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SiNG-PCRseq: Accurate inter-
sequence quantification achieved 
by spiking-in a neighbor genome 
for competitive PCR amplicon 
sequencing
Soo A Oh1, Inchul Yang2, Yoonsoo Hahn3, Yong-Kook Kang4, Sun-Ku Chung1 & 
Sangkyun Jeong1

Despite the recent technological advances in DNA quantitation by sequencing, accurate delineation 
of the quantitative relationship among different DNA sequences is yet to be elaborated due to 
difficulties in correcting the sequence-specific quantitation biases. We here developed a novel DNA 
quantitation method via spiking-in a neighbor genome for competitive PCR amplicon sequencing 
(SiNG-PCRseq). This method utilizes genome-wide chemically equivalent but easily discriminable 
homologous sequences with a known copy arrangement in the neighbor genome. By comparing the 
amounts of selected human DNA sequences simultaneously to those of matched sequences in the 
orangutan genome, we could accurately draw the quantitative relationships for those sequences 
in the human genome (root-mean-square deviations <0.05). Technical replications of cDNA 
quantitation performed using different reagents at different time points also resulted in excellent 
correlations (R2 > 0.95). The cDNA quantitation using SiNG-PCRseq was highly concordant with the 
RNA-seq-derived version in inter-sample comparisons (R2 = 0.88), but relatively discordant in inter-
sequence quantitation (R2 < 0.44), indicating considerable level of sequence-dependent quantitative 
biases in RNA-seq. Considering the measurement structure explicitly relating the amount of different 
sequences within a sample, SiNG-PCRseq will facilitate sharing and comparing the quantitation data 
generated under different spatio-temporal settings.

Recent advances in sequencing technology allow transcriptome-wide sequencing (RNA-seq) to generate 
information on abundance and variation at the level of a single nucleotide1–5. While this approach is 
highly reproducible and effective for estimating inter-sample differences6, it is yet to be used to accurately 
represent the relative quantities of different transcripts. Various procedural biases including random 
hexamer priming and flow cell attachment lead to incorrect inter-sequence quantities, resulting in a 
distorted transcriptomic landscape7–9. To negate such biases, adjustments in standard RNA-seq have 
implemented statistical and/or in-experiment designs such as incorporating standard RNA molecules 
or uniquely labeling each molecule for identification7–13. Nonetheless, more work is still necessary to 
determine whether these biases are completely corrected.
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Besides transcriptome-wide analysis, a large part of biological and clinical research requires approaches 
that target for a selected group of transcripts. These approaches, in general, construct sequence librar-
ies with target sequences captured using a tiling array14 or soluble probes15, or with competitive PCR 
amplicons16. In terms of inter-sequence quantitative representation, capture approaches suffer procedural 
biases similar to those of RNA-seq. Competitive PCR approach provides a means to account for the 
procedural biases by normalizing target quantities with known quantities of corresponding competitor 
templates. Because competitor templates have undergone the same biochemical events, they are assumed 
to have the same biases as their targets16. However, a critical limitation of this procedure is that different 
sets of competitor templates need to be manufactured, potentially by different manufacturers and under 
precise conditions to maintain the quantitative integrity.

The ultimate goal of nucleic acid quantitation is to estimate the number of molecules of every kind in 
a sample. This measurement is most effective for and applicable to samples that represent a quantitatively 
defined entity, such as a whole, single blastomere. For a sample that is a representative of a population, 
such as most biological samples are, it is more practical and useful to determine the relative quantities of 
the components in the sample. This enables one to define the quantity of a sequence as the relative value 
to the internal standard that represents the quantity of a standard sequence or group of sequences in the 
sample. If two or more independent measurements for different sets of partially overlapping components 
are acquired for the same sample, the measurement facilitates the quantitative comparison between the 
sets using the shared components.

We previously reported a method that determines the relative quantities of different sequences using a 
quantitative competitive PCR strategy17. In this approach, competitor templates were arranged in a plas-
mid to form a competitor array so that their relative quantities in the plasmid are explicitly known, thus 
providing definitive quantitative relationship of the competitor templates. In combination with melting 
analysis for allele quantitation18, this quantitation approach was proven to be highly accurate and pre-
cise in quantitating small numbers of sequences. Here, we further extended this concept to develop the 
spiking-in neighbor genome-coupled competitive PCR amplicon sequencing (SiNG-PCRseq for short). 
SiNG-PCRseq employs the genomes of species that are evolutionary neighbors (neighbor genome) as 
competitor templates, and achieves high-throughput using next generation sequencing (NGS) to quan-
titate competing sequences in amplicons. Since the neighbor genome contains a repertoire of com-
petitor templates with known copy number arrangement for a wide range of target transcripts, this 
approach meets the demand for targeted inter-sequence quantitative RNA-sequencing for any category 
of sequences.

