wavepacket in a continuum is a superposition of infinitely many 
eigenstates. For example, an electron wavepacket in an energy band is a superposition of the Bloch states. 
When the wavepacket is driven adiabatically along a trajectory in the parameter space, it can pick up a 
geometric phase similar to a discrete state8,15,16. Such geometric phases associated with electron wave-
packets have important effects on electronic transports8. In addition, however, the wavepacket during 
the evolution will experience quantum diffusion (or dephasing) due to interference between different 
phase factors associated with different energy eigenstates that form the wavepacket. Then an interesting 
question arises: Does the quantum diffusion also have a geometric part?.

In this paper, we show that the geometric phase of a wavepacket along a quantum trajectory can 
have both real and imaginary parts. The imaginary part characterizes the quantum diffusion that is 
determined by the geometry of the quantum trajectory. As an example, we study the geometric phase of 
quantum trajectories in high-order THz sideband generation (HSG)17–21 in time-reversal symmetric sem-
iconductors. We find that while the real part of the geometric phase leads to a Faraday rotation (FR) of 
the THz sideband emission, the imaginary part (i.e. the geometric quantum diffusion) manifests itself as 
the polarization ellipticity (PE) of the sideband. This finding extends the concept of the geometric phase 
to the complex plane, which may lead to a wealth of new physics. It may also have many applications in 
transport and electro-optics of novel materials such as topological insulators13,14.
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Results
Imaginary geometric phase. We consider a physical system described by a Hamiltonian H(R) that 
depends on time through the parameter R(t) =  (R1(t),R2(t),…) (R will be the relative momentum k of an 
electron-hole pair for the specific example considered in this paper). Then the path integral form of the 
adiabatic evolution of a wavepacket is given by the propagator (see Fig. 1)
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where R  denotes an instantaneous eigenstate of H(R), W c dR R Ri i i i∫= ( )  is the initial wavepacket 
at time ti, G is the propagator from ti to tf, Ri→f denotes a path from Ri to Rf, and S(Ri→f) gives the action 
(i.e., phase) of the evolution along this path. In adiabatic evolution, the phase S(Ri→f) (which acts as an 
action) can be decomposed into the dynamical phase SD and the geometric phase SG, i.e., 
S(Ri→f)= SD(Ri→f)+ SG(Ri→f)1. In equation (1), the instantaneous eigen states with different parameters Ri 
will follow different paths Ri→f in the parameter space, and hence obtain different phases S(Ri→f). The 
interference between these paths with different phases leads to quantum diffusion of the wavepacket. In 
this paper, we will identify the geometric quantum diffusion, which results from the interference between 
paths with different geometric phases.

To explore the geometric phase effects in the quantum interference, it is helpful to consider the sem-
iclassical approximation, in which the summation of the phase factors along all possible paths is domi-
nated by the orbits that satisfy the stationary phase condition δS[Rcl] =  0, called quantum trajectories22,23 
(which, in the standard path-integral formulation, are more often called semiclassical trajectories). Then 
the propagator is determined by the semiclassical actions of the quantum trajectories plus fluctuations 
nearby, that is,

G W e c eR R R R R
2

i
iS

i
i S

f i f
Rcl

cl cl2
∫∑≈ ( ) ,

( )
δ

→
( ) ( )

where

S
S

t t
t t dt dt

R
R R

q q1
2

[ ]

3

cl

t

t

R

2
2

1 2
1 2 1 2

i

f

cl

∫δ
δ

δ δ
=

( ) ( )
( ) ( ) ,

( )

( )

gives the quantum fluctuation around the quantum trajectories with q =  R −  Rcl. Note that S(cl) =  S(Rcl)  
=  SG[Rcl] +  SD[Rcl], where SD is the dynamical part of the action and SG is the geometric part, which 
depends only on the geometry of the path Rcl in the parameter space.

In the general case (e.g., in quantum tunnelling24), there may be no real orbit satisfying the classical 
equation of motion. Then we have to invoke analytic continuation of the classical mechanics to the 
complex plane. As a result, the geometric phase of the quantum trajectory also becomes complex with a 
nonzero imaginary part. Since the imaginary part of the action  ℑS(cl) describes the quantum diffusion 
of the wavepacket due to the quantum interference, ℑSG[Rcl] represents the geometric part of the quan-
tum diffusion. This geometric quantum diffusion results from the interference of the different geometric 
phase factors associated with a bunch of paths (i.e., the quantum fluctuations) near the quantum trajec-
tory. Note that the imaginary part of the action causes a wavepacket decay, which signals the quantum 
diffusion. For example, the wavepacket decay in a quantum tunnelling can be regarded as quantum 

Figure 1. Schematics of the quantum trajectories of a wavepacket in the parameter space. The green 
dashed (red solid) Gaussian curves represent the diffusion of the wavepacket without (with) the geometric 
diffusion included. The red solid arrow represents the quantum trajectory that satisfies the stationary phase 
condition.
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diffusion phenomenon. A main purpose of this paper is to quantify the quantum diffusion due to the 
geometric part of the imaginary action.

