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Entropic Uncertainty Relation and 
Information Exclusion Relation 
for multiple measurements in the 
presence of quantum memory
Jun Zhang, Yang Zhang & Chang-shui Yu

The Heisenberg uncertainty principle shows that no one can specify the values of the non-commuting 
canonically conjugated variables simultaneously. However, the uncertainty relation is usually applied 
to two incompatible measurements. We present tighter bounds on both entropic uncertainty relation 
and information exclusion relation for multiple measurements in the presence of quantum memory. As 
applications, three incompatible measurements on Werner state and Horodecki’s bound entangled state 
are investigated in details.

In quantum mechanics, there is generally an irreducible lower bound on the uncertainty in the outcomes 
of simultaneous measurements of noncommuting observables, i.e., the uncertainty principle which dates 
back to Heisenberg1, illustrates the the difference between classical and quantum world and forms the 
basis of the indeterminacy of quantum mechanics. The Heisenberg uncertainty principle originally came 
from a thought experiment about the measurements of the position and the momentum and later was 
generalized by Kennard2 and Robertson3 to arbitrary observables X and Y with a strict mathematical 
formulation ψ∆ ∆ Ψ ,ˆ ˆ ⩾ ˆ ˆX Y X Y[ ]1

2
 where ψ(∆ ) = ( − ) Ψˆ ˆ ˆX X X2 2  represents the variance and 

, = −ˆ ˆ ˆ ˆ ˆ ˆX Y XY YX[ ]  stands for the commutator. However, the standard deviation in Robertson’s relation 
is not always a suitable measure of uncertainty4,5. In addition, even though Robertson’s relation is good 
when X and Y are canonically conjugate, the right-hand side (RHS) of Robertson’s relation depends on 
a state ψ , which will provide a trivial bound if ψ  leads to the zero expectation value of the commutator. 
This kind of uncertainty relations has been studied widely in both theory6–8 and experiment9–14.

Instead of standard deviation, Deutsch15 quantified uncertainty in terms of Shannon entropy and 
derived the entropic uncertainty relation (EUR) for any pair of observables16. Later Maassen and Uffink17 
improved Deutsch’s job and gave the following tighter entropic uncertainty relations:

( ) + ( ) − , ( )⩾H X H Y clog 1

where H(X) (H(Y)) is the Shannon entropy of measurement outcomes when a measurement of observ-
able X (Y) is performed on a state ρ, and = | | 〉|,c x ymax i j i j

2 quantifies the complementarity of the 
non-degenerate observables X and Y with , | 〉x yi j

 denoting their eigenvectors, respectively. It is obvious 
that the bound in Eq. (1) is state-independent. Hall extended the EUR given by Eq. (1) and presented an 
information exclusion principle which bounds accessible information about a quantum system given by 
an ensemble of states when two observables are performed on it18. The information exclusion principle 
for two observable X and Y and the ensemble ρ= , p{ }i i  is given by

( ) + ( ) ≤ + , ( ) I X I Y d c2 log log 2
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where d is the dimension of measurement and ( ) = ( ) − ∑ ( )ρ ρI X H X p H Xi i i
 is accessible informa-

tion about ensemble ε with X performed on it. Both bounds in Eqs (1,2) have been further improved to 
different extents19–21. The information exclusion principle and especially EUR have been studied 
widely4,22–26. It has been found that EUR has interesting applications in various quantum information 
processing tasks ( for example4,27–30, and references therein). In particular, considering the direct appli-
cation in quantum key distribution, Berta et al.24 generalized EUR (1) to the case in the presence of 
memory, that is,

( ) + ( ) − + ( ), ( )⩾H X B H Y B c H A Blog 3

where ρ ρ( ) = ( ) − ( )H X B H HXB B  is the conditional von Neumann entropy and H(ρ) is the von 
Neumann entropy with ρXB denoting the state after X measurement on subsystem A of ρAB and ρB denot-
ing the reduced state of ρXB. Similarly information exclusion relation was also generalized to the case of 
quantum memory by replacing the classically mixing ensemble ε with a quantum system B20, that is,

( ) + ( ) ≤ − ( ) ( )I X B I Y B r H A B: : 4H

with = ( )r d clogH
2 . In particular, we let IER abbreviate the information exclusion relation with quan-

tum memory implied. However, most of the relevant jobs usually consider the case of a pair of observ-
ables (measurements).

