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Resistance of R-Ras knockout mice 
to skin tumour induction
Ulrike May1,*, Stuart Prince1,*, Maria Vähätupa1, Anni M. Laitinen1, Katriina Nieminen1, 
Hannele Uusitalo-Järvinen1,2 & Tero A. H. Järvinen1,2,3

The R-ras gene encodes a small GTPase that is a member of the Ras family. Despite close sequence 
similarities, R-Ras is functionally distinct from the prototypic Ras proteins; no transformative 
activity and no activating mutations of R-Ras in human malignancies have been reported for it. 
R-Ras activity appears inhibitory towards tumour proliferation and invasion, and to promote cellular 
quiescence. Contrary to this, using mice with a deletion of the R-ras gene, we found that R-Ras 
facilitates DMBA/TPA-induced skin tumour induction. The tumours appeared in wild-type (WT) mice 
on average 6 weeks earlier than in R-Ras knockout (R-Ras KO) mice. WT mice developed almost 6 
times more tumours than R-Ras KO mice. Despite strong R-Ras protein expression in the dermal 
blood vessels, no R-Ras could be detected in the epidermis from where the tumours arose. The 
DMBA/TPA skin tumourigenesis-model is highly dependent upon inflammation, and we found a 
greatly attenuated skin inflammatory response to DMBA/TPA-treatment in the R-Ras KO mice in the 
context of leukocyte infiltration and proinflammatory cytokine expression. Thus, these data suggest 
that despite its characterised role in promoting cellular quiescence, R-Ras is pro-tumourigenic in the 
DMBA/TPA tumour model and important for the inflammatory response to DMBA/TPA treatment.

R-Ras is a small GTPase of the Ras family of known oncogenes that was originally identified as a close 
homolog of oncogenic H-Ras1. Despite its close structural similarity to other members of the Ras-family, 
the function of R-Ras is distinct from the prototypic Ras proteins (K-, H-, N-Ras)2. Whereas a single 
amino acid mutation can convert other members of the Ras family into oncogenes, the equivalent muta-
tions in R-Ras did not induce transformative activity3. Neither have there been any activating mutations 
reported for R-Ras in human malignancies, whereas such mutations in other Ras members are consid-
ered a common hallmark in a large number of cancers4. To further highlight the apparent non-oncogenic 
nature of R-Ras, it was recently shown that R-Ras actually inhibits all landmark features of cancer; pro-
liferation, migration and cell cycle progression in breast cancer cells in vitro5.

The distinct role of R-Ras among the Ras family also extends to cell signaling2. Unlike K- and H-Ras, 
R-Ras does not activate Raf-1 and RalGDS6. R-Ras activity elevates the affinity and avidity of integ-
rins and enhances cell adhesion to the extracellular matrix7, whereas these effects are antagonised by 
H-Ras-Raf signaling8. Furthermore, it was recently shown that endothelial R-Ras inhibits vascular cell 
proliferation and tumour invasion and promotes vascular quiescence and integrity during tumour angi-
ogenesis and in response to arterial injury9,10.

Despite a previous study indicating that R-Ras is not expressed in normal epithelial tissues10, aberrant 
over-expression of R-Ras has been reported to take place in cancers of epithelial origin, e.g. breast5, gas-
tric11 and cervical cancer12. Thus, we assumed that carcinogen-initiated tumour formation could induce 
R-Ras expression and we decided to explore the role of R-Ras in a skin epidermal carcinogenesis model 
(two-stage DMBA/TPA model) in wild-type (WT) and R-Ras knockout mice (R-Ras KO).
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Results
Dermal R-Ras plays an important role in skin tumour induction and size. To investigate the 
role of R-Ras in skin tumour formation, we treated the back skin of adult mice deficient for R-ras gene 
expression (R-Ras KO10,) and wild-type mice (WT, as control) once with a local application of the muta-
gen DMBA, and then repeatedly with the growth-promoting histone deacetylase inhibitor TPA, twice 
weekly for a period of 19 weeks. This treatment induces papillomas derived from the interfollicular 
epidermis13.

The first papillomas were observed in the WT mice 7 weeks after the beginning of the DMBA/TPA 
treatment, and after 16 weeks, all 28 of these mice had developed papillomas (Fig. 1a). The number of 
papillomas per WT mouse steadily increased reaching approximately 8 tumours per mouse after 19 
weeks (Fig. 1b). Animals with a deletion of R-Ras, however, were very resistant to skin tumour induction 
(Fig. 1a–d). Tumours arose in R-Ras KO mice 6 weeks (median) later than in WT mice. Fifty three percent 
of the R-Ras KO mice had not developed even a single papilloma after 16 weeks of treatment, whereas all 
of the WT mice had. Only 11 out of the 32 R-Ras KO mice developed more than one papilloma during 
the study and we never observed large papillomas in R-Ras KO littermates as were seen frequently in WT 
animals (Fig. 1c,d). The few papillomas in R-Ras KO mice were too small (< 2 mm diameter) to require 
angiogenesis for growth. Furthermore, we could detect almost no papillomas in histological samples 
from R-Ras KO mice, when different histological analyses (H&E, R-Ras, CD31, Ki67, apoptosis) were 
performed from the pre-set location of the back skin exposed to chemicals (Fig. 1d). During the course 
of experiments the tumours were incident in WT animals at a rate on average threefold greater than in 
R-Ras KO mice (negative binominal regression analysis: incidence rate ratio (IRR) =  3.2; 95% confidence 
interval (CI) 1.97, 5.21). At the end of the experiments (19 weeks after DMBA/TPA treatment), WT 
animals had on average almost 6 times more tumours than the R-Ras KO mice.

Skin R-Ras expression is restricted to blood vessels in the dermis. Strong R-Ras protein 
expression was detected by western blot analysis both in untreated and DMBA/TPA-treated skin of the 
WT mice (Fig. 2a). Interestingly, R-Ras protein levels seemed to slightly decrease in the WT following 
DMBA/TPA treatment (Fig. 2a). We also confirmed the total lack of R-Ras protein in the R-Ras KO mice 
both in untreated and DMBA/TPA-treated skin samples (Fig. 2a). We could not detect any R-Ras protein 
expression in the epidermal cell layer either in untreated or DMBA/TPA-treated WT mice (Fig.  2b). 
Blood vessels (as well as very rarely some occasional dermal cells) expressed R-Ras protein in the WT, 
but the epidermis (and tumours) remained negative for R-Ras expression (Fig. 2b).

The resistance of R-Ras KO mice to skin tumourigenesis is not associated with decreased 
vascularisation. To understand the mechanism of the tumour-promoting function of R-Ras in the 
skin, we continued to analyse the whole skin by determining the epidermal and dermal thickening, and 
the amount of vasculature (angiogenesis) in the back skin of DMBA/TPA treated and untreated mice. 
All analyses were performed from the same part of the back skin in all animals to avoid any bias (such 
as selecting a plane of analyses to go through tumour).

In untreated mice, loss of R-Ras had minor effects on epidermal and dermal thicknesses, as the 
R-Ras KO mice had a slightly thinner epidermis and thicker dermis than the WT littermates (P <  0.0001 
and P =  0.001 respectively, Supplementary Figure S2). Treatment with DMBA/TPA induced a substantial 
increase (P <  0.001) and approximate doubling in both dermal and epidermal thickness in both geno-
types; both epidermis (P =  0.0103) and dermis (not significant) being apparently slightly thicker in the 
WT mice (the analysis was performed only from areas devoid of papillomas) (Supplementary Figure S2).