Results
Experimental structure of SiNG-PCRseq for accurate inter-sequence quantitation. Figure. 1a 
illustrates the systematic procedure of SiNG-PCRseq to represent the quantities of a group of selected 
human cDNA sequences to standardized values with a reflection of their relative quantities. A set of 
experiments was composed with three sample groups using the orangutan genomic DNA (gDNA) as a 
spike-in competitor array to test our method for the quantitation of human sequences in gDNA (Group 
G) and cDNA samples (Group F and I) (Fig.  1b). Since the relative quantities of most transcriptomic 
sequences in human gDNA are explicitly known, analysis of gDNA sample allows us to determine the 
accuracy of our method. This set of experiments was repeated from the spike-in step for gDNA samples 
and from cDNA preparation for cDNA samples with an alternation of two different Taq polymerases 
to form Rep1 and Rep2 experimental sets as a technical replication. This configuration also enabled us 
to test the reliability and consistency of measurements between different experimental conditions and 
timing (such as occurs between different laboratories).

By aligning the human reference mRNA sequences for 263 genes to orangutan genome sequence, 
we designed, in total, 495 primer pairs to generate the amplicons, with an average size of 67 base pairs 
(SD =  10.4), carrying mostly single nucleotide inter-species variations (ISVs, for more information, see 
Supplementary table 1). The amplicons generated by 24 rounds of ~21-plexing PCR for each spiked-in 
sample were pooled and processed for sequencing library construction, during which the integrity 
and inter-sample consistency of the intermediary amplicon DNAs were verified by gel electrophoresis 
(Supplementary figure 1). Analysis of amplicon sequences that were generated with human (G0) or oran-
gutan gDNA only (G10) identified 425 ISV-containing amplicons mapped onto 248 genes. The remaining 
70 sequences were either not amplified at all (n =  4) or deficient for ISV (n =  66). The species-specific 
sequences were then used to construct a reference sequence library to which the amplicon sequences 
of other samples were aligned. The number of sequences aligned with 100% identity to the library 
sequences ranged between 1.4–2.9 and 1.2–1.9 million reads per sample in Rep1 and Rep2 sets, respec-
tively. This figure accounts for approximately 61% of total sequence reads for the corresponding samples 
(Supplementary figure 2). Read depths for each amplicon (the sum of both the target and competitor 
sequences for the respective amplicons) in different samples were highly correlated in the within-set 
comparison, while inter-set comparison showed weaker correlations (Supplementary figure 3), demon-
strating a consistent performance of each polymerase across the samples but different amplification char-
acteristics between two polymerases.
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Application of SiNG-PCRseq for gDNA samples demonstrates high measurement accu-
racy. Using the human gDNA samples with varying fractions of orangutan gDNA spike-in (Fig. 1b), 
we determined the relative abundances of subjected sequences in the genome. After sequence reads 
alignment, amplicons achieving an average of less than 200 reads per sample and more than 5% impurity 
in G0 and G10 samples were abandoned, yielding 367 (86%) and 299 (70%) amplicons for subsequent 
assessment in the Rep1 and Rep2 sets, respectively.

The fractions of human sequences (γ HSs) in individual amplicons were determined based on the read 
alignment data and are plotted in Fig. 2a. Plot patterns that are uneven within each sample but synchro-
nized across samples demonstrate directional quantity biases toward either their human or orangutan 
variant in a large part of the amplicons. The average γ HS for each amplicon in all samples was highly 
correlated between two experimental sets (Fig.  2b). The extent and preference of these biases suggests 
that their cause is intrinsic to the variant structure rather than randomly occurring. Multiple rounds of 
reactions and purifications in our experimental procedures may cause such biases by enriching a compet-
ing sequence more favorably. Indeed, the variants that carry the nucleotides mediating strong hydrogen 
bonds (G and C) appeared to be more represented than those with weak hydrogen bonds (A and T) in 
our procedures (p =  6.8E-11, Mann-Whitney test) (Supplementary figure 4).

In our approach, we assumed that the total biases toward human or its competitor sequence would 
occur to a similar extent when the biases in the sample were summed. This assumption leads to the con-
clusion that the average γ HS of all amplicons in each sample represents a close estimation of the fraction 
of human gDNA in that sample. Because one can easily calculate the extents of biases from any ampli-
cons in each sample, we therefore corrected γ HS values of all amplicons in a sample by evenly referring 
the extents of their biases in other samples (see method for more detail). As shown in Fig. 2c, the evenly 
arranged patterns of bias-corrected γ HSs (γ HScs) in all samples emphasize efficient bias correction. The 

Figure 1. Quantification scheme and experiment design. (a). Quantification of human cDNA (HS cDNA) 
for four example genes (GeneA-GeneD) to represent their relative quantities to a standard value is step-by-
step illustrated with arbitrary read numbers. Multiplexed PCR amplicons generated after spiking-in of the 
orangutan genome (PA gDNA) to the HS cDNA were sequenced to distinguish and quantitate the sequences 
according to their genic and species origins. After bias correction, the relative abundance of human sequence 
to corresponding orangutan sequence (RAH/P) was determined. RAH/P was next processed to represent it as a 
standardized quantity (StdQt), which is a relative RAH/P to a standard value such as the average of RAH/Ps.  
(b). An experimental set was composed to determine the standard quantities of a subset of sequences in 
three sample groups for analyzing human gDNA (Group G), human fibroblast cDNA (Group F) and human 
iPSC cDNA (Group I). Each group includes a series of samples with the indicated proportion of spike-in 
orangutan gDNA. The quantity of cDNA denotes a corresponding RNA quantity for cDNA conversion. Two 
experimental sets (Rep1 and Rep2) were separately made with different Taq polymerases to form a technical 
replicate.
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coefficients of variation (CVs) of γ HScs for each sample were in the range of 0.1–0.2. The extent to 
which the γ HSc values deviate from expected values were highly affected by the read depth in the Rep2 
set but only marginally in the Rep1 set (Fig. 2d), again revealing different catalytic differences between 
polymerases.