Recently, the uncertainty relations with multiple measurements have attracted increasing interests. 
Significant progresses have been made to seek for the uncertainty relations for more than two observ-
ables31,32, even though the uncertainty relations with two observables can automatically induce the 
corresponding uncertainty relations with more than two observables. In fact, among all the relevant 
researches, one of the most fundamental question is that the bounds are not tight enough in general or 
precisely speaking, are only tight for some particular states. So in this paper we would like to present the 
improved EUR and IER for multiple measurements in the presence of quantum memory. One will find 
that our bounds for EUR and IER are generally tighter than previous ones and state-independent, in par-
ticular, it can also be easily reduced to the case without quantum memory. As applications, we investigate 
three incompatible measurements on Werner states and Horodecki’s bound entangled states in details.

Results
Entropic uncertainty relation for multiple measurements in the presence of quantum mem-
ory. To begin with, let’s consider an uncertainty game between Alice and Bob similar to Ref. 32. Before 
the game, Alice and Bob agree on a group of measurements Π , = , , ,i N{ 1 2 }i  with αi  denoting αth 
eigenvector of the Πi. Suppose that Bob prepares a bipartite quantum state ρAB in (d ⊗  d) -dimensional 
Hilbert space and then sends particle A to Alice. Alice performs one measurement Πi and announces 
her choice to Bob. Bob tries to minimize his uncertainty about Alice’s measurement outcomes.

We proceed by deriving our uncertainty relation. To do so, let’s rearrange the measurements 
Π , = , , ,i N{ 1 2 }i  in a new order with ε denoting the new order. So Πεi

 can be understood as ith meas-
urement in the ε order. Similarly, the αth eigenvector of Πεi

 can be written as ε αi . With these notations, we 
arrive at the following EUR for the above game in the presence of quantum memory (Proof given in Methods):

∑ (Π ) = ( − ) ( ) + ,
( )ε

ε
=

⩾ H B N H A B1 max{ } 5i

N

i
U

1
1

where

∑ ∑ ∏ ε ε= − ,
( )

ε
α

ε
α α

α α

, > =

−

+α
+



⩾
p log max

6
U

N k n

N

n n
1 1

1

1
2

N
N

N

k

n n

1

1

with ε ε ρ= ( ⊗ )ε
α α

αp Tr IN N ABN
. One will find that the left-hand side (LHS) of Eq. (5) quantifies the 

total uncertainty about the measurement outcomes, whilst the right-hand side (RHS) of Eq. (5) includes 
two terms. The first term ( )H A B  depends on the initial state and can describe the effects of entangle-
ment on the EUR. With the entanglement of ρAB increasing, the RHS of Eq. (5) could be negative, but 
RHS is never negative. At this moment, Eq. (5) will reduce to a trivial form ∑ (Π )= ⩾H B 0i

N
i1 . The 

second term ε
U  depends on the sequence of observables, the overlap of the projective measurements and 

the last observable’s probability distribution, it describes the measurement incompatibility.
When only two measurements Π1 and Π2 are considered, by a simple substitution, our EUR Eq. (5) becomes

(Π ) + (Π ) ( ) + , ( )⩾H B H B H A B C 71 2 12

where Cij =  max{Cij,Cji} with α α= −∑ |〈 〉|α
α

αC p log maxij j i j
2

j
j

i
. It is easy to find that this EUR is just 

consistent with the tight state-dependent bound of EUR improved by Coles20. If the state ρAB is pure, 
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ρ(Π ) = (Π ) − ( )H B H Hi i B  and H(ρA) =  H(ρB)33. So the uncertainty relation with quantum memory 
for pure states ρAB can be given by

∑ (Π ) ( ) + .
( )ε

ε
=

⩾H B H A B max{ } 8i

N

i
U

1

Our EUR can be easily reduced to the case without quantum memory. To do so, we substitute 
ρAB =  ρ ⊗  ρa into Eq. (5), we can immediately obtain the EUR for the state ρ without quantum memory as

∑ ρ(Π ) ( − ) ( ) + .
( )ε

ε
=

⩾H N H1 max{ } 9i

N

i
U

1

It is obvious that the probability distribution in all EUR is a function of the initial state. In order to 
eliminate the state-dependency, we will take maximum over αN of ΠεN