As the availability of vascular supply is a limiting factor for tumour growth and it has been shown 
that tumour xenografts are hypervascularised in R-Ras KO mice9,10, we examined the vasculature in 
the skin. There was no difference between the WT and R-Ras KO mice in the density of blood vessels 
in the normal, untreated skin as determined by CD31 immunohistological analysis (Fig.  3). However, 
treatment with DMBA/TPA induced a more than 10-fold increase in the vascular density of the skin 
in both genotypes (P <  0.0001, Fig.  3), and in line with previous studies9,10 the R-Ras KO mice devel-
oped significantly more blood vessels than the WT animals (P <  0.0001, Fig. 3a), by on average almost 
three-fold. Despite the fact that WT skin had significantly less blood vessels than the R-Ras KO mice 
after the DMBA/TPA-treatment, the tumour formation required vascular supply in the WT mice as 
evidenced by the increased number of blood vessels beneath the small and large tumours, the highest 
vascular density being beneath the large > 2 mm tumours (P <  0.0001 non-tumour epidermis vs. large 
tumours and P =  0.0036 small vs. large tumours, Fig. 3b). Therefore the vascular supply of the skin did 
not account for the lack of tumour formation in the R-Ras KO animals, as they had significantly more 
blood vessels following DMBA/TPA treatment than the tumour-bearing WT mice (Fig. 3). Meaningful 
comparison of the blood vessel density between WT and R-Ras KO tumours was not possible because 
of the latter’s rarity and small size.

R-Ras KO mice have decreased dermal cell proliferation and increased dermal cell apoptosis.  
Although there was no difference in cell proliferation (as determined by Ki67) between the untreated WT 
mice epidermis and the untreated R-Ras KO mice epidermis, there were significantly more proliferating 
cells in the dermal part of the skin (excluding hair follicles) in untreated WT mice than in the untreated 
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R-Ras KO mice (P <  0.0001, Fig. 4a). Treatment with DMBA/TPA induced a significant hyperprolifera-
tive response in the skin in both genotypes (Fig. 4a), but there were no statistically significant differences 
between the WT and R-Ras KO mice, either in epidermal or dermal cell proliferation following DMBA/
TPA treatment. It was noted that (as commonly reported throughout the literature) the epidermis of 
tumours had the highest proportion of proliferating cells (Supplementary Figure S3), but in this respect 
there were no differences between WT tumours and the scarce and small R-Ras KO tumours. These data 
show that despite carcinogenesis taking place almost exclusively in the WT animals (rather than in the 

Figure 1. R-Ras is crucial for skin tumour formation. Wild-type (WT, solid line) and R-Ras knockout 
(R-Ras KO, dashed line) mice were subjected to DMBA/TPA-induced skin carcinogenesis as described in 
the methods section. Two individual trials were performed, both trials yielded a very similar outcome, and 
the data (WT: n =  13 and 15; R-Ras KO: n =  18 and 14) were combined. (a) The percentage of tumour-
free animals at each time point is shown. Because the proportional hazards assumption appeared correct, 
a survival plot was generated and analysed via log-rank (Mantel-Cox) test, as described in methods. The 
data for the WT and R-Ras KO groups were highly significantly different (P <  0.0001). The median time 
to tumour onset in the WT mice was 11 weeks, whereas for the R-Ras KO mice it was 17 weeks. (b) The 
mean number of tumours per mouse at each time point is shown ±  95% confidence interval. The data 
were analysed using STATA 13.0 software as described in methods. Because the data was count data (not 
normally distributed), a non-linear regression model was used to compare the slopes of the data. Because 
the variances of tumour number in the R-Ras KO and WT mice were larger than the means of tumour 
number (i.e. over-dispersed), negative binomial regression was selected to analyse the data. The data 
from the two groups were highly significantly different (P <  0.001). The R-Ras KO mice had on average 
3.2 ×  (95% CI 1.97, 5.21) fewer tumours than the WT mice. At the end of the trial, WT mice had on 
average 5.86 ×  more tumours than the R-Ras KO mice. (c) Representative photograph of a WT mouse at 
the end of the DMBA/TPA treatment trial, alongside a hematoxylin-eosin stained section of skin (the black 
bar represents 7 mm). The abundance of small and large tumours upon the skin can be clearly seen. (d) 
Representative photograph of an R-Ras KO mouse at the end of the DMBA/TPA treatment trial, alongside a 
hematoxylin-eosin stained section of skin (the black bar represents 6 mm). There are no visible tumours.
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R-Ras KO mice) hardly any differences could be detected between the two genotypes in the prolifera-
tion of the epidermis where the tumours manifested. Because it has been reported that knockdown of 
R-Ras in gastric cancer epithelial cells enhances cell death11, we measured apoptosis in the skin of WT 
and R-Ras KO mice via TUNEL staining. Both the WT and R-Ras KO mice were found to have signifi-
cantly more apoptotic cells in the normal epidermis (P =  0.0097 and P <  0.0001 respectively) before the 
DMBA/TPA-treatment than after (Fig. 4c), but no differences could be detected between the genotypes. 
Although there was no difference in the percentage of dermal apoptotic cells between the phenotypes 
after the DMBA/TPA treatment, significantly more apoptotic dermal cells were found in the untreated 
skin of the R-Ras KO mice than in the untreated WT mice (P =  0.0007) (Fig. 4c).