We next obtained the standardized quantities for the gDNA sequences in the sample by applying the 
γ HScs to a two-step formula. Each γ HSc were first converted to the relative abundance (RAH/P) of the 
human sequence to the copy representation of its competitor sequence in the orangutan genome so that 
they reflect the copy number differences between autosomal and X-linked sequences in male orangutan 
genome. The RAH/P quantities were then standardized to represent quantities relative to the average 
RAH/P values of all autosomal sequences in each sample. Because the quantities as such obtained for all 
amplicon sequences become comparable on the same quantitative scale, we here used the term ‘stand-
ardize’ rather than ‘normalize’. The root mean square deviations from expected values (RMSDs) of stand-
ardized quantities (StdQts) ranged from 0.15–0.26 and 0.19–0.39 for Rep1 and Rep2 sets, respectively. 
Since StdQt values are taken over five independent samples with a varying composition of spiked-in 
gDNA, we averaged the StdQt values of each amplicon in all samples (Fig. 2e). This resulted in RMSDs 
of 0.03 and 0.05 for Rep1 and Rep2 sets, respectively, demonstrating that we achieved high accuracy over 
repeated measurements.

SiNG-PCRseq is a consistent and reproducible method in cDNA quantitation. The analysis of 
human cDNAs with spike-in orangutan gDNA was performed to obtain their quantitative relationships 
in each of two human cell lines, a fibroblast (Fib) and an induced pluripotent stem cell line (iPSC) 
(Fig.  1b). Three cDNA samples were prepared with varying compositions of spike-in gDNA for each 
cell line. Procedural biases in γ HS values were corrected by referring the extents of biases that the same 
amplicons in the gDNA samples (G1–G9) exhibited in the corresponding replication set. Amplicons with 
read counts below 200 and those devoid of corresponding gDNA data for bias correction were removed 
from the analysis.

Figure 2. Determination of standard quantities of subjected sequences in human gDNA. (a). Human 
fractions (γ HSs) in the amplicons of gDNA samples were determined using sequence analysis and arranged 
in the plot such that amplicons with higher averaged γ HS in Rep1 set are placed to the left. (b). The 
averaged γ HS values of the amplicons obtained from two experimental sets are plotted in a scatter diagram 
to reveal non-random procedural biases. (c). Bias corrected human fractions (γ HScs) are plotted with the 
same amplicon arrangement as in panel (a). (d). Root mean square deviation (RMSD) of each amplicon’s 
γ HScs from the expected human fractions in the samples plotted in a scatter diagram with the amplicon’s 
read counts. (e). Averaged standard quantities of all amplicons as measured from five gDNA samples plotted 
with an arrangement such that autosomal sequences come before X-linked ones as indicated with colored 
X-axis (blue for autosomal, green for X-linked sequences).
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The RAH/P values for the Rep1 obtained thus far displayed averages of 5.3, 2.5, and 1.0 for each 
sample of iPSC and 3.0, 1.1 and 0.5 for each sample of Fib, which well reflects the varying composition 
of spike-in gDNA in different samples. Each of these average values was then used as the standard for 
determining the StdQt values for the corresponding sample (Fig. 3a), which displays a good agreement 
of StdQts obtained from three spike-in samples over a wide quantity range (RAH/P >  0.05). The CVs of 
StdQts from three samples in this quantity range were kept relatively low (less than 0.5), with averages 
of 0.13 and 0.16 for iPSC and Fib, respectively. The copy number of an autosomal unique sequence in 
1 ng of spike-in gDNA is approximately 300, which corresponds to an estimate of 15 copies of corre-
sponding human sequences with an RAH/P of 0.05. Therefore, sampling variance due to small numbers 
of templates in the PCR can be a demonstration of high measurement variance in the low RAH/P range. 
When we rearranged the data according to the order of read depth, we observed a trend indicative of a 
low read count associated with high measurement variance, but the association was not as tight as that 
seen in Fig. 3 (Supplementary figure 5). One potential reason for this weak association might be because 
of drop-out of the amplicons that did not reach a read count of 200 in the analysis. This data provides an 
insight into a dynamic measurement range for directly comparing the abundances of different sequences 
within the RAH/P of 20–0.05; these values correspond to a 400 fold difference in relative abundance. This 
measurement window can be arranged to meet one’s need simply by adjusting the ratios of spike-in 
gDNAs in cDNA samples.

The Rep2 set had inferior quantitation performance compared to the Rep1 set, as many of the ampli-
con sequences in the Rep2 set were excluded from the analysis due to low read depths, resulting in 240 
(56%) retrieved sequences as compared to 365 (86%) in the Rep1 set. Nonetheless, the correlation (R2) 
of log-transformed StdQts obtained for the 240 sequences common to both experimental sets were 0.95 
for both iPSC and Fib, highlighting the highly reproducible nature of our method even when performed 
under different reaction conditions at different time points (Fig. 3b).

