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Functional annotation of HOT 
regions in the human genome: 
implications for human disease 
and cancer
Hao Li, Hebing Chen, Feng Liu, Chao Ren, Shengqi Wang, Xiaochen Bo & Wenjie Shu

Advances in genome-wide association studies (GWAS) and large-scale sequencing studies have 
resulted in an impressive and growing list of disease- and trait-associated genetic variants. 
Most studies have emphasised the discovery of genetic variation in coding sequences, however, 
the noncoding regulatory effects responsible for human disease and cancer biology have been 
substantially understudied. To better characterise the cis-regulatory effects of noncoding variation, 
we performed a comprehensive analysis of the genetic variants in HOT (high-occupancy target) 
regions, which are considered to be one of the most intriguing findings of recent large-scale 
sequencing studies. We observed that GWAS variants that map to HOT regions undergo a substantial 
net decrease and illustrate development-specific localisation during haematopoiesis. Additionally, 
genetic risk variants are disproportionally enriched in HOT regions compared with LOT (low-
occupancy target) regions in both disease-relevant and cancer cells. Importantly, this enrichment 
is biased toward disease- or cancer-specific cell types. Furthermore, we observed that cancer cells 
generally acquire cancer-specific HOT regions at oncogenes through diverse mechanisms of cancer 
pathogenesis. Collectively, our findings demonstrate the key roles of HOT regions in human disease 
and cancer and represent a critical step toward further understanding disease biology, diagnosis, and 
therapy.

Because of advances in genome-wide association studies (GWAS)1,2 and on-going large-scale cancer 
genome sequencing projects3,4, an impressive list of disease- and trait-associated genetic variants has 
been produced, and the list continues to grow. To date, most studies spanning diverse diseases and 
quantitative phenotypes have focused on genetic variation in coding sequences. These studies have sub-
stantially extended our understanding of genetic variation in coding regions, which comprise less than 
2% of the human genome. However, the role of genetic variations in noncoding regions in tumorigenesis 
have not been as extensively studied as the role of variations in coding regions, with the exception of 
some isolated examples5–9.

The recently completed Encyclopaedia of DNA Elements (ENCODE) project10,11 is by far the best 
known effort to identify functional elements in the human genome. This project has resulted in the strik-
ing conclusion that at least 20% of the genome possesses biological functions, whereas more than 80% 
exhibits biochemical functions10. Although variants in noncoding regions have been linked to diseases, 
their functional implications remain poorly understood12,13. In an effort to interpret the mechanistic roles 
of disease- and trait-associated genetic variants, recent studies have demonstrated that the vast majority 
of these variants are commonly located within regulatory DNA elements14,15. Thus, the recurrent non-
coding mutations observed in human disease and cancer could have a regulatory effect. Recent reports 
have presented several lines of evidence concerning the roles of common noncoding DNA variants in 
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transcriptional regulatory mechanisms, including the modulation of promoter and enhancer elements16–19 
and enrichment within expression quantitative trait loci (eQTL)19–21. Although the functions of only a 
minority of these variants have been described, the development of sequencing technologies has enabled 
systematic whole-genome sequencing of large collections of samples capable of elucidating possible roles 
for noncoding mutations in the formation and development of human diseases and cancers.

HOT (high-occupancy target) regions are bound by a surprisingly large number of transcription 
factors (TFs) and are considered one of the most intriguing findings of recent large-scale sequencing 
studies, such as the ENCODE and modENCODE projects. These studies have demonstrated the wide-
spread presence of HOT regions in worms22,23, flies24–28, and humans29–31, thus suggesting that HOT 
regions might reflect a general property of regulatory genomes. However, the functional significance of 
HOT regions is currently unclear32,33, as is the biological effect of these regions on human diseases and 
cancers. In our recent study34, we produced a comprehensive catalogue of transcription factor binding 
site (TFBS)-clustered regions in a broad range of human cell types and assigned a “TFBS complexity” 
score to each TFBS-clustered region. In a subsequent study, we performed an integrative analysis of 
one class of TFBS-clustered regions, HOT regions, which are defined as TFBS-clustered regions with 
extremely high TFBS complexity. We observed that HOT regions associate with genes that largely define 
the development and differentiation of the respective cell and tissue types (Li et al., in preparation). Our 
prior studies laid the foundation for a systematic annotation of the functional roles of HOT regions in 
the control of human diseases and cancers.

