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Precipitation deficits increase 
high diurnal temperature range 
extremes
Bin He1,2, Ling Huang1,2 & Qianfeng Wang3,4

The relationship between precipitation deficits and extreme hot temperatures has been documented 
in observation and modeling studies. However, it is unclear whether and how increases in maximum 
temperatures will impact diurnal temperature range (DTR) extremes. Here, we used observational 
data sets from meteorological stations in China to examine the trends in high DTR extremes from 
1971 to 2013, represented by the percentage of high DTR days (%HDD) and maximum high DTR 
duration (MHDD), as well as their relationships with precipitation deficits over the past four decades 
in China. We identified both positive and negative trends in the %HDD and MHDD in China during 
each season, implying an inhomogeneous behavior of DTR and DTR extremes. Furthermore, we 
observed a significant negative relationship between precipitation deficits and the %HDD and MHDD 
during each season, and the relationship was strongest in the summer. The statistical analysis of 
this coupled behavior indicated that precipitation deficits were related to an increase in high DTR 
extremes, with a 22% average higher probability of the occurrence of DTR extremes after dry 
conditions than wet conditions in the summer. Knowledge from this study has important implications 
for interpreting climate anomalies.

Diurnal temperature range (DTR) is an important indicator of climate change1, and its variations can have 
significant impacts on public health2, agricultural productivity3, the carbon cycle in terrestrial ecosystems4,5, 
etc. For example, a large DTR could expose human communities to a high risk of a number of diseases2. 
Numerous studies have confirmed that a high DTR is a potential trigger for human mortality6,7. Hence, 
improvements in the ability to predict DTR abnormities are crucial for public management in many areas.

Changes in precipitation impact minimum temperatures (Tmin), maximum temperatures (Tmax), 
average temperatures (Tavg)8,9, and hence DTR trends10. Climate warming has significantly decreased the 
DTR over the past several decades11,12, but it is not yet known whether DTR extreme high values have 
been reduced. In addition, precipitation deficits are usually accompanied by high temperature extremes 
in summer13,14. The widely accepted explanation for this mechanism is that dry conditions favor more 
sunshine and less evaporative cooling8,13. To our knowledge, high temperature extremes are usually rep-
resented by indices based on daily maximum temperatures. Owing to the fact that small changes in 
maximum and minimum temperatures greatly impact DTR11, whether and to what extent precipitation 
deficits related to temperature abnormalities will impact DTR is still poorly understood. Hence, the goals 
of this study are to investigate the variations in DTR extremes and to explore the relationship between 
DTR extremes and precipitation deficits.

Many previous studies have focused on the long-term changes in DTR11,12, but few have investigated 
short-term abnormal DTR events. In China, some investigations have suggested the close relationship 
between DTR variation and public heath in several city of China2,15. For example, a study in Guangzhou 
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indicated that 1°C increase in DTR was associated with 0.47% increase in total mortality15. So, it is of 
great importance to understand the variation of DTR extreme and related influencing factors in China.

In this study, we defined two indices to represent high DTR extremes: the percentage of high DTR 
days (%HDD) and maximum high DTR duration (MHDD) (see Methods). Based on observational data 
sets from meteorological stations in China from 1971 to 2013, the above two indices of DTR extremes 
were calculated and their trends were tested using linear regressions (see Methods). The standardized 
precipitation index (SPI) was employed to express dry conditions (see Methods). A simple correlation 
analysis was used to investigate the relationship between precipitation deficits and DTR extremes. In 
addition, quantile regression analysis was employed to examine the response of DTR extremes to pre-
cipitation deficits, which is crucial for exploring the plausible interaction mechanisms between these two 
variables13 (see Methods).