Figure 2. R-Ras is expressed exclusively in the blood vessels in the dermal part of the skin, but not 
in the epidermis. Both untreated and DMBA/TPA-treated skins were collected and either fixed for 
immunohistochemistry (IHC), or homogenised and lysed in RIPA buffer for western blot analysis, and 
R-Ras expression detected as described in the methods section. (a) Detection of R-Ras protein in Western 
blot analysis of skin lysates. The blot was stripped and reprobed with β -actin as loading control. The images 
displayed are cropped (full-length blots/gels are presented in Supplementary Figure S1). The WT mice 
were confirmed to express R-Ras in their skin, while the KO mice did not express R-Ras. The relative mean 
R-Ras protein expression was analysed by densitometry: WT untreated: 0.91 with 95% CI − 0.21, 2.034; WT 
DMBA/TPA treated: 0.52 with 95% CI 0.47, 0.57. Cropped pictures are shown. (b) DMBA/TPA-treated WT 
skin (including tumours) and R-Ras KO skin was fixed with 4% paraformaldehyde, embedded in paraffin, 
and stained for R-Ras protein expression by IHC. Representative photographs of the results are shown. 
The R-Ras KO mice were confirmed not to express R-Ras at all. In the WT mice strong R-Ras expression 
can be seen in the dermal blood vessels (red outlined arrows), while some very occasional dermal cells (or 
infiltrating migratory cells) may also weakly express R-Ras. Epidermis is devoid of any R-Ras expression. The 
black bar represents 100 μ m.
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Figure 3. Deficiency of R-Ras leads to increased angiogenic response in the dermis after DMBA/TPA 
treatment. WT and R-Ras KO littermates were subjected to DMBA/TPA-induced skin carcinogenesis 
as described in methods. Skin samples were collected, fixed and processed for IHC. (a) The percentage 
area of dermis with microvasculature was determined by immunohistochemical staining for CD31 of 
4% paraformaldehyde fixed, paraffin embedded sections of back skin (WT: n =  5; R-Ras KO: n =  4; 6 
independent measurements per animal). Quantitative analysis of blood vessel density in dermis was 
performed by Spectrum digital pathology system/Image Scope analysis software as described in methods. 
The data were Log (10) transformed to fit a normal distribution and statistically analysed via GraphPad 
Prism 6. The values are shown as mean ±  95% confidence interval. Using a standard two-sided unpaired 
T-test, after DMBA/TPA treatment, the R-Ras KO mice have significantly more blood vessels in dermis 
than the WT mice (P <  0.0001, ****) despite showing almost no tumour formation. (b) The area of dermal 
staining for CD31 was analysed in DMBA/TPA-treated WT mice with tumours (n =  5). The dermis 
beneath large tumours (> 2 mm) had significantly more blood vessels than the dermis beneath small 
tumours (< 2 mm) (P =  0.0036, **) and the normal dermis (P <  0.0001, ****). There was not enough R-Ras 
KO tumour histology data for statistical analysis due to the lack of tumourigenesis in those animals. (c) 
Representative CD31 staining for blood vessels in DMBA/TPA-treated skin is shown for the WT and R-Ras 
KO animals. Despite having almost no detectable tumours, mice lacking R-Ras show an increased number 
of blood vessels in their skin after the DMBA/TPA-treatment. (d) The number of blood vessels is increased 
beneath skin tumours during DMBA/TPA-induced carcinogenesis in the WT animals. Representative images 
of CD31 staining are shown from a region of skin (I) with no visible tumour formation, (II) with a small 
tumour and (III) with a large tumour. (IV) The DMBA/TPA-treated skin sample from a WT mouse was 
stained with class-matched mouse IgG as a specificity control. Black bar in images represents 200 μ m.
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Figure 4. Cell proliferation is reduced and the number of apoptotic cells is increased in the normal dermis 
of R-Ras KO mice. WT and R-Ras KO mice were subjected to DMBA/TPA-induced skin carcinogenesis 
as described in methods. Skin samples were collected, fixed and processed for IHC staining of proliferating 
and apoptotic nuclei as described in methods. Quantitative digital pathology analyses of scanned slides 
were performed. Statistical analyses were performed with GraphPad Prism 6 software. Results are shown 
as mean ±  95% confidence intervals. The data were analysed by standard unpaired two-tailed T-tests. (a) 
Proliferating nuclei were stained by IHC with rat anti-Ki67 antibody, and the % of proliferating nuclei 
determined (WT: n =  5; R-Ras KO: n =  5; 3 independent measurements/animal). The WT mice have 
significantly more proliferating cells in both the dermis and the epidermis following DMBA/TPA treatment 
(standard unpaired two-tailed T-tests). The same phenomenon did not take place in R-Ras KO mice epidermis 
after DMBA/TPA treatment. Interestingly, prior to treatment the R-Ras KO mice had significantly fewer 
proliferating nuclei in their normal dermis than the WT animals (P <  0.0001, ****). (b) Representative Ki67 
staining for proliferating cells in DMBA/TPA-treated skin is shown for the WT and R-Ras KO animals. 
Black bar in images represents 200 μ m. (c) Immunohistochemical TUNEL staining for apoptotic nuclei was 
performed. TUNEL morphometry measurements of % epidermal and dermal apoptosis were taken from the 
untreated and DMBA/TPA-treated groups (WT: n =  5; R-Ras KO: n =  5; 4 independent measurements/animal). 
A couple of single outlying data points were identified by Grubbs’ test and excluded. Both the WT and the 
R-Ras KO mice have significantly fewer apoptotic cells in their normal epidermis after 19 weeks of DMBA/TPA 
treatment (P =  0.0097, ** and P <  0.0001, **** respectively). Untreated R-Ras KO mice have significantly more 
apoptotic cells in their normal dermis prior to DMBA/TPA treatment (P =  0.0003, ***), and significantly more 
apoptotic dermal cells than the WT mice either before (P =  0.0007, ***) or after (P =  0.0014, **) treatment. 
(d) Representative photograph of TUNEL staining in untreated WT and untreated R-Ras KO skin. Nuclei are 
stained turquoise, and apoptotic nuclei brown/black. The black bar in images represents 100 μ m.
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Investigation of cell signalling. We decided to investigate the possible mechanism behind the skin 
tumourigenesis resistance phenotype in the DMBA/TPA treated R-Ras KO mice by studying signalling 
pathways associated with Ras.

Akt has been implicated in driving tumour formation in numerous cancers, including the DMBA/
TPA-model14, because its activation can block apoptosis, and thereby promote cell survival15. Unexpectedly, 
at the 19th week end point of the experiment, the phosphorylated Akt protein levels were dramatically 
reduced in response to DMBA/TPA-treatment and the reduction in the activation of Akt took place in 
an identical fashion in both genotypes (P =  0.0003 for WT and P =  0.0059 for R-Ras KO, Supplementary 
Figure S4a). A markedly low level of Akt phosphorylation in DMBA/TPA-induced papillomas (compared 
to carcinomas) has previously been reported14.

Ras GTPases activate cell proliferation via activation of the MAPK pathway16. First, we looked at 
the signalling events upstream of Ras, observing that Src (the phosphorylation of which is inhibited by 
R-Ras17) might be phosphorylated in slightly higher levels in untreated WT skin than in R-Ras KO skin, 
but the slight difference did not reach statistical significance (Supplementary Figure S4b). All studied 
MAPKs downstream of Ras (i.e. MEK1/2, p42 Erk1 and p44 Erk2) showed significant activation in 
similar fashion by the growth signal induced by the DMBA/TPA treatment in R-Ras KO and WT skin 
(Supplementary Figure S4c). However, no significant differences in their activation levels between the 
WT and R-Ras KO animals were detected (Supplementary Figure S4c). These results did not prompt us 
to study their role more thoroughly.

Rac1 has an essential role in tumour cell proliferation and survival18. It has been previously shown that 
Rac1 is crucial for Ras-dependent tumour formation in the same DMBA/TPA-skin carcinogenesis-model 
as employed here18. Furthermore, it was shown very recently that R-Ras is needed for Rac1 activation19,20. 
No significant changes in Rac1 expression were detected between the WT and R-Ras KO mice either 
before or after the DMBA/TPA-treatment (Supplementary Figure S4d). Phospho-Rac was undetectable 
in skin (data not shown), possibly because of its activation being dependent upon a lack of cell adhesion 
during cell migration21. Thus, this data implies that R-Ras-dependent tumour formation in the epidermis 
does not involve Rac1.