Here, we performed a comprehensive analysis of variants, especially noncoding variants, in HOT 
regions across diverse human cell types and tissues. We observed that GWAS SNPs that map to HOT 
regions undergo a substantial net decrease and demonstrate a cell- and development-specific localisation 
during development along the hematopoietic lineage. Additionally, HOT regions are disproportionally 
enriched for genetic variants compared with LOT (low-occupancy target) regions in both disease-relevant 
and cancer cells, and the enrichment is biased toward disease- or cancer-specific cell types. Furthermore, 
we demonstrated that cancer cells generally acquire cancer-specific HOT regions in oncogenes through 
diverse mechanisms during tumour pathogenesis. Finally, we discuss the implications of these findings 
for future investigations of human diseases and cancers.

Results
GWAS SNPs in development-specific HOT regions. Recent reports have suggested that many non-
coding variants associated with common diseases and traits are concentrated in regulatory DNA regions 
marked by DNase I hypersensitive sites (DHSs)14,35. To investigate the extent to which disease-associated 
variation occurs in HOT and LOT regions, we compiled a list of 5,339 single-nucleotide polymorphisms 
(SNPs) linked to 529 diseases and phenotypic traits from 1,044 GWAS and investigated their distribu-
tions within HOT and LOT regions identified in 57 human cell and tissue samples (Table S1). The major-
ity of GWAS SNPs (4,985, 93%) occurred in noncoding regions. Of these noncoding SNPs, 86% fell into 
the ~59% of the genome covered by all HOT and LOT regions (permutation test, p <  10−4) (Table S2). 
Additionally, 1,767 out of 4,985 SNPs (35%) fell into HOT regions (permutation test, p <  10−4), whereas 
2,800 (48%) were in strong linkage disequilibrium (LD, r2 >  0.8) with SNPs in nearby HOT regions (Fig. 
S1A). Notably, the disease-associated SNPs and the corresponding phenotypic traits that mapped in HOT 
regions were generally more cell-specific than SNPs and traits in LOT regions, respectively (Fig.  1A). 
Moreover, the traits that mapped in both HOT and LOT regions were highly promiscuous compared 
with SNPs. Our results indicated that disease-associated variation and traits that map to HOT regions 
exhibits cell selectivity.

Our recent study demonstrated that HOT regions drive the expression of genes that largely define 
the development and differentiation of the respective cell and tissue types (Li et al., in preparation). 
However, how GWAS SNPs interact with developmentally dynamic (i.e., lost or gained) HOT regions 
remains poorly understood. Thus, we explored the dynamic changes in the genetic variation landscape 
during the transition from embryonic stem cells (ESCs) to hematopoietic progenitors and to T cells or B 
cells, given that development along the hematopoietic lineage has been extensively characterised at both 
the cellular and molecular levels36. We observed that during haematopoiesis, GWAS variants that map 
to HOT regions undergo a substantial net decrease (Fig. 1B,C). Comparison of ESC variants with those 
of their hematopoietic progenitors revealed a net decrease of 67 SNPs that map to HOT regions through 
the decrease of 225 ESC SNPs and the increase of 158 SNPs. Because hematopoietic progenitors termi-
nally differentiate into B-lymphocytes or Th cells, they preferentially decrease a common set of 195 early 
developmental SNPs that map to HOT regions and increase an average of 90 chiefly lineage-restricted 
SNPs that map to HOT regions along each terminal branch (Fig. 1D). Of note, roughly half of the GWAS 
variants that map to the HOT regions of each definitive lymphoid cell type were arised during lymphoid 
development and roughly one-third were retained from the ESCs (Fig.  1C). Our results demonstrated 
that GWAS SNPs that map to HOT regions undergo a substantial net decrease during haematopoiesis.

To further understand the dynamic interaction between GWAS variants and HOT regions dur-
ing development and differentiation, we investigated whether HOT regions that harbour GWAS var-
iants were active during the hematopoietic developmental stages (Fig.  2A). Out of 1,172 noncoding 
disease-associated SNPs located within global HOT regions, 44%, 24%, 63%, and 41% were located within 
HOT regions that were active in ESCs, hematopoietic progenitor cells, B cells, and T cells, respectively. 
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A total of 28% of HOT regions that contain disease-associated variants were first detected in ESCs 
(“ESC origin” HOT regions), whereas 16% were in ESC-specific HOT regions. Similarly, 6% were first 
detected in hematopoietic progenitor cells (“hematopoietic origin” HOT regions), whereas 5% were in 
hematopoietic-specific HOT regions. A total of 10% were first detected in B cells (“B cell origin” HOT 
regions), whereas 22% were in B cell-specific HOT regions. Finally, 10% were first detected in T cells (“T 
cell origin” HOT regions), whereas 13% were in T cell-specific HOT regions.