Figure 1 shows the linear trends in %HDD for each station from 1971–2013. Previous studies have 
agreed that the DTR has continuously decreased throughout China16,17, especially in winter; however, 
variations in seasonal high extreme DTR events are very complex, and both positive and negative trends 
exist. An obvious north–south division in the distribution of the %HDD trends was identified in the 
spring, with significant positive trends mainly observed in South China and significant negative trends 
mainly observed in North China. From spring to winter, the number of stations with significant positive 
trends gradually decreased, but the number of stations with significant negative trends increased and 
seemed to gradually expand from the northern to the eastern and southern parts of China. These results 
indicate that a continued decrease in DTR does not correspond to a similar decrease in DTR extreme 
events. Considering its potential impacts on public health, the change in the variability in DTR extreme 
events should be taken seriously. The linear trends in the DTR extremes indicated by the MHDD had a 
similar spatial distribution (Fig. S1).

Figure  2 shows the spatial distribution of the correlations between %HDD and SPI (standardized 
precipitation index) in different seasons. Dominant negative correlations were identified in all of the 

Figure 1. Trends tests. Linear trends in %HDD for different seasons from 1971–2013. The %HDD was 
calculated from 215 values (5 ×  43yr) based on 5-consecutive-day moving windows centered on each 
calendar day and 90th percentile thresholds from 1971–2013. The linear trend in %HDD was examined with 
linear regressions. Slopes were considered significant for p <  0.05. Red dots indicate negative trends, and 
blue dots indicate positive trends. The map was generated with MeteoInfo 1.1.3 (http://www.meteothinker.
com/).
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seasons, and the strongest relationships occurred in summer and autumn. The percentage of stations at 
which significant negative correlations (P < 0.05) were revealed was 53.6% in spring, 74.5% in summer, 
69.3% in autumn, and 42.9% in winter. Obvious spatial differences could be identified for the distribution 
of the correlations. In spring and winter, strong negative relationships occurred in the southeastern and 
western areas of China. In summer, almost all areas exhibited a strong negative correlation, whereas in 
autumn, these areas decreased but were still extensively distributed. This strong coupling suggests that 
dry conditions (SPI < 0) were usually accompanied by increased DTR high extremes, and wet condi-
tions (SPI > 0) were usually accompanied by decreased DTR high extremes. A negative relationship also 
existed between the MHDD and SPI, but the number of stations with significant MHDD and SPI cor-
relations was less than those with significant %HDD and SPI correlations (Fig. S2), suggesting a higher 
influence of SPI on %HDD than on MHDD. The reason for this phenomenon is that the %HDD better 
describes the frequency of high DTR extremes, whereas the MHDD better represents the duration of 
high DTR extremes. High %HDD does not necessarily indicate high MHDD, but high MHDD usually 
occurs along with high %HDD.

To investigate whether the preceding precipitation deficits impacted the DTR extremes, correlations 
between the monthly %HDD and MHDD and the monthly SPI and preceding 1- and 2-month SPI 
were compared. As shown in Figs S3, S4 and S5, widely distributed negative correlations between these 
monthly values were identified, illustrating that 1) an inverse relationship between precipitation deficits 
and DTR extremes existed each month, and 2) preceding precipitation deficits also had strong effects on 
DTR extremes. The number of stations with significant correlations between the monthly %HDD (and 
MHDD) and the preceding 1- and 2-month SPI was less than that with significant correlations between 
the monthly %HDD (and MHDD) and SPI; in addition, the preceding 1-month precipitation seemed to 
have a greater impact on DTR extremes than the preceding 2-month precipitation, indicating stronger 
impacts on DTR extremes from short-term rather than long-term precipitati.on deficits.