, so ε
U  in the second term becomes

∑ ∑ ∏

∑ ∏

ε ε

ε ε

= −

− = .
( )

ε
α

ε
α α

α α

α α α

α α
ε

, > > =

−

+

, > > =

−

+

∼

α
+

+
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1
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1 1
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N k

n n

1

1

1
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Thus, the EUR independent of state can be rewritten as

∑ (Π ) = ( − ) ( ) + .
( )

∼
ε

ε
=

∼
⩾ H B N H A B1 max{ } 11i

N

i
U

1

As mentioned above, the uncertainty relations for only two observables actually automatically pro-
vides an intuitive bound. Mathematically, Bob can always employ Eq. (7) (or Eq. (3)) for each possible 
pairs of measurements of Π , = , , ,i N{ 1 2 }i , and then sum the equations in all kinds of ways and 
make a proper average finally, so long as he keeps ∑ (Π )= H Bi

N
i1  in LHS. Bob has many ways to do so 

and finally select the maximal one as the bound. It is formally given by

∑ (Π ) ≥ = ( ) + ′ .
( )=

L BH B N H A B
2

max
12i

N

i opt
all ways

ways
1

where ′ways is average value of Cij in Eq. (7) for all potential two-measurement combinations. For exam-
ple, only one way is present for N =  3 and there are 7 ways for N =  4. Eq. (12) has consistent form with 
Eqs (5) and (11), which also shows the effects of entanglement between A and B. Thus we have shown 
two approaches to obtaining the EUR. However, one will see that neither alone can serve as a good 
bound in a general case. They depend the set of observables. So the tighter EUR should be summarized 
by collecting all the contributions (also including all the possible results that we don’t know) as

∑ (Π ) ≥ , , .
( )=

 { }H B max 0
13i

N

i opt
1

1

Similarly, the state-independent EUR can also be obtained easily.

Information exclusion relation for multiple measurements in the presence of quantum mem-
ory. The IER was formulated by Hall. It looks like a transformation of the uncertainty relation based on the 
mutual information I(A : B) =  H(ρA) +  H(ρB) −  H(ρAB). Along the similar game as EUR, Alice and Bob shared 
a bipartite quantum system ρAB. Alice performs projective measurements Π{ }i  on her particle, and the particle 
at Bob’s hand becomes a quantum register that can record the relevant information. Thus the accessible infor-
mation is bounded by the IER which is given by Eq. (4). The IER implies that the information content of 
quantum observables can be increased only at the expense of the information carried by complementary 
observable. It is just a little difference from the EUR. In particular, one notes that ρ( ) = ( ) − ( )I A B H H A B: A . 
Hence we can substitute this relation into the above EURs and find the corresponding upper bounds on the 
mutual information, i.e., the IER. Following the completely parallel procedure as EUR, we can present our IER 
for multiple observables in the presence of memory as

∑ ∑(Π ) = (Π ) − .
( )= =

⩽ U LI B H:
14i

N

i
i

N

i
1

1
1

1

If we limit only two projective measurements Π1 and Π2, the IER will reduce to
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(Π ) + (Π ) (Π ) + (Π ) − ( ) − . ( )⩽I B I B H H H A B C: : 151 2 1 2 12

Analogous to EUR, for multiple measurements one can also select any pair of observables and use the 
IER given in Eq. (15). Thus one will obtain a series of equations. Keep ∑ (Π )= I B:i

N
i1  in the LHS, one 

will give an upper bound. Considering different combinations of the observables, one can obtain many 
upper bounds. We choose the minimal one as the final upper bound. Hence, such an IER can be formally 
given by

∑ (Π ) .
( )=

⩽I B:
16i

N

i opt
1

Thus the tighter bound for IER should be written as

 ∑ (Π ) , .
( )=

⩽ { }I B: min
17i

N

i opt
1

1

Similarly, from Eq. (16), one can obtain a state-independent upper bound denoted by ∼ opt. From Eq. 
(11), one can get the state-independent IER as

U B∑ (Π ) = − ,
( )

∼∼

=

⩽I B N d: log
18i

N

i
1

1

with ∼ defined in Eq. (11). The IER given in Eq. (18) is obtained by taking the maximum probability 

ε
αp
N

N. Alternatively, we can employ the concavity of the logarithm to find another bound as

∑ (Π ) = ( − ) − ( − ) ( ) + ,
( )

∼
ε

ε
=

⩽I B N d N H A B u: 1 log 1 min{ } 19i
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2
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Summarizing Eq. (18) and Eq. (19) as well as ∼ opt, one can write the state-independent IER as

  ∑ (Π ) , , .
( )

∼ ∼ ∼

=

⩽ { }I B: min
21i

N

i opt
1

1 2

The necessary derivations of the results in Eq. (21) are given in Methods.