Next, we analysed the enrichment or depletion of disease- and trait-specific GWAS variants located in 
HOT regions during hematopoietic development relative to the proportion of total GWAS SNPs in these 
HOT regions (Fig. 2B). In ESC HOT regions, we observed a significant enrichment in phenotypes for 
which growth trajectory and nervous system diseases have been demonstrated to play major roles, includ-
ing platelet aggregation, body mass index, heart rate, Alzheimer’s disease, and migraines. In contrast, we 
observed differential relative depletion in ESC HOT regions associated with immune system diseases, 

Figure 1. GWAS SNPs in development-specific HOT regions during haematopoiesis. (A) Distributions 
of the number of cell types, from 1 to 154 (y axis), in which SNPs and their corresponding phenotypic 
traits localised within HOT regions (red) and LOT regions (blue) (x axis) were observed. The width of each 
shape at a given y value indicates the relative frequency of SNPs and phenotypic traits within HOT and LOT 
regions in that number of cell types. (B,C) SNP composition of developing hematopoietic HOT regions. (B) 
Increased (black) versus decreased (red) numbers of SNPs mapping to HOT regions during hematopoietic 
developmental transitions are shown. (C) Schematic illustration of the number of SNPs that map to 
inherited versus acquired HOT regions during hematopoietic developmental transitions. The lymphoid HOT 
region compartment coloured orange constitutes a strict subset of the hematopoietic progenitor HOT region 
compartment. (D) Preferential extinction of common SNPs that map to HOT regions during development. 
Comparison of SNPs that map to acquired (left) or lost (right) HOT regions during differentiation of 
hematopoietic progenitors. See also Fig. S1 and Tables S1–S2.
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including multiple sclerosis, Type 1 diabetes, rheumatoid arthritis, systemic lupus erythematosus, and 
digestive system diseases, such as Cohn’s disease, inflammatory bowel disease, and celiac disease. Immune 
system diseases, including rheumatoid arthritis and Kawasaki disease, and haematology-associated traits, 
including platelet counts, blood pressure, systolic blood pressure, haematology traits, and mean corpus-
cular haemoglobin, were significantly associated with hematopoietic HOT regions. In contrast, growth 
phenotypes such as body mass index were differentially depleted. In B and T cell HOT regions, we 
observed a significant association with immune system and digestive system diseases, which were sig-
nificantly depleted in the ESC HOT region analysis. Additionally, immune-associated cancers, includ-
ing chronic lymphocytic leukaemia, melanoma, and lymphoma, were significantly associated with these 

Figure 2. Enrichment of GWAS variants and phenotypes during haematopoiesis. (A) Proportion of 
GWAS SNPs selectively localised in HOT regions active along the hematopoietic lineage. ESC stage-specific 
HOT regions (blue); hematopoietic progenitor stage-specific HOT regions (pink); lymphoid cell stage-
specific HOT regions (green); ESC-originated HOT regions (salmon); hematopoietic progenitor-originated 
HOT regions (purple); lymphoid cell-originated HOT regions (red) and HOT regions that belong to other 
stages (grey). (B) GWAS SNPs in HOT regions along the hematopoietic lineage exhibit phenotype-specific 
enrichment for development-specific HOT regions.
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regions. In contrast, we observed differential relative depletion of nervous system diseases and growth 
trajectories, which were significantly associated with the ESC HOT regions. Together, these findings 
suggest that GWAS SNPs and phenotypes are enriched in a development-specific fashion during hae-
matopoiesis.