R-Ras KO mice have an attenuated inflammatory response to DMBA/TPA treatment. It is an 
established fact that tumourigenesis in the DMBA/TPA model is highly dependent upon the induction 
of acute inflammation22. It has also recently been published that the R-Ras KO mouse has a reduced 
inflammatory response to experimental autoimmune encephalomyelitis due to increased tolerance in its 
immune system23. As our cellular transformation-focused investigations yielded no clue to the mecha-
nism of resistance of the R-Ras KO mouse to DMBA/TPA-induced tumourigenesis, we decided to inves-
tigate if the R-Ras KO mouse had an attenuated skin inflammatory response to DMBA/TPA treatment. 
We measured the number of skin T-cells and infiltrating macrophages and neutrophils (via quantitative 
immunohistochemical analysis), as well as the gene expression of IL-1α, IL-6 and IL-17A in the skin (via 
qPCR analysis) at a variety of different time points following the initiation of DMBA/TPA treatment (3 h 
and 48 h post second TPA treatment, and after 19 weeks of twice-weekly TPA treatment). These cytokines 
were selected for study because, not only are they proinflammatory, but IL-17A in particular is known 
to be pro-tumourigenic in the DMBA/TPA model24,25 and to work synergistically with IL-626–28. At 3 h 
after the second TPA treatment, the R-Ras KO mice showed significantly lower levels of gene expression 
for IL-1α, IL-17A and IL-6 compared to WT (P =  0.0176, P =  0.032 and P =  0.0125 respectively, Fig. 5a). 
Gene expression of IL-17A and IL-6 in the R-Ras KO mice remained low at all of the time points tested. 
The level of IL-17A expression in the R-Ras KO mice remained low even at the 19-week time point whilst 
it was significantly elevated in the WT mice (P =  0.0189, Fig. 5a). The leukocyte count data showed the 
lack of a significant increase in skin macrophage infiltration or T-cells in the R-Ras KO mice at any time 
point, with neutrophil infiltration in the R-Ras KO mice only apparently elevated at 48 h after the second 
TPA treatment (Fig. 5b). In contrast, in the WT mice there was a clear increase in T-cell and macrophage 
numbers, which was significantly greater than in the R-Ras KO mice at the 48-h time point (P <  0.0001 
for each, Fig. 5b). At the 19-week time point the WT mice had significantly more T-cells and especially 
more neutrophils than the R-Ras KO mice (P <  0.0001 for each, Fig. 5b). When comparing the timing of 
the inflammatory differences between the WT and R-Ras KO mice, it was noted that the lack of cytokine 
expression in the R-Ras KO mice was actually most evident preceding, not following, leukocyte infiltra-
tion (extravasation) (Fig. 5). The leukocyte count data in Fig. 5b is expressed as % of total nuclei rather 
than cells per mm2 as either format gave very similar results (Supplementary Figure S5a), but the former 
is more reliable in histological areas that are slightly damaged. A measure of total cells per mm2 in all 
groups revealed that there were no differences in total cell density per mm2 dermis between the WT and 
R-Ras KO mice, either before or after treatment (Supplementary Figure S5b).

Discussion
In summary, our study indicated an important role of the small GTPase R-Ras in epidermal hyperplasia 
and tumour induction in a skin carcinogenesis-tumour model. This is striking and unexpected, as R-Ras 
has previously been associated with cellular quiescence and the inhibition of cellular proliferation and 
invasion, but not with the promotion of cancer2,5.
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Figure 5. The inflammatory response to DMBA/TPA treatment is attenuated in the skin of R-Ras KO 
mice. WT and R-Ras KO mice were subjected to DMBA/TPA-induced skin carcinogenesis as described 
in methods. Skin samples were collected from untreated mice and from mice sacrificed at 3 h and 48 h 
after the second TPA application, and after 19 weeks of treatment (twice weekly). The skin samples were 
processed either for IHC or qPCR analysis as described in methods. Results are shown as mean ±  95% 
confidence intervals. Data were analysed by normality tests and unpaired two-tailed T-tests, if needed with 
Welch’s correction (GraphPad Prism 6). (a) qPCR analysis of relative gene expression of the cytokines 
IL-1α, IL-6 and IL-17A in untreated and treated WT and R-Ras KO skin. R-Ras KO mice show 3 h post 
2nd TPA treatment significantly lower gene expression for IL-1α (P =  0.0176, *) and IL-6 (P =  0.0125, *) 
than WT mice. IL-17A gene expression is significantly reduced in R-Ras KO animals at 3 h post 2nd TPA 
treatment (P =  0.0322, *) and after 19 weeks of TPA treatment (P =  0.0189, *). These data are normally 
distributed. Animal numbers: untreated: n =  4 per strain, 3 h post 2nd TPA treatment: n =  8 per strain, 
48 h post 2nd TPA treatment: n =  9 per strain, 19 weeks: n =  8 for WT and n =  6 for R-Ras KO. ND means 
not detected. (b) Skin sections were IHC stained for markers for dermal macrophages (F4/80), dermal 
neutrophils (neutrophil elastase), or epidermal and dermal T-cells (CD3), as described in methods (WT 
n =  6; R-Ras KO n =  6). Quantitative analysis of scanned slides were performed as described in methods 
(3 independent measurements per skin section, two skin sections per animal, excluding tumours). Data is 
expressed as % of total nuclei. Neutrophil and T-cell data are mostly normally distributed, but all becomes 
normally distributed if Log10 transformed. Macrophage data is normally distributed. T-tests confirmed 
highly significant differences between the WT and R-Ras KO mice as indicated (P <  0.0001, ****). (c) 
Representative photographs of leukocyte staining in WT and R-Ras KO skin. Nuclei are stained blue, and 
leukocytes brown. The black bar in images represents 300 μ m.
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Our finding is also novel in the sense that we could not detect any R-Ras protein expression in the 
epidermis, from where the tumours arose, only in the dermal blood vessels (Fig. 2). This result is in line 
with a previous report where it was proven that normal epithelial tissues do not express R-Ras protein10 
as well as with the fact that R-Ras itself possesses very little transformative activity in cells. However, 
we could not see an induction of R-Ras expression by tumour or normal epidermal cells in response to 
chemically induced carcinogenesis, which is opposite to the finding that gastric and cervical epithelial 
tumours express R-Ras abundantly11. It has recently been published that R-Ras expression and activation 
in breast cancer cells makes the cells generally less oncogenic in vitro, and the expression of activated 
R-Ras protein is actually significantly lower in breast tumours than in the surrounding normal tissue5. 
Combined with the findings from our study, this raises the possibility that strong R-Ras expression in 
surrounding stroma or neighboring tissues could be more relevant than expression in the tumour cells 
themselves in the context of tumour initiation. Thus, a key issue is whether the strong stromal R-Ras 
expression identified around breast carcinomas5 contributes to tumour induction and formation in breast 
cancer in the same fashion as the R-Ras expression in the blood vessels in our study.

Our findings could imply that epidermal papilloma formation in WT mice (expressing R-Ras) occurs 
by mechanisms similar to those responsible for the development of gastrointestinal polyposis29. In gas-
trointestinal polyposis, it is the loss of the Lkb1 gene from surrounding mesenchymal stroma (not the 
tumour) that causes tumour formation due to reduced TGFβ  production by stromal cells that support 
the tumour, and defective TGFβ -signalling in epithelial cells, coinciding with their subsequent enhanced 
proliferation29.