Quantile regression allowed us to examine whether the effects of the SPI differed across quantiles of 
the %HDD conditional distributions. To investigate the overall conditions in China, the %HDD and SPI 
values from all the stations were included in the quantile regressions. Figure 3 presents scatter plots of the 

Figure 2. Correlation analysis. Correlation between precipitation deficits (SPI) and DTR extremes 
(%HDD) for different seasons during 1971–2013. The correlation coefficients were calculated by using 
Person’s correlation analysis. Correlations were considered significant for p <  0.05. Red dots indicate negative 
relationships, and blue dots indicate positive relationships. The map was generated with MeteoInfo 1.1.3 
(http://www.meteothinker.com/).
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seasonal %HDD versus SPI values. Distinctive negative slopes representing the four seasons were iden-
tified in each of the four different quantiles. Moreover, the coefficients of the slopes gradually increased 
towards higher %HDD quantiles, indicating that dry conditions may have impacted a wide range of 
%HDD values, especially the top-tail of the conditional distribution. That is, high DTR extremes usually 
occurred with dry conditions. In addition, larger quantile regression line slopes were identified in sum-
mer, indicating stronger coupling between the %HDD and SPI in this season.

Quantile regressions of %HDD and SPI were also performed for each station in summer, as shown 
in Fig. S6. The spatially consistent negative slopes of the regression lines in the four different quantiles 
imply that the conditional distributions of the response of %HDD to SPI followed the same pattern. In 
addition, at some stations in northeastern, southwestern, and central China, a gradual increase in the 
magnitude of the negative coefficients of the quantiles illustrates a strong inverse coupling between dry 
conditions and higher DTR extremes in these regions. The results of the quantile regressions of MHDD 
and SPI are shown in Fig. S7; these results present a similar pattern to those in Fig. S6.

To quantify the strength of the relationship between DTR extremes and dry conditions, the frequency 
of high DTR events occurring after dry conditions (SPI <  − 0.8) and wet conditions (SPI >  0.8) were 
calculated, as shown in Fig. 4 and S8. For each station, the frequency was represented by the percentage 
of high DTR extremes (above-average %HDD and MHDD) that occurred in dry years (SPI <  − 0.8) or 
wet years (SPI >  0.8) from 1971 to 2013. Throughout China, the number of DTR extremes that occurred 
during dry conditions was consistently higher than that during wet conditions across the four seasons. 
The largest differences occurred in summer, with 22% of the DTR extremes occurring after dry condi-
tions based on %HDD, and 17% based on MHDD (Table S1). For the majority of stations, the occurrence 
of high DTR extremes (%HDD) after dry conditions was > 40% in the summer, but the occurrence after 
wet conditions was < 20%. Table S2 shows the probability of dry conditions (or wet conditions) when 
high DTR extremes occurred. DTR extremes were found in a higher proportion of dry than wet years, 
especially in the summer. On the basis of the %HDD in the summer, DTR extremes occurred in ~33% 
of dry years and ~11% of wet years; based on the MHDD, the corresponding percentages were 29% and 
13%, respectively. These results further confirm the coupling between DTR extremes and dry conditions.

Previous observations have indicated that the area-averaged DTR has decreased over land over the 
past several decades because of asymmetric temperature changes, with larger increases in the daily Tmin 

Figure 3. Quantiles analysis . Scatter plots of seasonal %HDD and SPI for all stations in China from 1971–
2013. %HDD and SPI values from all stations during 1971–2013 were included in the quantile regressions. 
Quantiles selected as regression lines are 0.1, 0.3, median (0.5, red line), 0.7, and 0.9, respectively. Dry 
conditions were defined as SPI <  − 0.8 (yellow lines), and wet conditions were defined as SPI >  0.8 (blue 
lines). The map was generated with IDL 8.1.
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than Tmax11,12. According to modeling studies, negative trends in DTR are projected to persist in the 
future1. In China, the decreasing trend of DTR was also dramatic18. However, according to our find-
ings, this persistent reduction in DTR does not correspond to a decrease in the high DTR extremes 
in some regions of China. Because of the comprehensive impacts of DTR anomalies on natural and 
social-economic systems, the variation in DTR and DTR extremes needs to be further examined on a 
larger spatial scale.