Disproportional enrichment of SNPs in HOT regions. To gain further insight into the function 
of HOT regions in human diseases and cancers, we explored the association of genetic variants with 
HOT regions identified in both disease-relevant cells and cancer cells (Fig.  3). We observed that for 
both 57 disease-relevant cells and 25 cancer cells (Table S1), GWAS SNPs were significantly enriched in 
HOT and LOT regions (permutation test, p <  10−4). Notably, the enrichment was disproportionally in 
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Figure 3. Disproportional enrichment of SNPs in HOT regions. (A,B) Scatter plot of the densities of 
GWAS SNPs (A) and SNPs in strong LD (r2 >  0.8) with GWAS SNPs (B) in HOT regions (y axis) and LOT 
regions (x axis) in 57 disease-relevant cells (green) and 25 cancer cells (red). (E,F) Scatter plot of the SNP 
densities in HOT/LOT regions (y axis) and SNP density (x axis) in genome-wide TFBSs in the human 
genome (E) and in TFBSs that map to HOT/LOT regions (F) across 154 ENCODE cell lines. The Pearson’s 
correlation coefficients and corresponding p-values are indicated. See also Tables S1–S2.
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HOT regions compared with LOT regions in 57 disease-relevant cells and 25 cancer cells (Fig. 3A, χ 2 
test, χ 2 =  172.1, p-value <  2.2 ×  10−16 and χ 2 =  125.2, p-value <  2.2 ×  10−16, respectively). Furthermore, 
consistent results were obtained for SNPs in strong LD with GWAS SNPs (Fig. 3B, χ 2 test, χ 2 =  955.3, 
p-value <  2.2 ×  10−16 and χ 2 =  496.8, p-value <  2.2 ×  10−16, respectively). For certain diseases and can-
cers, the disproportional enrichment in HOT regions was particularly striking (Fig. S1C). Our findings 
confirm that most disease-associated variants occur in regulatory DNA regions14,35 and reveal that HOT 
regions are disproportionally enriched for genetic risk variants compared with LOT regions in human 
cell and tissue types.

Because HOT regions are defined as TFBS-clustered regions with extremely high TFBS complexity34, 
it is reasonable to check whether the disproportional enrichment of HOT regions for genetic variants 
compared with LOT regions was caused by the extremely high concentration of TFBSs that map to HOT 
regions relative to LOT regions. For this purpose, we calculated the densities of GWAS SNPs within 
HOT regions, LOT regions, and genome-wide TFBSs in the human genome across 154 ENCODE cell 
lines (Fig.  3C). For a large majority of cell types (90%, 138 out of 154), the GWAS SNP densities in 
HOT regions are greater than those in TFBSs (above the diagonal), whereas the SNP densities in LOT 
regions are much less than those in TFBSs (below the diagonal). Furthermore, both the SNP densities in 
HOT (R =  0.6914, p-value =  3.24 ×  10−24) and LOT (R =  0.6408, p-value =  3.52 ×  10−19) regions exhibit 
significant correlations with SNP densities in genome-wide TFBSs in the human genome. To further 
elucidate the cause of this disproportional enrichment, we compared the SNP densities in HOT/LOT 
regions with the SNP densities in TFBSs that map to corresponding HOT/LOT regions (Fig.  3D). For 
nearly 70% of cell types (68%, 105 out of 154), the SNP densities in HOT/LOT regions are much higher/
lower than those in the TFBSs that map to HOT/LOT regions, respectively. Both the correlations of SNP 
densities in HOT (R =  0.6314, p-value =  1.66 ×  10−18) and LOT (R =  0.5413, p-value =  4.21 ×  10−13) with 
SNP densities in TFBSs that map to HOT/LOT regions are still significant. These findings suggest that 
the SNP densities in TFBSs are significantly correlated with the SNP densities in HOT/LOT regions, but 
the high concentration of TFBSs alone cannot completely determine the disproportional enrichment of 
GWAS SNPs that map to HOT regions compared with LOT regions.

GWAS SNPs in disease-specific HOT regions. Because HOT regions are disproportionally enriched 
for disease-associated variants compared with LOT regions, we would expect that variants associated 
with specific diseases would tend to occur in the HOT regions of disease-relevant cell or tissue types, 
which are generally referred to as physiologically or pathogenically relevant cell or tissue types, including 
affected tissues and known or posited effector cell types14. Indeed, for a broad spectrum of diseases, we 
observed that disease-associated variants tended to occur in the HOT regions of disease-relevant cells 
and not in those of disease-irrelevant cells. This relationship was more pronounced for HOT regions than 
for LOT regions (see the distribution bars in Fig. 4 and S1). To gain further insight into the relationship 
between these variants, HOT regions, and their associated genes, we focused on several diseases in which 
variants occur in HOT regions in disease-relevant cells. The diseases that were selected for further study 
included chronic lymphocytic leukaemia, type 1 diabetes, and prostate cancer (Fig. 4).