Interestingly, it has recently been found that a lack of R-Ras has anti-inflammatory effects23,30. The 
DMBA/TPA skin tumourigenesis model is dependent upon proinflammatory responses, as continuous 
TPA treatment provides a constant inflammatory stimulus, and the deletion of various proinflammatory 
genes prevents the tumourigenesis22. As inflammation and cancer have been found to be highly linked, 
cancer-related inflammation is proposed to be one of the hallmarks of cancer31,32. Thus, an attenuated 
inflammatory response identified in R-Ras KO mice in response to DMBA/TPA treatment might explain 
their resistance to skin tumourigenesis. Indeed, our results (Fig.  5) support this hypothesis. We found 
a reduction of IL-1α mRNA and an even clearer reduction of IL-6 and IL-17A gene expression in the 
DMBA/TPA-treated R-Ras KO skin. The lack of IL-17A gene expression in the R-Ras KO mice per-
sisted at the 19-week time point when tumours and elevated IL-17A mRNA levels were detected in the 
WT mice. The lack of IL-17A is of particular interest because IL-17A has been proven to be strongly 
pro-tumourigenic in the DMBA/TPA model24,25, and also to be a critical cytokine in combination with 
IL-6 for the inhibition of CD4+  T-cell immunosurveillance and apoptosis, and for the enhanced recruit-
ment of macrophages and neutrophils26–28, the latter of which are pro-tumourigenic in this and other 
cancer models33,34. A reduced number of IL-17-producing CD4+ T-cells in R-Ras KO mice has been 
reported previously23.

We also found a lack of leukocyte infiltration in the treated R-Ras KO skin, which is of signifi-
cance because both CD4+ T-cells35 and neutrophils33,34 are pro-tumourigenic in the DMBA/TPA model 
and certain macrophages support tumour growth36,37. This lack of leukocyte extravasation could hypo-
thetically be explained by the lack of R-Ras in the KO endothelium, which would be likely to inhibit 
migratory leukocyte adhesion and transmigration38–40. However, the greatest deficiency in inflammatory 
cytokine gene expression in the R-Ras KO was observed at the time point (3 h) prior to extravasation 
(48 h) in response to DMBA/TPA treatment (Fig. 5). This suggests that the cells of the immune system 
already present within the untreated R-Ras KO skin have an impaired potential to express inflammatory 
cytokines in response to TPA. This is in line with the reported observation that the R-Ras KO mouse 
has an increased level of tolerogenic immune cells and a lack of proinflammatory cells23,30. It is difficult 
to postulate exactly what deficiencies of the inflammatory response in the R-Ras KO mouse are respon-
sible for its resistance to DMBA/TPA induced tumourigenesis, or the mechanism by which the loss of 
R-Ras expression has led to these deficiencies. Indeed, the striking absence of the normally increased 
macrophage and T-cell numbers in the R-Ras KO skin at 48 h after the second TPA treatment is hard 
to explain, because neutrophil numbers were still able to increase at the same time point (Fig. 5). R-ras 
has been shown to regulate the proinflammatory phospholipase Cε  (PLCε )41, which plays a crucial role 
in TPA-induced skin inflammation42. Like R-Ras KO mice, PLCε  KO mice are also resistant to tumour 
formation in the DMBA/TPA model42. However, PLCε  is expressed in keratinocytes and dermal fibro-
blasts, whilst R-Ras is not.

Here, we have shown that R-Ras KO mouse skin undergoes excessive angiogenesis in response to 
DMBA/TPA treatment (Fig. 3), and it has been published that such excessive angiogenesis in the R-Ras 
KO mouse is accompanied by excessive vascular leakage2,9,10. Although it is published that vascular leak-
age and leukocyte infiltration are not interdependent events43, they are often observed together and 
enhanced vascular permeability increases leukocyte chemotaxis44. This further underlines the unusual-
ness of the attenuated inflammatory responses observed in the R-Ras KO mouse.

Despite recent efforts to characterise the R-Ras signalling pathway, the down-stream effectors of R-Ras 
are still poorly understood2,45. Our results further emphasise the need to explore unconventional mech-
anisms of action for R-Ras in tumour induction in the skin. In particular the mechanism by which 
R-Ras affects the function of the immune system and the inflammatory response requires further study. 
Additional carcinogenesis models and the generation of conditional R-Ras knockout or conditional 
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R-Ras over-expressing mice would be useful. Such studies could shed further light upon the potential 
role of R-Ras in tumourigenesis as well as how inflammation leads to the development of cancer.

Methods
Mice. Homozygous knockout mice deficient for R-Ras expression, which were generated by an inser-
tion into the R-Ras gene region between exons 4 and 5 on chromosome 7 (R-Ras KO mice) have been 
described previously10, and were obtained from the laboratory of Masanobu Komatsu (Sanford-Burnham 
Medical Research Institute at Lake Nona, Orlando, FL. USA). Before any experiments, R-Ras heterozy-
gous mice were backcrossed eight generations with C57BL/6 strain (Harlan) to obtain R-Ras expressing 
(wild-type, WT) and R-Ras KO strain in the same background genetic strain of mice (littermates). Then 
homozygous R-Ras KO animals were bred. The genotype was determined in each animal by PCR10 and 
the lack of R-Ras expression was later confirmed by standard immunoblotting techniques. Mice were 
fed with standard laboratory pellets and water ad libitum. All animal experiments were performed in 
accordance with protocols approved by the National Animal Ethics Committee of Finland.

Skin tumour induction. R-Ras KO and C57BL/6 WT mice were treated with DMBA and TPA to 
induce skin tumours13. In brief, the backs of 8-week-old mice were shaved and 24 h later 50 μ g DMBA 
(7,12-Dimethylbenz[a]anthracene) (Sigma, Dorset, UK) in 200 μ l acetone was applied topically on the 
shaved area of the dorsal skin. After a week, the back skin of the mice was treated twice a week with 5 μ g 
TPA (12-O-tetradecanoylphorbol-13-acetate) (Sigma) in 200 μ l acetone for 19 weeks. Tumours (1 mm in 
diameter or larger) were counted twice a week. The fur excluding tumours was carefully shaved every 
two weeks.

Immunohistochemical (IHC) and TUNEL staining. Samples of back skin from sacrificed, shaved 
control mice or mice at week 19 of the tumour induction experiment were collected and fixed with 
4% paraformaldehyde and embedded in paraffin according to standard protocols. Hematoxylin/eosin 
staining and DAB immunohistochemical staining (IHC) was performed on 6 μ m thick paraffin sections. 
The following primary antibodies were used for IHC (according to the manufacturer’s instructions): 
LS-C147992 rabbit anti-R-Ras (Lifespan Biosciences, Seattle, WA, USA), M7249 TEC-3 rat anti-Ki67 and 
A0452 rabbit anti-CD3 (DakoCytomation, Glostrup, Denmark), 550274 rat anti-CD31 (BD Pharminogen, 
Oxford, UK), 68672 rabbit anti-neutrophil elastase (AbCam, Cambridge, UK) and MF48000 BM8 rat 
anti-F4/80 (Life Technologies Ltd., Paisley, UK). The blocking reagents used for IHC were S2O23 REAL 
and S0809 Antibody Diluent (Dako). In the case of blocking prior to CD3 or neutrophil elastase staining, 
G9023 goat serum or A4503 BSA (Sigma) were used respectively, at 5% in PBS. The horseradish peroxi-
dase (HRP) conjugated secondary antibody reagents used were: PO448 goat anti-rabbit (Dako), 414311F 
anti-rat Histofine (Nichirei Bio, Tokyo, Japan) and for neutrophil elastase staining RMR622 Rabbit on 
Rodent (Biocare Medical, Concord, CA, USA). XMF963 XM-Factor (Biocare) was used to block before 
secondary staining with Rabbit on Rodent. Peroxidase reactive chromogens used were K3465 DAB 
(DAKO) and RAEC810 Romulin AEC (BioCare). Immunohistochemical TUNEL staining for apoptotic 
nuclei was performed using the K403-50 TUNEL IHC Kit (Biovision, Milpitas, CA, USA) with Methyl 
Green nuclear counter stain, according to the manufacturer’s instructions.