Another finding of this study is the coupling between precipitation deficits and DTR extremes. To 
explore the potential mechanisms responsible for the close relationship between high DTR extremes 
and dry conditions, we must understand how precipitation deficits will affect daily maximum and min-
imum temperatures. In light of previous knowledge (as noted in the introduction), a generally accepted 
physical mechanism that explains the interaction of precipitation anomalies and temperature variations 
is soil moisture anomalies, which affect the energy budget balance8,13,14. The heat budget influences sur-
face temperature by regulating the ratio of sensible heat flux to latent heat flux (i.e., the Bowen ratio)8. 
Precipitation deficits cause low soil moisture availability, which constrains evaporative cooling, causing 
surface air to be heated by the sensible heat flux. That is to say, dry conditions corresponding to higher 
Bowen ratios are responsible for increased temperatures. In addition, the lack of cloud cover on dry days 
further strengthens this heating process8. During wet conditions, the reverse process occurs; a larger 
amount of the available energy is used to increase evaporation, which is supported by increased soil 
moisture. This is the reason most of the land surface is usually warm in dry years but cold in wet years19. 
Previous observation and modeling studies have suggested that dry conditions trigger an increase in 
maximum temperatures, and hence cause more high temperature extremes13,14,20.

The reduced moisture content of the atmosphere and ground soil caused by precipitation deficits can 
result in a decrease in the overnight cloud coverage, which can cause nighttime minimum temperatures 
to be slightly lower than normal21. Clouds can increase minimum temperatures by enhanced down-
ward longwave radiation21. Without clouds to act as an insulator for nighttime temperatures, the surface 
should lose heat more efficiently. The above analysis suggests that dry conditions increase maximum 
temperatures but decrease minimum temperatures, and hence enlarge the DTR. This is a simple explana-
tion of our findings, and many other factors, such as atmospheric circulation22, land surface conditions23, 
humidity24, greenhouse gases, and aerosols10, jointly compose a very complex process. Therefore, a more 
in-depth study that combines observations and models is needed.

Currently, many studies are focused on the relationships between different climate variables, but few 
involve future climate projections24. Knowledge from this study can be used to interpret climate anom-
alies occurred in China, which have potential implications for model-based analyses and projections 
of climate extremes. This study also suggests that the interaction between precipitation deficits and air 
temperature is more complex, and its impacts are more comprehensive than previously expected.

Methods
Observed climate data. The observed daily precipitation and maximum and minimum tempera-
ture data used in this study was collected from the SURF_CLI_CHN_MUL_DAY_V3.0 dataset, which 
was downloaded from the China Meteorological Data Sharing Service System (http://cdc.nmic.cn/home.
do). This dataset contains daily measurements of eight meteorological factors (air pressure, temperature, 
precipitation, evaporation, etc25) from 824 stations from January 1951 to July 2014. According to the 

Figure 4. Occurrence probability of DTR extremes. Spatial distributions of the occurrence probability 
of DTR extremes occurring after dry conditions (SPI <  − 0.8) (a) and wet conditions (SPI >  0.8) (b) in the 
summer. The occurrence frequency was represented by the percentage of high DTR extremes (above-average 
%HDD) that occurred in dry years (SPI <  − 0.8) or wet years (SPI >  0.8) during 1971–2013. The map was 
generated with MeteoInfo 1.1.3 (http://www.meteothinker.com/).
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dataset information (http://cdc.nmic.cn/datasets.do? dsid =  SURF_CLI_CHN_MUL_DAY_3.0#), the full 
dataset was quality controlled and homogenized before its release. Details about the methods for raw data 
homogenizing could be found in Xu et al.’s26 study. The accuracy of this dataset was greatly improved 
than the raw data26, and it has been frequently used to detect temperate extremes in China26,27. Because 
of frequent data gaps in earlier years caused by instrument malfunctions28, we excluded the data prior 
to 1971. In addition, to ensure the reliability of our analysis, only stations with no missing daily temper-
ature or precipitation data from 1971 to 2013 were included in the analysis. To retain the data as much 
as possible, we sorted out the station meeting our criteria season by season. Finally, 633, 658, 649, and 
662 stations meeting this standard were selected for the spring, summer, autumn, and winter analyses, 
respectively.