Chronic lymphocytic leukaemia (CLL) is the most common form of leukaemia in adults in Western 
countries. CLL is a complex immunologic disease that originates from antigen-stimulated mature B lym-
phocytes37. The SNP catalogue contained 28 SNPs linked to chronic lymphocytic leukaemia, of which 26 
occurred in noncoding sequences. The noncoding SNPs were particularly enriched in the HOT regions 
of hemangioblast derivatives, including B cells and Th cells; a total of 12 and 7 SNPs occurred in the 
HOT regions of genes with prominent roles in B cells and Th cells, respectively (Fig.  4A). Thus, 54% 
(14/26) of all of the chronic lymphocytic leukaemia SNPs located in noncoding regions occurred in the 
5.3% and 3.1% of the genomic regions of B and Th cells encompassed by HOT regions, respectively 
(permutation test, p <  10−4). One SNP (rs210142) occurred in the HOT region associated with the gene 
BAK1 (Fig. 4A), whose reduced expression has recently been demonstrated to influence the risk of CLL38.

Type 1 diabetes is a T cell-mediated autoimmune disease in which the insulin-producing pancreatic 
beta cells are selectively destroyed; this disease is most often diagnosed in children and young adults. 
Much of the genetic variation implicated in type 1 diabetes is associated with major histocompatibility 
antigens, interleukin-2 signalling, T cell receptor signalling, and interferon signalling39–41. The SNP cat-
alogue contained 76 SNPs linked to type 1 diabetes, of which 66 occurred in noncoding sequences. The 
noncoding SNPs were particularly enriched in the HOT regions of Th cells, with 18 occurring in the 
HOT regions of genes with prominent roles in Th cell biology (Fig.  4B). Notably, 27% (18/66) of the 
type 1 diabetes SNPs located in noncoding regions occurred in the 3.1% of the genome encompassed 
by Th cell HOT regions (permutation test, p <  10−4). One SNP (rs4763879) occurred in the HOT region 
associated with the gene CD69 (Fig.  4B), which has been demonstrated to be associated with Type 1 
diabetes42,43.

Prostate cancer is the most commonly diagnosed malignancy and the second most common cause 
of cancer-related deaths affecting males in developed countries. In addition to age and race/ethnicity, 
family history has long been a well-established risk factor for prostate cancer44. To date, GWAS have 
identified more than 100 independent susceptibility loci associated with prostate cancer, which cumu-
latively account for approximately 33% of the familial risk for this disease45,46. Of the 99 SNPs linked to 
prostate cancer in the SNP catalogue, 97 SNPs occur in noncoding regions. The noncoding SNPs were 
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Figure 4. GWAS SNPs in disease-specific HOT regions. (A) (Upper) Bar plots that show the density (SNP/
MB) of trait-associated noncoding SNPs linked to CLL in the HOT and LOT region domains identified in 
16 human cell and tissue types. (Middle) List of genes associated with CLL SNP-containing HOT regions in 
T cells and B cells. (Bottom) DNase-seq profiles at the BAK1 locus in GM12891 and Th1 cells. The positions 
of the CLL SNPs are highlighted with red lines, the HOT regions are highlighted with red bars, and the LOT 
regions are highlighted with blue bars above the binding profile. (B) (Upper) Bar plots that show the density 
(SNP/MB) of trait-associated noncoding SNPs linked to type 1 diabetes (T1D) in the HOT and LOT region 
domains identified in 16 human cell and tissue types. (Middle) List of genes associated with T1D SNP-
containing HOT regions in T cells. (Bottom) DNase-seq profile at the CD69 locus in Th2 cell. The positions 
of the T1D SNPs are highlighted with red lines, the HOT regions are highlighted with red bars, and the 
LOT regions are highlighted with blue bars above the binding profile. (C) (Upper) Bar plots that show the 
density (SNP/MB) of trait-associated noncoding SNPs linked to prostate cancer in the HOT and LOT region 
domains identified in 16 human cell and tissue types. (Middle) List of genes associated with prostate cancer 
SNP-containing HOT regions in PrEC cell. (Bottom) DNase-seq profile in prostate epithelial cells. The 
positions of prostate cancer SNPs are highlighted with red lines, the HOT regions are highlighted with red 
bars, and the LOT regions are highlighted with blue bars above the binding profile. See also Fig. S2.
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particularly enriched in the HOT regions of prostate tissues, with 9 occurring in the HOT regions of 
genes with prominent roles in prostate tissue biology (Fig. 4C). SNP rs4242382, which is located at 8q24 
in the distal HOT region in prostate tissue (Fig.  4C), was reported to be strongly associated with the 
risk of prostate cancer47.