Geometric phases in high-order THz sideband generation. To give a specific example of the 
geometric quantum diffusion, we consider the quantum trajectories of an optically excited electron-hole 
pair, driven by a terahertz (THz) field in a semiconductor17. The electron-hole pair, after excitation by a 
weak optical laser of frequency Ω , is driven into oscillations by an intense THz laser of frequency ω. The 
electron-hole pair subsequently acquires a kinetic energy, and recombines at a later time to emit pho-
tons at sideband frequencies Ω  +  2Nω, with N being integers [Fig. 2(a)]. This so-called high-order THz 
sideband generation has been theoretically studied17 and recently experimentally observed18,19. In HSG 
the electron-hole wavepacket evolution is well approximated by a small number of quantum trajectories 
plus the quantum fluctuations around them. When the THz field is elliptically polarized, the quantum 
trajectories become curved in the momentum space. Our previous study shows that geometric phases 
will be accumulated along these trajectories if the energy bands of the semiconductors (such as mon-
olayer MoS2 and bilayer graphene) have non-vanishing Berry curvatures20,21. The geometric phases result 
in an observable effect in time-reversal symmetric materials: The optical emission at integer multiples of 
the THz period after the excitation by a linearly polarized laser pulse has a Faraday rotation equal to the 
Berry phase accumulated along the quantum trajectory20,21. Therefore HSG in such materials provides 
an ideal platform for studying the geometric quantum diffusion (i.e., the imaginary geometric phase).

A general elliptically polarized THz field can be written as

t F t tF cos cos sin sin 0 4θ ω θ ω( ) = ( ( ), ( ), ), ( )

where F is the field strength. Under this field, the electron and hole will evolve along an elliptic path in 
the k-space,

t k k t k k t kk cos sin sin cos 5x y z0 0( )θ ω θ ω( ) = − ( ), + ( ), , ( )

Figure 2. Schematics of high-order THz sideband generation and quantum trajectories in monolayer 
MoS2. (a) An electron-hole pair excited by a linearly polarized optical laser eE i t

I
− Ω  is driven along an 

elliptical quantum trajectory by the THz field, acquiring a kinetic energy, and recombines with emission of a 
sideband photon at frequency Ω  +  2Nω. The sideband has a polarization ellipticity φPE and Faraday rotation 
φFR, given by the imaginary and real parts of the geometric phase, respectively. (b) Interference of the 
quantum trajectories that contribute to the Nth order sideband. The blue open circles represent the 
wavepackets at ± K valleys with dynamical diffusion only, while the filled circles are the wavepackets 
including the geometric diffusion.
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where k0 =  eF/ω characterizes the maximum momentum gained from the THz field. The driving by the 
THz field is adiabatic in the sense that the THz field has a frequency much lower than the band gap 
of the material and hence induces no interband transition for the THz field strengths (~kV/cm) under 
consideration in this paper. We note that in recent experiments pulse THz lasers with strengths > MV/
cm have been achieved and interband high-order harmonic generation has been observed under such 
strong THz fields25. Such strong fields would definitely induce interesting non-adiabatic geometric phase 
effects, which, however, are not the topic of this paper.

The excitation by a weak linearly polarized optical laser is described by the interaction Hamiltonian 
= − + . .− Ωˆˆ ·H eP E h ci t

I I  Here d e hP k dk k k∫= μ ν μν, ,− ,
ˆ ˆ ˆ† †

 is the interband polarization operator, where 
e kμ,ˆ  (h kν,

ˆ ) annihilates an electron (hole) with momentum k and spin or valley index μ (ν). The interband 
dipole moment dμv, k is16,26
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( kν−, , ) is the Bloch state of the conduction (valence) band with momentum k and spin or valley 
index μ (ν). If we assume that the semiconductor is initially in the “vacuum” state G  with empty con-
duction bands and filled valence bands, the linear optical response is20
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is the geometric phase. Here for the sake of simplicity we have assumed that the Berry connection is 
Abelian (i.e., the THz field does not mix near-degenerate bands of different spin or valley indices). The 
generalization to non-Abelian case is possible20.