One of our concerns in cDNA quantitation was that the quantity of a sequence so far obtained might 
be insufficient for representing the transcript abundance of the corresponding gene due to the segmental 
quantitative variations in the cDNA of the gene. We therefore wanted to address the extent of the con-
sistency in the quantitation of different cDNA positions in the same gene. Of the 230 genes that were 
initially designed to assess the cDNA abundances at their multiple loci, we were able to quantitate 106 in 
the Rep1 set (105 at two loci; 1 at three loci). The CVs of multiple loci of individual genes were averaged 
to 0.32 and 0.28 for iPSC and Fib, respectively, indicating relatively consistent quantitative representation 
of multiple loci for the same transcript. The plot of the StdQt ratios between two measurement points 

Figure 3. Determination of standard quantities in cDNA samples. (a). The quantity of each human 
sequence relative to the spike-in genome (RAH/P) with an adjustment of copy number imbalance of X-linked 
sequences, the standardized quantity of each sequence in each cDNA sample (StdQt) and the CV of three 
StdQt measures for each amplicon are separately plotted for two cell lines such that amplicons with higher 
averaged StdQts are placed to the left. The point that CV values are badly arisen is indicated by asterisks. 
(b). Log-transformed StdQts of human sequences in cDNA samples as determined from two experimental 
sets (Rep1 and Rep2) plotted in a scatter diagram for each cell line. (c). The ratio of standard quantities of 
two sequence segments in a single gene were obtained from two cell lines and visualized as a scatter plot.
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of single genes in iPSC against those in Fib revealed a relatively high correlation (R2 =  0.49), which sug-
gests common factors in the two cell lines that account for the differences in quantitative representation 
between multiple cDNA segments observed for some genes (Fig. 3c). It appears to reflect the differential 
abundances in the cDNA pool of those sequences as likely occurred by differential reverse transcription 
efficiencies on those loci and/or the existence of different isoforms in the transcript that differentiate the 
local abundance. In supporting the latter case, 11 out of 28 genes (39%) with CVs more than 0.47 (a value 
representing more than two-fold difference between two loci) were found or predicted to express at least 
one isoform that lacks one of the two loci, whereas only 17% of the remaining genes with relatively con-
sistent representation by multiple loci show such isoform profiles. This finding awaits further validation.

Differential performance in inter-sequence quantitation between the SiNG-PCRseq and 
RNA-seq. Although the quantitative landscape among different sequences determined with RNA-Seq 
is highly reproducible, these experiments have not been thoroughly validated for the fidelity of 
inter-sequence relative quantities due to lack of available technology. To address this issue, we compared 
the RNA-seq data with our measurements. The RNA-seq data for the same cells used in this study was 
obtained in a companion study that assesses the effect of chimpanzee RNA spike-in on the normalization 
of RNA-seq data of human samples (Yu, H. et al., manuscript submitted). Read counts for the reference 
mRNAs corresponding to the amplicons in this study were normalized with their length to yield RPKM 
values. For this comparison, we selected items that fall into a set of specific criteria in order to include 
the qualified measurements only; those with an RAH/P of more than 0.05 in all samples in SiNG-PCRseq 
and those with read counts more than 40 in RNA-seq. RAH/P and RPKM values were standardized 
using the averages of those respective values of the selected items. The gene-by-gene correlations (R2) of 
log-transformed StdQt values between two approaches were 0.43 and 0.40 for iPSC and Fib, respectively 
(Fig.  4a), indicating considerable differences in measurements of inter-sequence quantitation between 
two methods. The fold difference of standardized quantities between two cells (I/F) are highly corre-
lated between two measurements (R2 =  0.88) (Fig. 4b). Of the 281 items, only 38 (13%) exhibited more 
than two fold differences between the I/F values of two measurements. The kernel density plot also 
demonstrates good agreement between the two approaches in inter-sample quantitative comparison. To 
examine whether the differences in StdQts between the two methods were due to a systematic bias, we 
calculated the gene-by-gene biases between the StdQts for iPSC and applied them to correct the biases 
in Fib. As shown in Fig. 4c, the bias-corrected StdQts of RNA-seq-derived data were highly correlated 
with those of SiNG-PCRseq-derived data. These results suggest the equivalent performance of the two 
methods in acquiring inter-sample quantitative differences of the same cDNAs, and the systemic bias 
between the two methods that accounts for the discordant intermolecular quantitative landscapes.

Discussion
In this work, we presented SiNG-PCRseq with ample experimental evidence that demonstrates its 
reliability and reproducibility in accurately quantitating DNA sequences with an emphasis on the 
inter-sequence relative quantitation. Our method takes advantage of a neighbor genome by using it 
as a transcriptome-wide repertoire of sequences homologous to the target. Currently more than one 
hundred eukaryotic annotated genome sequences are available, allowing the application of this method 
for samples from a variety of species, ranging from worms to humans (http://www.ncbi.nlm.nih.gov/
genome/annotation_euk/all/). As the outcomes of SiNG-PCRseq are the quantities of target sequences 
relative to the quantitation standard, one can easily compare these results even between different species 
if the standards used in those species are biologically or analytically equivalent to one another16,17. The 
quantitation standard can be adapted with the RAH/P of a single sequence or a combination of sequences 
in a biological relationship. For example, a gene set comprising transcriptional machinery can be used 
as a standard to express each measurement as the transcript level in relation to cellular transcriptional 
activity. Thus, the merit of this method is that the quantities measured from various biological samples 
are comparable by the common standard, no matter when or where they are obtained. In addition, stand-
ardization of the quantitative landscape is flexible and can be performed later by using shared sequences 
as quantitation standard in new samples that come into comparison, allowing every measurement for 
multi-time use availability.