DTR extreme indices and trends tests. According to the recommendation of the Central and 
Eastern Europe Climate Change Impact and Vulnerability Assessment (see http://www.cecilia-eu.org/), 
we defined two percentile threshold indices to represent high DTR extremes: %HDD and MHDD. 
Percentile-based indices based on probability and statistics are commonly used to explore temperature 
extremes29. In contrast to threshold-based indices, percentile-based indices enable easier comparisons 
across different climatic regions13. In light of previous studies13,14,30,31, we applied an empirically derived 
90th percentile threshold to the two indices. The %HDD is similar to a widely used index, the number 
of hot days per month (NHD)13,14, which indicates high temperature extremes. The %HDD was defined 
as the percentage of days per month or season in which the DTR exceeded the long-term 90th percen-
tile. The %HDD was calculated from 215 values (5 per year for 43 years) based on 5-consecutive-day 
moving windows centered on each calendar day and the 90th percentile thresholds from 1971–2013. For 
example, to determine the 90th percentile of the DTR that was used to evaluate whether the DTR at a 
station on July 15, 1981 was extreme, all the daily DTRs during the period from July 13 through July 17 
for each year of the dataset (1971–2013) were ranked, and the 90th percentile of the ranked data was 
determined. The MHDD was defined as the maximum number of consecutive days in which the DTR 
exceeded the 90th reference-period percentile. The 90th percentile of the DTR used in the MHDD index 
was determined in the same way as that for the %HDD index. The MHDD was obtained by counting 
the maximum number of consecutive high DTR days per month or per season. Linear regressions were 
used to identify the trends in %HDD and MHDD at each station over the past four decades, and the 5% 
statistical significance level was discussed32.

SPI. A commonly used drought index, the Standardized Precipitation Index (SPI), was employed here 
to express dry conditions. The SPI was calculated based solely on precipitation33, and thus excluded the 
interference from temperature differences in dry and wet condition analyses. Another advantage of the 
SPI is its multi-scale character, which allowed us to assess the precipitation conditions over different time 
periods. A detailed description of SPI and its computation can be found in Guttman’s paper34. In this 
study, 1-month, 2-month, and 3-month SPIs were calculated for each station to assess the dry conditions 
during different months and seasons.

Correlation analysis and quantile regression. A simple correlation analysis was used to investigate 
the relationship between monthly and seasonal precipitation deficits and DTR extremes. In addition, 
we considered the impacts of preceding precipitation deficits on DTR extremes. For instance, the DTR 
extreme that occurred in July was influenced by the June or May–June precipitation deficits. The preced-
ing precipitation deficits were represented by 1- and 2-month SPIs, which were calculated based on the 
total precipitation in June and May–June. The correlations between the monthly %HDD and MHDD 
values and the monthly SPI and preceding 1- and 2-month SPI values were compared. Only correla-
tion coefficients with p <  0.05 were considered statistically significant and used in the analysis. Quantile 
regression is a robust way to estimate the conditional distributions of a response variable in a linear 
model, and it can provide a more complete view of possible causal links between variables compared to 
mean regressions35. Quantile regression has been widely used in ecology35, economics36, sociology37, etc. 
Recently, it had been frequently employed to examine the relationships between extreme high temper-
atures and soil moisture deficits13,14. Details about this method and the related formulas were described 
by Hirschi et al.14,38

References
1. Lindvall, J. & Svensson, G. The diurnal temperature range in the CMIP5 models. Clim. Dyn. 44, 1–17 (2014).
2. Cheng, J. et al. Impact of diurnal temperature range on human health: a systematic review. Int. J Biom. 58, 1–14 (2014).
3. Lobell, D. B. Changes in diurnal temperature range and national cereal yields. Agri. Fore. Meteo. 145, 229–238 (2007).
4. Peng, S. et al. Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nature 501, 88–92 