Applications for three projective measurements. As applications, we first consider three 
two-dimensional observables measured on the Werner state which is given by34

ρ η ψ ψ
η

= +
−

, ( )
† † I

1
4 22AB

with ψ = ( + )† 00 111
2

 the maximally entangled state and η .⩽ ⩽0 1  Let X denote an observ-
able with the eigenvectors given by
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Similarly, we can define the other two observables Y and Z as follows:
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( )
Y : 1
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2
1
2 24

( , ), ( , ) . ( )Z : { 1 0 0 1 } 25

As an example, we only illustrate the state-dependent EUR and IER. The bounds of EUR and IER 
with various purities η of the Werner state are plotted in Fig. 1. As we know, if the purity 0 ≤  η ≤  1/3, 
the Werner state is separable. Figure 1(a) shows that the shape of the bounds of EUR looks like a double 
alphabet “X” when the Werner state includes no entanglement. However, with the purity increasing, the 
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bounds of EUR will become small due to the generation of entanglement of the Werner state, which 
is given in Fig. 1(c). But the crossing point of the alpahbet “X” reduces slowly. With the purity getting 
much stronger, the bound of the entropic uncertainty relation is shown in Fig. 1(e) with η =  0.95. The 
crossing points of the double alphabet “X” becomes two peaks. If the purity η gets stronger and stronger, 
which means that the entanglement of the Werner state becomes much larger, the bounds of the EUR 
will decrease further until it goes down to 0. At that moment, the bound is trivial. The opposite behaviors 
can be found for the IER which are illustrated by Fig. 1(b,d,f). However, one can find that the bounds 
of IER is still acceptable, even though the bounds for EUR could be trivial. While in Fig. 2, we set the 
azimuthal angle ϕ =  π/8 of the first observable, the blue lines correspond to the state-dependent bound 
of entropic uncertainty relation in Eq. (13) while the red dash lines correspond to the previous one in 
Ref. 32. One can find that our bound is tighter than previous one.

Next, we consider another example with three observables in three-dimensional Hilbert space. Here 
the measured state is the Horodecki’s bound entangled state which reads35.

Figure 1. The bounds of entropic uncertainty relation and information exclusion principle for the three 
measurements in two-dimensional space in the presence of quantum memory vs. the azimuthal angle 
ϕ and the polar θ of the first observable. The left column (a,c,e) correspond to the entropic uncertainty 
relation and the right column (b,d,f) correspond to the information exclusion relation. From the top to the 
bottom, the purity η of Werner state takes 0.2, 0.8 and 0.95, respectively.
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In addition, we randomly generate 3 groups of observables {Y, Z} with the eigenvectors of Y and Z 
given respectively by











( . , − . , . ),

( . , . , − . ), ( . , . , . )

(− . , . , − . ),

( . , − . , − . ), ( . , . , . ) ,











(− . , − . , . ),

(− . , . , . ), (− . , − . , − . )

( . , − . , − . ),

( . , − . , . ), ( . , . , . ) ,











( . , . , − . ),

( . , − . , − . ), ( . , . , . )

(− . , . , . ),

(− . , − . , . ), ( . , . , . ) . ( )

Y

Z

Y

Z

Y

Z

: { 0 3282 0 9425 0 0633
0 6684 0 1843 0 7206 0 6675 0 2788 0 6904 }

: { 0 1355 0 4003 0 9063
0 6065 0 6898 0 3953 0 7835 0 6032 0 1493 }

: { 0 1429 0 4205 0 8960
0 7427 0 6439 0 1837 0 6542 0 6392 0 4043 }
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Figure 2. The state-dependent bounds of EUR vs. the polar θ when the azimuthal angle ϕ = π/8 of the 
first observable. The blue lines correspond to the state-dependent bound of entropic uncertainty relation in 
Eq. (13) while the red dash lines correspond to the previous one in Ref. 32. From the top to the bottom, the 
purity η of Werner state takes 0.2, 0.8 and 0.95, respectively.
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The bounds of EUR and IER versus θ and ϕ are plotted in Fig. 3. The left column in Fig. 3 corresponds 
to the lower bounds of EUR and the right column corresponds to the upper bounds of IER. Each row 
corresponds to one choice of Eq. (28). All the figures show the tightness of our bounds.