One element that improves the reliability of our method is the algorithm that corrects the proce-
dural biases. Multiple rounds of PCR amplifications might be a major cause leading to distortion of 
the original composition of competing sequences in the final end products. These biases did not occur 
randomly but appeared to be related to the variation structure of competing sequences. This type of 
bias can be corrected efficiently using one or multiple reference samples that the biases of a competing 
sequences and the fractions in those reference samples are known18,19. Here we took the average γ HS 
of all amplicons in each gDNA sample as the human gDNA fraction of that sample for bias correction 
since we assumed that the extents of total biases toward human and orangutan sequences are equal. The 
validity of this assumption is supported by high correlations with regression slopes near 1 between the 
StdQt values obtained for cDNA samples with two independent measurements (Rep1 set and Rep2 set) 
where different reference values were applied for bias correction (Fig. 3b). This also adds convenience in 
the utility of our method as it eliminates the need of determining the fractions of ISV sequences in the 
reference samples for bias correction.
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In the analysis of cDNAs, we were able to quantitate 106 genes for their cDNAs at multiple different 
loci. About half of them (44% of Fib and 48% of iPSC for Rep1 set) exhibited consistent quantitative rep-
resentation at multiple loci (less than 20% difference between the loci), suggesting a uniformity of reverse 
transcription efficiency throughout the mRNAs of those genes. However, we have yet to validate whether 
the existence of multiple isoforms and/or the different reverse transcription efficiencies in different loci 
are responsible for larger differences in quantitation for rest of the genes. Our quantitation scheme could 
be applied to the delineation of quantitative relationships among isoforms of any single gene. Quantitative 
information on isoforms of a transcript could be obtained by comparison of a set of isoform-specific 
amplicons that have been properly calibrated with respect to inter-species nucleotide variations. However, 
this will require sufficient presence of isoform- or exon-specific nucleotide variations between the target 
and internal standard species. If a neighbor genome does not have sufficient occurrence of exon-specific 
sequence variations, synthetic standards with defined exon- or isoform-specific nucleotide variations 
could be alternatively used for this purpose17. Nonetheless, our method shows potential of addressing a 
critical concern in transcriptome analysis, i.e. the paucity of applicable means to analyze the quality of 
reversely transcribed cDNA in terms of uniformity in the representation throughout an entire transcript4.

Our study underwent a massive sequencing of a pool of 26 samples consisting of 495 amplicons 
encompassing 263 genes, yielding 75.4 million reads from single-end reading. Due to the stringent align-
ment and dropping out of sequences that do not distinguish species origin, sequences enrolled in the 

Figure 4. Comparison of SiNG-PCRseq with RNA-seq. (a). The log-transformed standardized quantities 
obtained from two different quantitation approaches, SiNG-PCRseq and RNA-seq, plotted as scatter 
diagrams for two cell line samples. (b). The fold differences of cDNA quantities in two cell lines (I/F) 
determined for two different quantitation approaches and scatter plotted. Genes showing more than two 
fold differences in I/F are indicated as red. Kernel density (black solid line, right axis) plotted for fold 
differences in I/F between two measurement approaches. (c). Standard quantities derived from the RNA-seq 
method were corrected for systematic bias (StdQtcor) and are presented as a scatter plot against the standard 
quantities from SiNG-PCRseq.
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analysis were down to 46 million reads (61% of total reads). When we took into consideration of dropped 
amplicons due to lack of ISV, 71% of total reads are estimated to align to reference sequences with 100% 
identity. Based on data obtained with the Rep1 set, 6.6 million reads were sufficient for the analysis of 
365 ISV loci in a sample with triplicate set up. This corresponds to 11 samples for equivalent loci or a 
single sample for 4,000 ISV loci when analyzed with a single NGS run that yields a sequencing through-
put of 100 million single-end reads. In addition, our method would best meet the experimental need 
that focuses on small numbers of genes for comparison in a large group of samples. Thus, SiNG-PCRseq 
can flexibly accommodate the number of target sequences and samples in relatively wide ranges at one’s 
convenience.

An important parameter in this analysis is the quality of the multiplexed PCR with respect to the rep-
resentation of the amplicons with sufficient number of reads. In the analysis of gDNA samples, amplicons 
in Rep1 set were read 5,187 times in average (SD =  5,643) with a maximum count (MAX) of 36,000 and 
95% coverage (≥200 reads) in amplicon assessment. On the other hand, the Rep2 set performed worse 
than Rep1 set, with 4,626 read counts on average (SD =  12,811) with MAX of 194,000 and 77% coverage. 
In this regard, it is desirable to set the reaction condition or to use the enzyme that guarantees a better 
profile in acquiring the quantitative uniformity among the different amplicons.