(2013).
5. Yi, C. et al. Climate control of terrestrial carbon exchange across biomes and continents. Environ. Res. Lett. 5, 034007 (2010).
6. Zhou, X. et al. Acute effects of diurnal temperature range on mortality in 8 Chinese cities. Sci. Total Environ. 493, 92–97 (2014).
7. Hii, Y. L., Rocklöv, J. & Ng, N. Short term effects of weather on hand, foot and mouth disease. PLoS One 6, e16796 (2011).
8. Trenberth, K. E. & Shea, D. J. Relationships between precipitation and surface temperature. Geophys. Res. Lett. 32, L14703.  

doi: 10.1029/2005GL022760 (2005).
9. Isaac, G. & Stuart, R. Temperature-precipitation relationships for Canadian stations. J. Clim. 5, 822–830 (1992).

http://cdc.nmic.cn/datasets.do?dsid=SURF_CLI_CHN_MUL_DAY_3.0
http://www.cecilia-eu.org/


www.nature.com/scientificreports/

7Scientific RepoRts | 5:12004 | DOi: 10.1038/srep12004

10. Zhou, L. et al. Spatial dependence of diurnal temperature range trends on precipitation from 1950 to 2004. Clim. Dyn. 32, 
429–440 (2009).

11. Braganza, K., Karoly, D. J. & Arblaster, J. Diurnal temperature range as an index of global climate change during the twentieth 
century. Geophys. Res. Lett. 31, L13217. doi: 10.1029/2004GL019998 (2004).

12. Karl, T. R. et al. Global warming: Evidence for asymmetric diurnal temperature change. Geophys. Res. Lett. 18, 2253–2256 (1991).
13. Mueller, B. & Seneviratne, S. I. Hot days induced by precipitation deficits at the global scale. P. Natl. Acad. Sci. USA. 109, 

12398–12403 (2012).
14. Hirschi, M. et al. Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat. Geosci. 4, 17–21 

(2011).
15. Yang, J. et al. Global climate change: impact of diurnal temperature range on mortality in Guangzhou, China. Environ. Pollut. 

175, 131–136 (2013).
16. Liu, B., Xu, M., Henderson, M., Qi, Y. & Li, Y. Taking China’s temperature: Daily range, warming trends, and regional variations, 

1955-2000. J. Clim. 17, 4453–4462 (2004).
17. Qian, W. & Lin, X. Regional trends in recent temperature indices in China. Clim. Res. 27, 119–134 (2004).
18. You, Q. et al. Can temperature extremes in China be calculated from reanalysis? Global Planet. Change 111, 268–279 (2013).
19. Déry, S. J. & Wood, E. F. Observed twentieth century land surface air temperature and precipitation covariability. Geophys. Res. 

Lett. 32, L21414. doi: 10.1029/2005GL024234 (2005).
20. Brabson, B., Lister, D., Jones, P. & Palutikof, J. Soil moisture and predicted spells of extreme temperatures in Britain. J. Geophys. 

Res.: Atmospheres (1984–2012) 110, D5. doi: 10.1029/2004JD005156 (2005).
21. Dai, A., Trenberth, K. E. & Karl, T. R. Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature 

range. J. Clim. 12, 2451–2473 (1999).
22. Fischer, E. & Schär, C. Consistent geographical patterns of changes in high-impact European heatwaves. Nat. Geosci. 3, 398–403 

(2010).
23. Meng, X., Evans, J. & McCabe, M. The influence of inter-annually varying albedo on regional climate and drought. Clim. Dyn. 

42,1–17 (2013).
24. Fischer, E. & Knutti, R. Robust projections of combined humidity and temperature extremes. Nat. Clim. Change 3, 126–130 

(2013).
25. Kang, P. et al. Statistical properties of aerosols and meteorological factors in Southwest China. J. Geophys. Res.: Atmospheres 119, 

9914–9930 (2014).
26. Xu, W. et al. Homogenization of Chinese daily surface air temperatures and analysis of trends in the extreme temperature indices. 