Quantitative analysis of immunostaining and histochemical staining. All slides were scanned 
using the Aperio ScanScope®  CS and XT systems (Aperio Technologies Inc., California, USA)46. Slides 
were viewed and analysed remotely using desktop personal computers employing the web-based 
ImageScope™  viewer. The Spectrum digital pathology system analysis algorithm package and Image 
Scope analysis software (version 9; Aperio Technologies Inc.) were applied to quantify immunohisto-
chemical signal. These algorithms calculate the area of positive staining, the average positive intensity 
(optical density), as well as the percentage of weak (1+), medium (2+), and strong (3+) positive stain-
ing46. All quantified histochemical analyses (Ki-67, CD31, TUNEL) were performed according to the 
protocols used to established these algorithms for each respective staining46,47.

Preparation of skin lysates, western blot analysis and densitometry. Samples of back 
skin from sacrificed, shaved control mice or mice at week 19 of the tumour induction protocol were 
removed with a scalpel on ice. Skin was immediately frozen with liquid nitrogen and later lysed in 
10 μ l of cold RIPA buffer per 1 mg of tissue with added cOmplete protease inhibitor (Roche Applied 
Science, Penzberg, Germany) and Thermo HALT phosphatase inhibitor (Life Technologies Ltd., Paisley, 
UK). The tissues were homogenised using CK14 beads and a homogeniser (Precellys, Yvelines, France), 
and the protein concentration of the supernatants measured by Invitrogen Qubit (Life Technologies). 
From each sample 100 μ g of protein was loaded per well of an Invitrogen NuPAGE 4–12% gradient 
gel (Life Technologies) and electrophoresed alongside Invitrogen Magic Mark and See Blue standards 
(Life Technologies), and electroblotted according to the manufacturer’s instructions. For detection of 
specific proteins by immunoblotting the following primary antibodies were used (according to the man-
ufacturer’s instructions): rabbit polyclonals against total Akt (pan), Phospho-Akt (Ser473), Phospho-Src 
(Tyr416), Cdc42, Phospho-Rac1/cdc42 (Ser71), Rac1/2/3, Phospho-p44/42 MAPK (Erk1/2) (Thr202/
Tyr204), Phospho-MEK1/2 (Ser217/221), total p44/42 MAPK (Erk1/2), and R-Ras were from Cell 
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Signaling Technology (Danvers, MA, USA). Rabbit anti-β -actin was from Millipore (Espoo, Finland), 
and Goat anti-GAPDH was from AbCam (Cambridge, UK). Secondary reagents used were horseradish 
peroxidase-coupled anti-rabbit from Cell Signaling Technology. Western blot images were captured with-
out saturation via ImageQuant (GE Lifesciences, Amersham, UK) and quantified by densitometry using 
ImageJ software, where β -actin or GAPDH was used to normalise for different protein loading amounts.

Extraction of RNA. Samples of back skin were harvested and snap frozen in liquid nitrogen, stored at 
− 80 °C, and preserved in Ambion RNALater ICE Frozen Tissue Transition Solution (Life Technologies). 
The mRNA was then extracted using Invitrogen Trizol Reagent (Life Technologies) according to the 
manufacturer’s instructions, with bead homogenisation performed via Precellys’ 2 ml tubes and homog-
eniser at 4 °C. After the addition of chloroform and centrifugation, the aqueous phase was transferred 
to RNeasy columns (Qiagen, Hilden, Germany) and mRNA purification continued according to the 
manufacturer’s instructions. The concentration and quality of RNA was determined by Nanodrop A260 
measurement and by “bleach gel” analysis48.

Quantitative PCR (qPCR) analysis. Total skin RNA was converted to cDNA by reverse transcription 
using the Thermo Maxima First Strand cDNA Synthesis Kit for RT-qPCR (Life Technologies) according 
to the manufacturer’s instructions, at 55 °C for 30 min at concentrations not exceeding 150 ng/μ l. 50 ng 
cDNA (for IL-1α , IL-6, reference genes HPRT and TBP), or 100 ng cDNA (for IL-17A, HPRT and TBP) 
were used for qPCR analysis, which was performed in white 96-well Multiply PCR plates (Sarstedt, 
Nümbrecht, Germany) in a 7500 Real-Time PCR System (Life Technologies). Samples were measured 
in triplicates. The qPCR reaction was done in a reaction volume of 25 μ l with the Thermo Maxima 
SYBR Green/ROX qPCR Master Mix (2x) (Life Technologies) according to the manufacturer’s instruc-
tions with primers for IL-1α , IL-6, IL-17A (all 300 nM), and the reference genes HPRT (250 nM) and 
TBP (300 nM). See Supplementary Table S1 for primer details. As negative controls, no-template and 
no-reverse transcriptase controls were also included (which were herein negative). The thermal cycler 
profile for all primer sets was: 2 min 50 °C, 10 min 95 °C, 40 ×  (15 sec 95 °C, 30 sec 59 °C, 32 sec 72 °C data 
collection). At the end of thermal program, a melting curve analysis was always performed to check for 
unspecific PCR products (which herein never occurred). Raw fluorescence data were analysed with the 
LinRegPCR program (version 2014.8, free download http://LinRegPCR.HFRC.nl). The LinRegPCR pro-
gram is based on the methods and procedures described by Ruijter et al., 200949. It was chosen because 
it belongs to one of the most reliable methods for analysing quantitative qPCR data50,51. Cq (quantifica-
tion cycle) values of over 35 were considered as “not detected” (ND). LinRegPCR calculates the starting 
concentration N0 per sample (well) expressed as arbitrary fluorescence units, which can be seen as the 
non-normalised expression values. LinRegPCR includes in its calculation the mean PCR efficiency per 
amplicon (N0 =  threshold/(mean amplicon efficiencyCq )). N0 values were used for the calculation of rel-
ative gene expression normalised to the geometric mean52 of the 2 reference genes’ N0 values (geometric 
mean of N0 values of replicates of gene of interest divided by geometric mean of N0 values of reference 
genes). In addition, for better visualisation the relative gene expression is shown relative to the condition 
“WT untreated” (set to 1) or multiplied by a factor of 1000 (only for IL-17A).

Statistical analysis. Mean averages are shown with 95% confidence intervals. All data were analysed 
to determine if it was normally distributed (D’Agostino & Pearson omnibus and Shapiro-Wilk normality 
tests). Significance at a given time point was calculated by two-tailed Student’s t-test for normally distrib-
uted data. An alpha level less than 0.05 was considered significant. Survival plot data were analysed by 
log-rank (Mantel-Cox) test and non-normally distributed time course data were analysed by non-linear 
regression. Prism 6 (GraphPad Software, La Jolla California, USA) was used for a majority of the analy-
ses and STATA 13 (StataCorp LP, College Station, Texas, USA:) statistical analysis software was used for 
non-linear regression analysis, as indicated.