Similar disproportional enrichment in disease-specific HOT regions was observed for many addi-
tional diseases and traits, including ventricular conductions, rheumatoid arthritis, and celiac disease (Fig. S2). 
Together with these examples, our results demonstrated that the disproportional enrichment of HOT 
regions for GWAS SNPs is biased toward disease-relevant cells.

SNPs in strong LD with GWAS SNPs in disease-specific HOT regions. For some diseases or 
traits, a large proportion of GWAS SNPs are in strong LD (r2 >  0.8) with SNPs in a nearby HOT region, 
while only a few are located within that HOT region. To further understand the disproportional enrich-
ment of HOT regions for SNPs in strong LD with GWAS SNPs and the bias of this enrichment toward 
disease-relevant cells, we focused on several diseases in which SNPs in strong LD with GWAS SNPs 
occur in HOT regions in disease-relevant cells (Fig.  5). White blood cells are blood cells that mediate 
immunity and play essential roles in defending the body against foreign microorganisms48. The SNP 
catalogue contains 20 SNPs linked to white blood cell types that occur in noncoding sequences. None 
of these SNPs are located in the HOT regions of the hematopoietic progenitor cells (0/20). However, a 
collective 30% (6/20) enrichment of GWAS SNPs are in strong LD (r2 >  0.8) with SNPs in the 1.8% of the 
genome sequences encompassed by hematopoietic progenitor HOT regions (permutation test, p <  10−4) 
(Fig. 5A).

Electrocardiographic traits are important, substantially heritable determinants of the risk of arrhyth-
mias and sudden cardiac death49. The SNP catalogue contains 21 SNPs linked to electrocardiographic 
traits, 17 of which occur in noncoding sequences. None of these 17 GWAS SNPs are located within heart 
tissue HOT regions; however, 4 (24%) are in strong LD (r2 >  0.8) with SNPs in nearby heart tissue HOT 
regions, covering 2.1% of the genome sequences (permutation test, p <  10−4) (Fig. 5B).

Chronic kidney disease (CKD) is a progressive disorder that results in decreasing kidney function 
over a period of months to years. CKD has been increasingly recognised as a global public health prob-
lem50. Recent genetic studies have identified common CKD susceptibility variants that are associated 
with kidney function in European and African-American populations51–55. The SNP catalogue contains 
30 SNPs linked to electrocardiographic traits, 27 of which occur in noncoding sequences. Only 1 GWAS 
SNP lies within a kidney tissue HOT region; however, 5 (19%) are in complete LD (r2 >  0.8), with SNPs 
in nearby kidney tissue HOT regions covering 2.2% of the genome sequences (permutation test, p <  10−4) 
(Fig. 5C). We further determined that the disproportional enrichment of HOT regions for SNPs in strong 
LD with GWAS SNPs is biased toward disease-relevant cells.

SNPs in cancer-specific HOT regions. Inherited genetic susceptibility plays a key role in predispo-
sition to common cancer56. GWAS have emerged as a powerful tool for discovering the common genetic 
susceptibility alleles that confer risk for cancer and has been used to identify a large number of cancer risk 
alleles57. To gain further insight into the disproportional enrichment of HOT regions for genetic variants 
and the bias of this enrichment toward cancer-specific cell types during tumour pathogenesis, we focused 
on several cancers in which GWAS SNPs or SNPs in strong LD with GWAS SNPs occur in HOT regions 
in cancer-specific cells and not in those of related healthy counterparts (Fig. 6). First, a common variant 
rs6788895, which is associated with ER-positive breast cancer in the SIAH2 locus58, was only located in 
the MCF7 HOT region but not healthy counterparts (Fig. 6A). Second, the HOT region that harbours 
SNP rs13397985, which was reported as a CLL risk loci at 2q37.1 (SP140, p-value =  1.91 ×  10−20)59, was 
found in CLL cells but not related healthy counterparts (Fig. 6B). Third, the HOT region that harbours 
prostate cancer-associated SNPs (rs7501939 and rs4430796) in hepatic nuclear factor 1 beta (HNF1b), 
which has been identified as a major risk gene for prostate cancer by several recent GWA studies47,60–62, 
was found in LNCaP cells but not related healthy cells (Fig. 6C). Fourth, we observed that a ~15-kb HOT 
region that harbours two SNPs (rs2981578 and rs7895676) was found in FGFR2 intron 2 in breast cancer 
cells but not normal breast cells (Fig.  6D). These two SNPs were in LD with marker SNPs (rs2981582 
and rs1219648)63, which were the most strongly associated marker SNPs in intron 2 of FGFR2 that were 
highly associated with breast cancer64,65. Our findings further indicated that the disproportional enrich-
ment of HOT regions for genetic variants is biased toward cancer-specific HOT regions.