J. Geophys. Res.: Atmospheres 118, 9708–9720 (2013).
27. Li, Q. et al. China experiences the recent warming hiatus. Geophys. Res. Lett. 42. doi: 10.1002/2014GL062773 (2015).
28. Shen, X. et al. Spatiotemporal change of diurnal temperature range and its relationship with sunshine duration and precipitation 

in China. J. Geophys. Res.: Atmospheres 119, 13,163–113,179 (2014).
29. Zhai, P. & Pan, X. Trends in temperature extremes during 1951–1999 in China. Geophys. Res. Lett. 30. doi: 10.1029/2003GL018004 

(2003).
30. Alexander, L. et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res.: 

Atmospheres (1984–2012) 111. doi: 10.1029/2005JD006290 (2006).
31. Hundecha, Y. & Bárdossy, A. Trends in daily precipitation and temperature extremes across western Germany in the second half 

of the 20th century. Int. J. Climatol. 25, 1189–1202 (2005).
32. Shin, N. & Deng, Z. Space/time features of the secular variation in 1951–1998 Northern 500-hPa Height. Meteorol. Atmos. Phys. 

73, 35–46 (2000).
33. McKee, T. B., Doesken, N. J. & Kleist, J. The relationship of drought frequency and duration to time scales, paper presented at 

Proceedings of the 8th Conference on Applied Climatology. American Meteorological Society Boston, MA 179–183 (1993).
34. Guttman, N. B. Accepting the standardized precipitation index: A calculation algorithm1(ed. Guttman, N) (Wiley Online Library, 

1999).
35. Cade, B. S. & Noon, B. R. A gentle introduction to quantile regression for ecologists. Front. Ecol. Environ. 1, 412–420 (2003).
36. Canay, I. A. A simple approach to quantile regression for panel data. Economet. J. 14, 368–386 (2011).
37. Okada, K. & Samreth, S. The effect of foreign aid on corruption: A quantile regression approach. Econo. Lett. 115, 240–243 

(2012).
38. Gebregziabher, M. et al. Using quantile regression to investigate racial disparities in medication non-adherence. BMC Med. Res. 

Methodol. 11, 88 (2011).

Acknowledgments
The data for this paper is available at National Meteorological Information Center of China. This work 
was financially supported by the National Basic Research Development Program of China (grant no. 
2011CB952001 and 2012CB95570001) and the National Natural Science Foundation of China (grant no. 
41301076).

Author Contributions
B.H. designed the study and wrote the manuscript. L.H. carried the data analysis. Q.W. helped with the 
software code for the data processing and calculations. All authors reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: He, B. et al. Precipitation deficits increase high diurnal temperature range 
extremes. Sci. Rep. 5, 12004; doi: 10.1038/srep12004 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The 
images or other third party material in this article are included in the article’s Creative Com-

mons license, unless indicated otherwise in the credit line; if the material is not included under the 
Creative Commons license, users will need to obtain permission from the license holder to reproduce 
the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Precipitation deficits increase high diurnal temperature range extremes
	Introduction
	Methods
	Observed climate data
	DTR extreme indices and trends tests
	SPI
	Correlation analysis and quantile regression

	Additional Information
	Acknowledgements
	References



 
    
       
          application/pdf
          
             
                Precipitation deficits increase high diurnal temperature range extremes
            
         
          
             
                srep ,  (2015). doi:10.1038/srep12004
            
         
          
             
                Bin He
                Ling Huang
                Qianfeng Wang
            
         
          doi:10.1038/srep12004
          
             
                Nature Publishing Group
            
         
          
             
                © 2015 Nature Publishing Group
            
         
      
       
          
      
       
          © 2015 Macmillan Publishers Limited
          10.1038/srep12004
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep12004
            
         
      
       
          
          
          
             
                doi:10.1038/srep12004
            
         
          
             
                srep ,  (2015). doi:10.1038/srep12004
            
         
          
          
      
       
       
          True
      
   