We should remark on the approximations used in derivation of equations (7) and (8). First we use 
the single-particle approximation. This is justified since we consider weak optical excitation (in con-
trast to the strong THz field) and assume only single electron-hole pairs are excited. Second, in the 
single-particle dynamics, we neglect effects such as electron scattering, thermal diffusion, and phonon 
scattering. By comparing the theoretical computation with experimental results19, we found that these 
effects can be captured essentially by including a phenomenological relaxation term e−γτ in equations (7) 
and (8). Finally for the sake of simplicity, we do not consider Coulomb interaction between the electron 
and the hole and hence neglect the excitonic effects. This will be justified later when we consider HSG 
in monolayer MoS2 (see the section of numerical results). In sum, the formulas (7) and (8) with the 
electron-hole pair relaxation, is conceptually simple, whereas can capture the essential physics.

Generally, the geometric phase is much smaller than the dynamical phase accumulated during a cyclic 
evolution under the THz field driving (since the kinetic energy of electron-hole pairs is much greater 
than the energy correction due to interband coupling induced by the THz field). Hence the geometric 
diffusion induced by the geometric phases is also much smaller than the dynamical diffusion and may 
be neglected. However, we shall demonstrate that, in configurations where the dynamical diffusion terms 
cancel each other, the imaginary geometric phases have observable effects on the sideband emission in 
time-reversal symmetric materials with non-vanishing Berry curvatures. Essentially, the geometric and 
dynamical phases can be separated by their different behaviours under the time-reversal (TR) transfor-
mation.The wavepacket can be initially prepared in a superposition of a pair of TR related states +  
(by optical excitation, e.g., as in the example discussed later in this paper). Then these two states obtain 
the same dynamical phase φD during the adiabatic evolution because they have the same eigenenergy. 
However,  and  get the opposite geometric phases ± φG since the Berry connection reverses sign 
under TR transformation [see13 or equation (11)]. Thus the superposition state becomes 
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e ei i i iD G D G+φ φ φ φ+ −  and hence φD becomes a global phase. In next section we will show that by 
interference between time-reversal related quantum trajectories, we can observe the real part of the 
geometric phase as an FR of the sideband emission20,21, and the imaginary part as the PE of the 
sidebands.

Faraday rotation and polarization ellipticity of THz sidebands. We take monolayer MoS2 as a 
model system. This material has two time-reversal related valleys ± K at the corners of the 2D hexagonal 
Brillouin zone [Fig. 2(b)], where the strong spin-orbit coupling causes a spin splitting of about 160 meV 
at the valence band top27. We assume that the optical laser is near-resonant with the transitions between 
the band edges of the conduction band and the highest valence band, and therefore neglect the transi-
tions from the lower valence bands. The energy bands near the band edge can be effectively described 
by the Hamiltonian27

H A k k Mk 10x x y y z( )ξ σ σ σ( ) = + + , ( )

where A =  3.51 eV·Å, the band gap 2M =  1.9 eV, ξ =  ± 1 denotes the ± K valley, and k is measured from 
the respective Dirac points at valleys ± K27–29. The energy spectrum is 

M A k M A k M2 2k
2 2 2 2 2ε = + ≈ + /  with two-fold valley degeneracy. The Berry connection and 
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where d ieA M2cv = /( ). Note that the optical selection rules are such that the interband transition at 
valley + K (–K) is coupled exclusively with the σ+ (σ–) polarized light.

The effects of the geometric phases on the HSG in monolayer MoS2 or similar materials can be intu-
itively understood. A laser with linear polarization σ+ +  σ− causes equal transitions in + K and − K 
valleys at time t′  and creates an electron-hole pair in the superposition state + . After driving by 
the THz field, the quantum trajectories at the two valleys obtain the same dynamical phase 
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and Fig. 2(b)], so the superposition state becomes e ei iG G+φ φ− . Thus the emission by the recom-
bination of the electron-hole pair at time t has polarization eiφGσ++ e−iφGσ−. The real part of φG induces 
a phase shift between the two circular polarizations and hence an FR ℜφG 20,21, while the imaginary part 
induces an amplitude difference between the two circular polarizations and hence a PE ℑφG (assumed 
< < 1) [Fig. 2(a)].