References
1. Lowe, D. G. et al. Structure of the human and murine R-ras genes, novel genes closely related to ras proto-oncogenes. Cell 48, 

137–146 (1987).
2. Sawada, J. & Komatsu, M. Normalization of tumor vasculature by R-Ras. Cell. Cycle 11, 4285–4286 (2012).
3. Lowe, D. G. & Goeddel, D. V. Heterologous expression and characterization of the human R-ras gene product. Mol. Cell. Biol. 7, 

2845–2856 (1987).
4. Pylayeva-Gupta, Y., Grabocka, E. & Bar-Sagi, D. RAS oncogenes: weaving a tumorigenic web. Nat. Rev. Cancer. 11, 761–774 

(2011).
5. Song, J., Zheng, B., Bu, X., Fei, Y. & Shi, S. Negative association of R-Ras activation and breast cancer development. Oncol. Rep. 

31, 2776–2784 (2014).
6. Ehrhardt, A., Ehrhardt, G. R., Guo, X. & Schrader, J. W. Ras and relatives--job sharing and networking keep an old family 

together. Exp. Hematol. 30, 1089–1106 (2002).
7. Zhang, Z., Vuori, K., Wang, H., Reed, J. C. & Ruoslahti, E. Integrin activation by R-ras. Cell 85, 61–69 (1996).
8. Hughes, P. E. et al. Suppression of integrin activation: a novel function of a Ras/Raf-initiated MAP kinase pathway. Cell 88, 

521–530 (1997).
9. Sawada, J. et al. Small GTPase R-Ras regulates integrity and functionality of tumor blood vessels. Cancer. Cell. 22, 235–249 

(2012).
10. Komatsu, M. & Ruoslahti, E. R-Ras is a global regulator of vascular regeneration that suppresses intimal hyperplasia and tumor 

angiogenesis. Nat. Med. 11, 1346–1350 (2005).

http://LinRegPCR.HFRC.nl


www.nature.com/scientificreports/

1 2Scientific RepoRts | 5:11663 | DOi: 10.1038/srep11663

11. Nishigaki, M. et al. Discovery of aberrant expression of R-RAS by cancer-linked DNA hypomethylation in gastric cancer using 
microarrays. Cancer Res. 65, 2115–2124 (2005).

12. Gao, Q. et al. EphB2 promotes cervical cancer progression by inducing epithelial-mesenchymal transition. Hum. Pathol. 45, 
372–381 (2014).

13. Perez-Losada, J. & Balmain, A. Stem-cell hierarchy in skin cancer. Nat. Rev. Cancer. 3, 434–443 (2003).
14. Mao, J. H. et al. Mutually exclusive mutations of the Pten and ras pathways in skin tumor progression. Genes Dev. 18, 1800–1805 

(2004).
15. Zhang, X., Tang, N., Hadden, T. J. & Rishi, A. K. Akt, FoxO and regulation of apoptosis. Biochim. Biophys. Acta 1813, 1978–1986 

(2011).
16. Fernandez-Medarde, A. & Santos, E. Ras in cancer and developmental diseases. Genes Cancer. 2, 344–358 (2011).
17. Griffiths, G. S., Grundl, M., Allen, J. S., 3rd & Matter, M. L. R-Ras interacts with filamin a to maintain endothelial barrier 

function. J. Cell. Physiol. 226, 2287–2296 (2011).
18. Wang, Z. et al. Rac1 is crucial for Ras-dependent skin tumor formation by controlling Pak1-Mek-Erk hyperactivation and 

hyperproliferation in vivo. Oncogene 29, 3362–3373 (2010).
19. Shang, X. et al. R-Ras and Rac GTPase cross-talk regulates hematopoietic progenitor cell migration, homing, and mobilization. 

J. Biol. Chem. 286, 24068–24078 (2011).
20. Sandri, C. et al. The R-Ras/RIN2/Rab5 complex controls endothelial cell adhesion and morphogenesis via active integrin 

endocytosis and Rac signaling. Cell Res. 22, 1479–1501 (2012).
21. Bryant, P. W., Zheng, Q. & Pumiglia, K. M. Focal adhesion kinase is a phospho-regulated repressor of Rac and proliferation in 

human endothelial cells. Biol. Open 1, 723–730 (2012).
22. Swann, J. B. et al. Demonstration of inflammation-induced cancer and cancer immunoediting during primary tumorigenesis. 

Proc. Natl. Acad. Sci. USA 105, 652–656 (2008).
23. Ray, A., Basu, S., Miller, N. M., Chan, A. M. & Dittel, B. N. An Increase in Tolerogenic Dendritic Cell and Natural Regulatory 

T Cell Numbers during Experimental Autoimmune Encephalomyelitis in Rras-/- Mice Results in Attenuated Disease. J. Immunol. 
192, 5109–5117 (2014).

24. Wang, L., Yi, T., Zhang, W., Pardoll, D. M. & Yu, H. IL-17 enhances tumor development in carcinogen-induced skin cancer. 
Cancer Res. 70, 10112–10120 (2010).

25. He, D. et al. IL-17 mediated inflammation promotes tumor growth and progression in the skin. PLoS One 7, e32126 (2012).
26. Roussel, L. et al. IL-17 promotes p38 MAPK-dependent endothelial activation enhancing neutrophil recruitment to sites of 

inflammation. J. Immunol. 184, 4531–4537 (2010).
27. Mills, K. H. Induction, function and regulation of IL-17-producing T cells. Eur. J. Immunol. 38, 2636–2649 (2008).
28. Hou, W., Jin, Y. H., Kang, H. S. & Kim, B. S. Interleukin-6 (IL-6) and IL-17 synergistically promote viral persistence by inhibiting 

cellular apoptosis and cytotoxic T cell function. J. Virol. 88, 8479–8489 (2014).
29. Katajisto, P. et al. LKB1 signaling in mesenchymal cells required for suppression of gastrointestinal polyposis. Nat. Genet. 40, 

455–459 (2008).
30. Singh, G. et al. R-Ras is required for murine dendritic cell maturation and CD4+  T-cell priming. Blood 119, 1693–1701 (2012).
31. Mantovani, A., Allavena, P., Sica, A. & Balkwill, F. Cancer-related inflammation. Nature 454, 436–444 (2008).
32. Fridlender, Z. G. & Albelda, S. M. Tumor-associated neutrophils: friend or foe? Carcinogenesis 33, 949–955 (2012).
33. Jamieson, T. et al. Inhibition of CXCR2 profoundly suppresses inflammation-driven and spontaneous tumorigenesis. J. Clin. 

Invest. 122, 3127–3144 (2012).
34. Gong, L. et al. Promoting effect of neutrophils on lung tumorigenesis is mediated by CXCR2 and neutrophil elastase. Mol. Cancer. 

12, doi: 10.1186/1476-4598-12-154 (2013).
35. Yusuf, N. et al. Antagonistic roles of CD4+  and CD8+  T-cells in 7,12-dimethylbenz(a)anthracene cutaneous carcinogenesis. 