The SiNG-PCRseq uses a neighbor genome as an array of competitor templates for competitive PCR 
and adapts NGS for quantitative analysis of multiple amplicon sequences. This analytical configura-
tion was proven to be highly accurate and reproducible in the analysis of gDNA and cDNA sequences. 
Considering the capability to standardize the quantities of individual sequences using internal standard, 
the utility of SiNG-PCRseq could be substantiated for a range of biomedical applications by facilitating 
sharing and comparing the quantitation data generated different laboratories and times.

Methods
Cell culture and nucleic acid preparation. A lymphoblastoid cell line from a male orangutan and a 
human foreskin fibroblast cell line were purchased from Public Health England and System Biosciences, 
respectively. Cells were maintained in either RPMI1540 (lymphoblastoid cells) or DMEM (fibroblast 
cells) media containing 15% FBS. Human iPSC was derived from a human immortalized lymphoblastoid 
cell line by following the protocol reported previously20,21 under the approval of the Institutional Review 
Board committee of the Korea Institute of Oriental Medicine (I-1210/002/002-02) and maintained under 
mTesR1 conditional medium (Stemcell Technologies Inc.) with 0.5 mM sodium butylate (Sigma) and 
25 μ M SB431542 (Sigma). Genomic DNAs and total cellular RNAs were isolated using G-DEXTM IIC 
(iNtRON Biotechnology, Korea) and TRIzol®  Reagent (Life Technologies), respectively, following the 
manufacturer’s instructions. cDNA was prepared from 1μ g of total RNA using iScriptTM cDNA Synthesis 
Kit (BioRad), as recommended by the manufacturer.

PCR. Human reference mRNA sequences for 263 genes were retrieved from the NCBI Reference 
Sequence Database and individually aligned to their respective Pongo abelli (Sumatran orangutan) 
genome sequence (NCBI Pongo_pygmaeus_abelii-2.0.2 assembly) via BLAST to find homologous 
sequence stretches containing as few nucleotide ISVs as possible. The genes in this study were cho-
sen based on our own research interests: the majority of the genes are related to epigenetic regulation 
mechanisms (Supplementary Table 3). Homologous sequence stretches were subjected to Primer322 to 
design primer pairs that bind both human and orangutan sequences simultaneously in PCR amplicon 
while possessing the small numbers of ISV nucleotides in its amplicons to discriminate species origin. 
Primers were pooled into 24 groups of ~20 pairs in such a way that multiple primer pairs for a single 
transcript are separately assigned to different groups, to avoid the production of unintended amplicons. 
A multiplexed PCR reaction was carried out using each primer group and either of two Taq polymerases, 
SolgTM h-Taq DNA polymerase (SolGent, Korea) or FastStart Taq polymerase (Roche) for the Rep1 set 
or Rep2 set, respectively, with the following conditions: 15 min of enzyme activation at 95 °C followed by 
40 cycles of 95 °C for 20 s, 55 °C for 25 s, and 65 °C for 2 min.

Sequencing. All amplicons generated with 24 rounds of multiplexed PCR were pooled together using 
equal volumes for each sample. Sequencing libraries were constructed by a set of reactions with inter-
mittent purifications using ExpinTM PCR (GeneAll, Korea). The reactions include 5′ -end phosphoryla-
tion, adaptor ligation and 2 further PCR amplifications to attach the sequence module enabling flow 
cell attachment, sequencing primer binding and barcoding. All PCR reactions were performed using 
the corresponding Taq polymerase for Rep1 set or Rep2 set. The 5′ -ends of purified pooled amplicons 
(1 μ g) were phosphorylated using T4 Polynucleotide Kinase (Promega) following the manufacturer’s 
recommendation. Ten microliter of Y-shaped adaptor molecule (15 μ M, see Supplementary table 2 for 
oligonucleotides information) for the Illumina sequencing platform was added to the phosphorylated 
amplicon (6 ng) using T4 Ligase (Promega). A first PCR for sequence module attachment was carried 
out using the purified adapted amplicons (4 pg) and primers, MP1 and MP2, with a reaction condition, 
15 min of enzyme activation at 95 °C followed by 20 cycles of 95 °C for 10 s, 65 °C for 30 s, and 72 °C for 
2 min. A second PCR was performed using the purified first PCR amplicon (0.05 volume of the first 
PCR) and its primers (MP1 and one of IdxPs) to complete the sequence module attachment using the 
same reaction conditions of first PCR but with 10 thermal cycles. The barcoded sequencing libraries 
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for all samples were pooled with equivalent amount and subjected to a multiple parallel sequence using 
Illumina HiSeq 2500 platform with a single-end 100 base pair reading.

Sample-specific reference sequences. The initial human and orangutan reference sequences were 
obtained from the National Center for Biotechnology Information (NCBI) database. However, these 
sequences could not be readily exploited in this study due to possible sequence variations. To identify 
specific reference sequences for the human and orangutan cells used in this study, amplicon sequences 
derived from pure human (G10) or orangutan (G0) samples were analyzed. First, BLAST searches of 
amplicon reads of pure samples against the NCBI reference sequences were performed. The command 
line parameter was: “blastn -task blastn -db INIT_REF -outfmt 10 -evalue 1e-5,” where “INIT_REF” is 
a BLAST-searchable database containing the initial human and orangutan reference sequences obtained 
from the NCBI. BLAST outputs were parsed using a series of ad hoc Perl (version 5.18.2) scripts. Reads 
that matched a reference sequence with an aligned length of at least 75 bp or with a query coverage of at 
least 90% were collected. Then, the reads of each amplicon target were multiply aligned and a consensus 
sequence was constructed. At each aligned position, sequences exhibiting at least 25% of total reads were 
retained. Sequences that were monomorphic (sequences with heterozygous positions were discarded) 
and had high sequencing depth (greater than or equal to 100) were retained. Finally, human/orangutan 
sequence pairs that had sequence difference between the two species were collected as the sample-specific 
reference sequences: a final sample-specific reference sequence database containing 425 sequence pairs 
was constructed.