Now we insert M A k M2k
2 2

ε = + /


 and equations (11–12) into equation (8). By taking μ = / , we 
obtain the linear susceptibility for the σ+/σ−-polarized optical field EI. After a direct computation, the 
relative amplitude of the Nth sideband for the σ±-polarized optical field is obtained as
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with m* =  M/(2A2) being the reduced effective mass of the electron-hole pair and Δ  =  2M −  Ω  the optical 
laser detuning. Since φG/S(2N) ∼  ω/(2M) < <  1, i.e., the geometric phase is much less than the dynamical 
phase, the quantum trajectories are determined by the stationary phase conditions for the dynamical 
phase, i.e.,
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Note that t mk 1( )/

⁎ is the semiclassical velocity of the electron-hole pair. Hence equation (16) means the 
electron accelerated by the THz field returns to the hole after τ for recombination. Equations (17) and 
(18) express the energy conservation conditions for the excitation of the electron-hole pair at time t −  τ 
and for the sideband generation through electron-hole pair recombination at time t, respectively. By 
equation (14), the geometric phase accumulated along the quantum trajectory determined by equations 
(16)-(18) is

2
1 sinc

2 19G n B
n n2φ τ φ
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with k A Msin cosB 0
2 2 2φ π θ θ= /  being the Berry phase an electron-hole pair acquires in a full THz 

period, and (kcl, tn, τn) being solution of equations (16)-(18). Generally, the solutions to equations (16)-
(18) are not real numbers, i.e., τn is a complex number [Fig. 3(a)]. This may happen when the detuning 
Δ  >  0 [c.f. equation (17)], where the energy conservation cannot be satisfied by real solutions (virtual 

Figure 3. Faraday rotation and polarization ellipticity of THz sidebands in monolayer MoS2. (a) shows 
the stationary phase points τn for Scl

N2( ) with the sideband order 2N =  − 6 →  16. Only the first four stationary 
phase points (n =  1 →  4) are given for each sideband. The filled squares are the first (n =  1) stationary phase 
points τ1,γ that includes the dephasing effect [solutions of equation (27)]. (b) shows the relative intensities of 
the sidebands, while (c) and (d) give the corresponding FR and PE of them. In (b-d), the lines are obtained 
by numerical integration of equation (13), and the open and filled squares show the quantum trajectory 
(QT) results obtained using the dominant stationary phase points (t1, τ1) without dephasing effect [the first 
physical solution to equation (26)] and (t1,γ, τ1,γ) with the dephasing effect [the first physical solution to 
equation (27)], respectively.
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processes are involved). On the other hand, for high sidebands with 2Nω >  3.17|cos(2θ)|Up, where 
Up =  e2F2/(4m*ω2) is the ponderomotive energy and 3.17|cos(2θ)|Up is the cut-off frequency for HSG17,23, 
the electron-hole pair cannot gain sufficiently large kinetic energy along real trajectories, and we can only 
have complex solutions. Finally, even if we have Δ  <  0 and 2Nω≤ 3.17|cos(2θ)|Up, complex solutions exist 
if the polarization ellipticity θ of the THz field is big enough. Thus τn determines a complex quantum 
trajectory and leads to an imaginary part of the geometric phase φG(τn). In particular, if one of the sta-
tionary phase points dominates, say (kcl, t1, τ1), we have eN i2 G 1χ ∝ φ τ

±±
( ) ± ( ). If the optical laser has a linear 

polarization e 2x σ σ= ( + )/+ − , the polarization of the Nth sideband is

e e ie e
2

cosh sinh
20

i i

i i0
r i r iσ σ

φ φ
+

= − ,
( )

φ φ φ φ+ − − − +

⊥

where e e ecos sinx r y r0 φ φ= −  and e e esin cosx r y rφ φ= +⊥  with φr and φi being the real and 
imaginary parts of the geometric phase φG(τ1), respectively. That gives the FR φr and PE φi (for φi < <  1).

Numerical results. In order to confirm the validity of the quantum trajectory method, we calculate 
the susceptibilities by direct numerical integration of equation (13), and compare the FR and PE of the 
sidebands with the real and imaginary parts of the geometric phases at the stationary phase points. In the 
calculation, the THz field is set such that ω =  2 meV, FTHz =  10 kV/cm and θ =  π/6. We take a CW optical 
laser that is tuned below the band gap (2M =  1.9 eV) by Δ  =  2ω, and we assume its strength is weak 
enough. To describe the scattering effect in real materials, we include a phenomenological dephasing 
term of the electron-hole pair e−γτ in the integration of equation (13), with γ =  3 meV. Such dephasing 
can be due to phonon scattering, relaxation of the electron-hole pair to bound exciton states and so on.