Cancer Res. 68, 3924–3930 (2008).
36. Gasparoto, T. H. et al. Inflammatory events during murine squamous cell carcinoma development. J. Inflamm. (Lond) 9, doi: 

10.1186/1476-9255-9-46 (2012).
37. Noy, R. & Pollard, J. W. Tumor-associated macrophages: from mechanisms to therapy. Immunity 41, 49–61 (2014).
38. Conklin, M. W., Ada-Nguema, A., Parsons, M., Riching, K. M. & Keely, P. J. R-Ras regulates beta1-integrin trafficking via effects 

on membrane ruffling and endocytosis. BMC Cell Biol. 11, doi: 10.1186/1471-2121-11-14 (2010).
39. Kwong, L., Wozniak, M. A., Collins, A. S., Wilson, S. D. & Keely, P. J. R-Ras promotes focal adhesion formation through focal 

adhesion kinase and p130(Cas) by a novel mechanism that differs from integrins. Mol. Cell. Biol. 23, 933–949 (2003).
40. Cole, A. L., Subbanagounder, G., Mukhopadhyay, S., Berliner, J. A. & Vora, D. K. Oxidized phospholipid-induced endothelial 

cell/monocyte interaction is mediated by a cAMP-dependent R-Ras/PI3-kinase pathway. Arterioscler. Thromb. Vasc. Biol. 23, 
1384–1390 (2003).

41. Ada-Nguema, A. S. et al. The small GTPase R-Ras regulates organization of actin and drives membrane protrusions through the 
activity of PLCepsilon. J. Cell. Sci. 119, 1307–1319 (2006).

42. Ikuta, S., Edamatsu, H., Li, M., Hu, L. & Kataoka, T. Crucial role of phospholipase C epsilon in skin inflammation induced by 
tumor-promoting phorbol ester. Cancer Res. 68, 64–72 (2008).

43. Kim, M. H., Curry, F. R. & Simon, S. I. Dynamics of neutrophil extravasation and vascular permeability are uncoupled during 
aseptic cutaneous wounding. Am. J. Physiol. Cell. Physiol. 296, C848–C856 (2009).

44. Massena, S. et al. A chemotactic gradient sequestered on endothelial heparan sulfate induces directional intraluminal crawling 
of neutrophils. Blood 116, 1924–1931 (2010).

45. Xu, L. & Komatsu, M. Promoter cloning and characterization of the anti-vascular proliferation gene, R-ras: role of Ets- and Sp-
binding motifs. J. Biol. Chem. 284, 2706–2718 (2009).

46. Järvinen, T. A. & Ruoslahti, E. Target-seeking antifibrotic compound enhances wound healing and suppresses scar formation in 
mice. Proc. Natl. Acad. Sci. USA 107, 21671–21676 (2010).

47. Krajewska, M. et al. Image analysis algorithms for immunohistochemical assessment of cell death events and fibrosis in tissue 
sections. J. Histochem. Cytochem. 57, 649–663 (2009).

48. Aranda, P. S., LaJoie, D. M. & Jorcyk, C. L. Bleach gel: a simple agarose gel for analyzing RNA quality. Electrophoresis 33, 366–369 
(2012).

49. Ruijter, J. M. et al. Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res. 
37, e45 (2009).

50. Karlen, Y., McNair, A., Perseguers, S., Mazza, C. & Mermod, N. Statistical significance of quantitative PCR. BMC Bioinformatics 
8, doi: 10.1186/1471-2105-8-131 (2007).

51. Ruijter, J. M. et al. Evaluation of qPCR curve analysis methods for reliable biomarker discovery: bias, resolution, precision, and 
implications. Methods 59, 32–46 (2013).

52. Vandesompele, J. et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal 
control genes. Genome Biol. 3, research0034.1–research0034.11 (2002).



www.nature.com/scientificreports/

13Scientific RepoRts | 5:11663 | DOi: 10.1038/srep11663

Acknowledgements
We thank Marianne Karlsberg for practical support, Dr Masanoba Komatsu (Sanford-Burnham Medical 
Research Institute at Lake Nona, FL, USA) for providing the R-Ras knockout mice for the study and 
Professor Erkki Ruoslahti (Sanford-Burnham Medical Research Institute, La Jolla, CA, USA) for his 
comments, as well as Heini Huhtala and Dr Katriina Heikkilä for statistical advice and Marja-Leena 
Koskinen for immunohistological stainings. The work was funded by the Sigrid Juselius Foundation, the 
Academy of Finland, Päivikki and Sakari Sohlberg Foundation, Instrumentarium Research Foundation, 
Finnish Medical Foundation, Pirkanmaa Hospital District Research Foundation and the Finnish Cultural 
Foundation.

Author Contributions
T.J., S.P. and U.M. designed the research. U.M., S.P., A.L., M.V., K.N. and T.J. performed the research. S.P., 
U.M., T.J. and A.L. analysed the data. H.U.J., A.L. and M.V. contributed the genotyped mice littermates. 
U.M., S.P., and T.J. wrote the manuscript. U.M. and S.P. made the figures. S.P., U.M. and T.J. reviewed 
the paper.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: May, U. et al. Resistance of R-Ras knockout mice to skin tumor induction. 
Sci. Rep. 5, 11663; doi: 10.1038/srep11663 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The 
images or other third party material in this article are included in the article’s Creative Com-

mons license, unless indicated otherwise in the credit line; if the material is not included under the 
Creative Commons license, users will need to obtain permission from the license holder to reproduce 
the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Resistance of R-Ras knockout mice to skin tumour induction
	Introduction
	Results
	Dermal R-Ras plays an important role in skin tumour induction and size
	Skin R-Ras expression is restricted to blood vessels in the dermis
	The resistance of R-Ras KO mice to skin tumourigenesis is not associated with decreased vascularisation
	R-Ras KO mice have decreased dermal cell proliferation and increased dermal cell apoptosis
	Investigation of cell signalling
	R-Ras KO mice have an attenuated inflammatory response to DMBA/TPA treatment

	Discussion
	Methods
	Mice
	Skin tumour induction
	Immunohistochemical (IHC) and TUNEL staining
	Quantitative analysis of immunostaining and histochemical staining
	Preparation of skin lysates, western blot analysis and densitometry
	Extraction of RNA
	Quantitative PCR (qPCR) analysis
	Statistical analysis

	Additional Information
	Acknowledgements
	References



 
    
       
          application/pdf
          
             
                Resistance of R-Ras knockout mice to skin tumour induction
            
         
          
             
                srep ,  (2015). doi:10.1038/srep11663
            
         
          
             
                Ulrike May
                Stuart Prince
                Maria Vähätupa
                Anni M. Laitinen
                Katriina Nieminen
                Hannele Uusitalo-Järvinen
                Tero A. H. Järvinen
            
         
          doi:10.1038/srep11663
          
             
                Nature Publishing Group
            
         
          
             
                © 2015 Nature Publishing Group
            
         
      
       
          
      
       
          © 2015 Macmillan Publishers Limited
          10.1038/srep11663
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep11663
            
         
      
       
          
          
          
             
                doi:10.1038/srep11663
            
         
          
             
                srep ,  (2015). doi:10.1038/srep11663
            
         
          
          
      
       
       
          True
      
   