Amplicon reads identification. Reads of amplicon-mix samples were identified by BLAST searches 
against the sample-specific reference database. The command line parameter was: “blastn -task blastn 
-db NEW_REF -outfmt 10 -evalue 1e-5 -perc_identity 100,” where “NEW_REF” is a BLAST-searchable 
sample-specific reference sequence database. BLAST outputs were parsed using a series of ad hoc Perl 
scripts. Reads that aligned a unique reference sequence with 100% sequence identity over a length of at 
least 75 bp or with a query coverage of at least 90% were assigned to the reference sequence. For each 
amplicon target, numbers of reads derived from the human mRNA and the orangutan genome were 
counted and their ratio was calculated (Supplementary table 4).

Bias correction. Deviations in the fractional quantities of amplicons from original values in the 
sample were corrected as previously reported18 with a slight modification to utilize multi-point refer-
ences. The above reference uses a single reference mixture with an equal contribution of two competing 
sequences, A and B. According to this reference, the bias corrected fraction of the sequence A, γ Ac, in a 
sample can be obtained using the following equation:

γ
γ

γ =
γ ×

γ × + γ × γ ( )
A

A
A A B

B
B 1

H

H H
C

where γ A and γ B are the observed fractions of A and B in the sample and γ AH, and γ BH are those in 
the equi-molar reference, respectively. We modified this equation for the reference sample with known 
but unequal fractions of A and B, pA and pB, and with observed fractions, γ ARef and γ BRef, respectively, 
as below:

γ γ
γ γ γ γ

γ =
× ×

× × + × × ( )
A
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pA A B pB A B 2
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This equation was further extended to fit the situation where multiple reference samples are used for 
bias correction as below,

γ =
∑

( )

γ γ
γ γ γ γ

× ×
× × + × ×A

n 3

pA A B
pA A B pB A B

C

i i Refi

i i Refi i Refi i

Data analysis. Statistical analysis for pairwise Pearson correlation and linear regression was performed 
using Microsoft Excel 2010 (version 14.0.7140.5000). Non-Gaussian distributed variables such as StdQt 
values were log-transformed before subjecting the data to linear regression analysis. The non-parametric 
Mann-Whitney test was performed using the SPSS software package (ver. 22) for testing the difference 
of medians between the two γ HS data sets, W (n =  161) and S (n =  165), representing the nucleotides 
for weak and strong hydrogen bonds, respectively.

References
1. Blencowe, B. J., Ahmad, S. & Lee, L. J. Current-generation high-throughput sequencing: deepening insights into mammalian 

transcriptomes. Genes & development 23, 1379–1386. doi: 10.1101/gad.1788009 (2009).
2. Metzker, M. L. Sequencing technologies - the next generation. Nature reviews. Genetics 11, 31–46. doi: 10.1038/nrg2626 (2010).



www.nature.com/scientificreports/

1 0Scientific RepoRts | 5:11879 | DOi: 10.1038/srep11879

3. Ozsolak, F. & Milos, P. M. RNA sequencing: advances, challenges and opportunities. Nature reviews. Genetics 12, 87–98. doi: 
10.1038/nrg2934 (2011).

4. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by 
RNA-Seq. Nature methods 5, 621–628. doi: 10.1038/nmeth.1226 (2008).

5. Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nature reviews. Genetics 10, 57–63. doi: 
10.1038/nrg2484 (2009).

6. t Hoen, P. A. et al. Reproducibility of high-throughput mRNA and small RNA sequencing across laboratories. Nature biotechnology 
31, 1015–1022. doi: 10.1038/nbt.2702 (2013).

7. Oshlack, A. & Wakefield, M. J. Transcript length bias in RNA-seq data confounds systems biology. Biology direct 4, 14. doi: 
10.1186/1745-6150-4-14 (2009).

8. Hansen, K. D., Brenner, S. E. & Dudoit, S. Biases in Illumina transcriptome sequencing caused by random hexamer priming. 
Nucleic acids research 38, e131. doi: 10.1093/nar/gkq224 (2010).

9. Roberts, A., Trapnell, C., Donaghey, J., Rinn, J. L. & Pachter, L. Improving RNA-Seq expression estimates by correcting for 
fragment bias. Genome biology 12, R22. doi: 10.1186/gb-2011-12-3-r22 (2011).

10. Jiang, L. et al. Synthetic spike-in standards for RNA-seq experiments. Genome research 21, 1543–1551. doi: 10.1101/gr.121095.111 
(2011).

11. Schwartz, S., Oren, R. & Ast, G. Detection and removal of biases in the analysis of next-generation sequencing reads. PloS one 
6, e16685. doi: 10.1371/journal.pone.0016685 (2011).