For the sake of simplicity, we neglect the Coulomb interaction between the electron and hole, which 
is justified for the following reasons. First, the exciton binding energy (100s of meV30) is much larger 
than ω and Δ  and hence the exciton bound states are far off-resonant from the optical excitation. Also 
the exciton emission would be at frequencies 100s of meV below Ω , which is well separated from the 
THz sideband frequencies. Thus the relaxation of the electron-hole pair to bound exciton states would 
only reduce the overall intensity of the sideband emission, but leave the polarization of the sideband 
unaffected. In fact, the free particle approximation has been verified by comparing the theoretical com-
putation with the experiment results19. The relaxation of electron-hole pairs to the bound exciton state 
may also affect the HSG. However, the relaxation time of an electron-hole pair to an exciton is a few 
picoseconds31, which is long enough for the electron-hole pair to complete the quantum trajectories to 
emit the sideband photons [see Fig. 3(a), τ1 =  1 ∼  3T, where T ~ 2 ps is the period of the THz field].

The comparison is shown in Fig.  3. The results of the sideband strength in Fig.  3b suggest that the 
electron-hole pair evolution is well approximated by the dominant trajectory with n =  1. The numerically 
calculated FR and PE of the sidebands are almost equal to the real and imaginary parts of the geometric 
phases φG accumulated along the first quantum trajectory [determined by the first physical solution τ1 of 
equations (16)-(18)], respectively. The Faraday rotation and polarization ellipticity are 0.001 ~ 0.01 rad, 
which can be readily detected experimentally.

Discussion
In Fig. 3, the discrepancy between the quantum trajectory and the numerical integration results is due to 
the contribution from other trajectories and the changing of the stationary phase points by the inclusion 
of the dephasing term in the action,

S t S t ik k 21N N2 2τ τ γτ( , , ) = ( , , ) + . ( )γ
( ) ( )

The modified solutions (kcl, tn,γ, τn) satisfy the corresponding stationary phase conditions for S tkN2 τ( , , )γ
( ) . 

τ1,γ and their corresponding geometric phases φr/i,γ are also shown in Fig. 3, which indeed agree better 
with the numerical results.

We observe in Fig. 3 that both the FR and the PE increases almost linearly with the sideband order 
2N >  0. This can be understood as follows. The electron-hole pair need to go along a longer trajectory 
[i.e. larger τ as shown in Fig. 3(a)] in the k-space to acquire a higher kinetic energy 2Nω −  Δ , which in 
turn leads to a larger geometric phase of the wavepacket [see equation (19)].

Method
Quantum trajectory method. By solving equation (16), we obtain the stationary momentum kcl as
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where χ(τ) =  sinc(ωτ/2). Under the stationary phase approximation for eiS tkN2 τ( , , )( )
 (which approximates 

the electron-hole evolution by quantum trajectories plus quantum fluctuations around them), equation 
(13) can be integrated as
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N N
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with Up =  e 2F 2/(4m*ω 2) being the ponderomotive energy. Using the stationary phase approximation 
again for t and τ, equation (23) becomes32,33

∑χ
π
τ

π
=

+

( )

∂
,

( )

τ
φ τ

±±
( )

( , )

+ ( )
± ( )

( )⁎
i d m e

i
i

S
e2

0
2

det[ ] 25
N

n
cv

iS t

n cl
N

i2 2
2

2 2

cl
N

n n
G n

2

where the stationary phase point (tn,τn) satisfies

S t
t

S t
0 26
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N2 2τ τ
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∂
=
∂ ( , )

∂
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( ) ( )

We solve equation (26) numerically as shown in Fig. 3(a) and then obtain the optical susceptibilities of 
the Nth sideband using equation (25). If the dephasing term is included, the modified stationary phase 
points (tn,γ, τn,γ) satisfy

S t

t

S t
0 27

cl
N

cl
N2 2τ τ

τ

∂ ( , )

∂
=
∂ ( , )

∂
= , ( )

γ γ,
( )

,
( )

where S t S t icl
N

cl
N2 2τ τ γτ( , ) = ( , ) +γ,

( ) ( ) .

Numerical integration method. The integration in equation (13) over k can be calculated analytically:
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π τ
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=
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τ
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where

τ τ τ β θ ω ωτ β β θ( , ) = ( , ) + χ ( ) ( − ) + χ ± (χ − ) ( ) , ( ),±
( ) ( )S t S t U t[ cos 2 cos 2 2 1 sin 2 ] 29cl

N
cl

N
p

2 2 2 2 2 2 2

with S tcl
N2 τ( , )( )  given in equation (24) and β =  ω/(4M). Using the properties of Bessel function, equation 

(28) can be written as

∫ ∫
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where t t
2

= − τ⁎ . Then we get the integration in equation (30) over t (i.e. the Fourier transform) as

∫∑ πδ ω ω
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We apply the standard numerical integration method to equation (31) and then obtain the optical sus-
ceptibilities of the Nth sideband.
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