Discussions
Uncertainty relations are the fundamental features of quantum mechanics and have wide applications in 
quantum information processing tasks. We have considered the EUR and IER for more than two observ-
ables in the presence of quantum memory and presented tighter bounds for them. From our results one 
can easily obtain the EUR in the absence of quantum memory. The nontrivial bounds of EUR and IER 
can be determined by the complementary of the measurements and the entanglement of the composite 
system. As a consequence, the nontrivial bounds shed new light on quantum uncertainty.

Figure 3. (color online) The bounds of entropic uncertainty relation and information exclusion relation 
for the three measurements in three-dimensional space in the presence of quantum memory vs. the 
azimuthal angle ϕ and the polar θ of the first observable. The left column (a′ ), (c′ ), (e′ ) correspond to the 
entropic uncertainty relation and the right column (b′ ), (d′ ), (f′ ) correspond to the information exclusion 
relation. In all cases, α =  0.6.
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Methods
Before the proof of Eq. (5), we would like first to give a lemma.

Lemma For a bipartite quantum system ρAB and a group of measurements Π , = , , ,i N{ 1 2 }i  
which are performed on the subsystem A, there will have the following relations:

∑ ∑ ∏ρ ε ε ε ε ρ(Π ) − ( )
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with ρ( ⋅)H AB  denoting the relative entropy.
Proof. First, we prove that a pair of the projective measurements Π1 and Π2 are acted on the inital 

quantum state, the above relation hold. That is, for N =  2, we have
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Here the inequality holds because of the adjoint concavity of relative entropy, i.e., 
ρ σ ρ σ( ) ( ( ) ( ))⩾ $ $H H  with $(·) denoting a superoperator. Thus, for a pair of measurements applied 

on the subsystem A, the following relation is satisfied:

∑ρ ε ε ε ε ρ(Π ) + (Π ) − ( )
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Now, let’s assume that when a set of nondegenerate measurements Π , = , , ,i N{ 1 2 }i  are performed 
on the subsystem A, the inequality hold for the N measurements. Thus, considering the set of meas-
urements Π , = , , , , +i N N{ 1 2 1}i , we have
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Rearrange the above inequality, we will find that
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During this process, we let the first measurement Πε1 perform on the local system A and use 
( ) ( )ρ ρΠ Π = Π − ( )ε ε εH H B H A BAB AB1 1 1

. In addition, the first and the second inequalities are 
satisfied again due to the adjoint concavity of relative entropy. The proof of the lemma is com-
pleted.

Proof of the Eq. (5). Using the lemma, the EUR of N measurements can be given as follows.
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The first and the second inequality is again based on the adjoint concavity of relative entropy 
and the third inequality holds due to the property of the relative entropy: ( ′) ( )⩾H A B H A B , 
if and only if ′ ⩾B B. In order to find the tighter bound of the EUR, one has to find the maxi-
mum of the set ,ε{ }

U  where ε ε= −∑ ∑ ∏ .ε α ε α α
α α

, > =
−

+α
+

 ⩾p log maxU
N k n

N
n n1 1

1
1

2
N N

N k
n n

1
1  The proof is 

finished.
Proof of Eq. (21). From the definitions of the mutual information ρ ρ( ) = ( ) + ( )I A B H H: A B  
ρ− ( )H AB and the conditional entropy ρ ρ( ) = ( ) − ( )H A B H HAB B , one will immediately arrive 

at

ρ( ) = ( ) − ( ). ( )H A B H I A B: 35A

Substitute this relation into Eq. (11), we have
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where the last inequality holds for (Π ) ≤H dlogi .
The proof of ∼ 2. This proof can be done from Eq. (5). Substitute Eq. (35) into Eq. (5), we 

arrive at
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Here the second inequality is satisfied because of the concavity of the logarithm function. Similarly, 
in order to find the tight bound of the IER, one has to find the minimum of the set εu{ }

I  with 
ε ε= ∑ ∏ε α

α

α α
, > =

−
+
+

⩾u log maxI
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N
n n1 1
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