12. Zook, J. M., Samarov, D., McDaniel, J., Sen, S. K. & Salit, M. Synthetic spike-in standards improve run-specific systematic error 
analysis for DNA and RNA sequencing. PloS one 7, e41356. doi: 10.1371/journal.pone.0041356 (2012).

13. Fu, G. K., Hu, J., Wang, P. H. & Fodor, S. P. Counting individual DNA molecules by the stochastic attachment of diverse labels. 
Proceedings of the National Academy of Sciences of the United States of America 108, 9026–9031. doi: 10.1073/pnas.1017621108 
(2011).

14. Mercer, T. R. et al. Targeted RNA sequencing reveals the deep complexity of the human transcriptome. Nature biotechnology 30, 
99–104. doi: 10.1038/nbt.2024 (2012).

15. Levin, J. Z. et al. Targeted next-generation sequencing of a cancer transcriptome enhances detection of sequence variants and 
novel fusion transcripts. Genome biology 10, R115. doi: 10.1186/gb-2009-10-10-r115 (2009).

16. Blomquist, T. M. et al. Targeted RNA-sequencing with competitive multiplex-PCR amplicon libraries. PloS one 8, e79120. doi: 
10.1371/journal.pone.0079120 (2013).

17. Jeong, S., Yu, H. & Pfeifer, K. Accurate measurement of the relative abundance of different DNA species in complex DNA 
mixtures. DNA research 19, 209–217. doi: 10.1093/dnares/dss002 (2012).

18. Jeong, S., Hahn, Y., Rong, Q. & Pfeifer, K. Accurate quantitation of allele-specific expression patterns by analysis of DNA melting. 
Genome research 17, 1093–1100. doi: 10.1101/gr.6028507 (2007).

19. Yu, H., Koo, I. & Jeong, S. Relative quantitation of restriction fragment length polymorphic DNAs via DNA melting analysis 
provides an effective way to determine allele frequencies. Genomics 94, 355–361. doi: 10.1016/j.ygeno.2009.08.004 (2009).

20. Okita, K. et al. A more efficient method to generate integration-free human iPS cells. Nature methods 8, 409–412. doi: 10.1038/
nmeth.1591 (2011).

21. Choi, S. M. et al. Reprogramming of EBV-immortalized B-lymphocyte cell lines into induced pluripotent stem cells. Blood 118, 
1801–1805. doi: 10.1182/blood-2011-03-340620 (2011).

22. Untergasser, A. et al. Primer3—new capabilities and interfaces. Nucleic acids research 40, e115. doi: 10.1093/nar/gks596 (2012).

Acknowledgements
This study was supported by grants from Korea Institute of Oriental Medicine (K14070), National 
Research Foundation of Korea (2014M3A9D7034335), Korea Research Institute of Standards and Science 
(14011008) (I. Y.) and NRF-SRC program (2011-0030049) (Y-K. K).

Author Contributions
S.O., Y.H., S-K.C. and S.J. performed the experiments and data analysis, S.O., I.Y., Y- K.K. and S.J. designed 
the study, and S.O., and S.J. wrote the manuscript, which was shared and revised by all co-authors.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Oh, S. A. et al. SiNG-PCRseq: Accurate inter-sequence quantification 
achieved by spiking-in a neighbor genome for competitive PCR amplicon sequencing. Sci. Rep. 5, 
11879; doi: 10.1038/srep11879 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The 
images or other third party material in this article are included in the article’s Creative Com-

mons license, unless indicated otherwise in the credit line; if the material is not included under the 
Creative Commons license, users will need to obtain permission from the license holder to reproduce 
the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	SiNG-PCRseq: Accurate inter-sequence quantification achieved by spiking-in a neighbor genome for competitive PCR amplicon sequencing
	Introduction
	Results
	Experimental structure of SiNG-PCRseq for accurate inter-sequence quantitation
	Application of SiNG-PCRseq for gDNA samples demonstrates high measurement accuracy
	SiNG-PCRseq is a consistent and reproducible method in cDNA quantitation
	Differential performance in inter-sequence quantitation between the SiNG-PCRseq and RNA-seq

	Discussion
	Methods
	Cell culture and nucleic acid preparation
	PCR
	Sequencing
	Sample-specific reference sequences
	Amplicon reads identification
	Bias correction
	Data analysis

	Additional Information
	Acknowledgements
	References



 
    
       
          application/pdf
          
             
                SiNG-PCRseq: Accurate inter-sequence quantification achieved by spiking-in a neighbor genome for competitive PCR amplicon sequencing
            
         
          
             
                srep ,  (2015). doi:10.1038/srep11879
            
         
          
             
                Soo A Oh
                Inchul Yang
                Yoonsoo Hahn
                Yong-Kook Kang
                Sun-Ku Chung
                Sangkyun Jeong
            
         
          doi:10.1038/srep11879
          
             
                Nature Publishing Group
            
         
          
             
                © 2015 Nature Publishing Group
            
         
      
       
          
      
       
          © 2015 Macmillan Publishers Limited
          10.1038/srep11879
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep11879
            
         
      
       
          
          
          
             
                doi:10.1038/srep11879
            
         
          
             
                srep ,  (2015). doi:10.1038/srep11879
            
         
          
          
      
       
       
          True
      
   