HOT regions in cancers. The effects of cis-regulatory elements on tumourigenesis have been sub-
stantially understudied compared with the large number studies regarding the variants in protein-coding 
genomes5–9. To investigate the functional roles of HOT regions in cancers, we identified HOT regions in 
25 human cancer cells and their associated genes. A remarkable spectrum of known oncogene drivers 
in the cancer cell dataset had associated HOT regions, and these oncogenes were significantly enriched 
in HOT regions compared with LOT regions (Fig. S3A, χ 2 test). These results suggest that HOT regions 
may be useful for identifying key oncogenes in specific cancers.

Further analysis of the HOT regions in tumour cells and related healthy cells suggested that cancer 
cells acquire cancer-specific HOT regions at oncogene drivers during tumour pathogenesis (Fig. 7A). For 
example, a large HOT region was identified in the promoter surrounding the breast cancer susceptibility 
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gene BRCA266 in cancer cells but not in their healthy counterparts. Additionally, cancer-specific HOT 
regions were found surrounding the c-MYC gene, CANT1 gene67, and FAS gene in hepatocellular car-
cinoma cells, prostate carcinoma cells, and malignant melanoma cells (Fig. 7A). Similar cancer-specific 
localisations of HOT regions surrounding oncogenes were observed for multiple additional cancers, 
including pancreatic cancer, prostate cancer, and chronic myelogenous leukaemia (Fig. S3B). These 
results indicate that cancer cells acquire cancer-specific HOT regions at key oncogenes in tumour cells 
but not in their healthy counterparts.

We reasoned that many mechanisms of carcinogenesis that frequently occur in cancers may account 
for the ability of cancer cells to acquire cancer-specific HOT regions. Indeed, we observed that can-
cer cells acquire cancer-specific HOT regions at key oncogenes through diverse mechanisms, including 

Figure 5. SNPs in strong LD with GWAS SNPs in disease-specific HOT regions. (A) (Upper-left) Bar 
plots that show the density of white blood cell type (WBCT)-associated noncoding SNPs and SNPs in 
strong LD (r2 >  0.8) with WBCT-associated SNPs (SNP/MB) in the HOT region domains and LOT region 
domains identified in 5 human cell and tissue types. (Upper-right) Example of GWAS SNPs in LD with 
WBCT-associated noncoding SNP rs9373124 (red bar). (Bottom) Distribution of GWAS SNPs (blue bar) in 
strong LD (r2 >  0.8) with rs9373124. The HOT region is extended by 250 kb. (B) (Upper-left) Bar plots that 
show the density of electrocardiographic trait-associated noncoding SNPs and SNPs in strong LD (r2 >  0.8) 
with electrocardiographic trait-associated SNPs (SNP/MB) in the HOT and LOT region domains identified 
in 5 human cell and tissue types. (Upper-right) Example GWAS SNPs in LD with electrocardiographic 
trait-associated noncoding SNP rs1296050 (red bar). (Bottom) Distribution of GWAS SNPs (blue bar) in 
strong LD (r2 >  0.8) with rs1296050. The HOT region is extended by 250 kb. (C) (Upper-left) Bar plots that 
show the density of chronic kidney disease (CKD) trait-associated noncoding SNPs and SNPs in strong 
LD (r2 >  0.8) with CKD trait-associated SNPs (SNP/MB) in the HOT and LOT region domains identified 
in 5 human cell and tissue types. (Upper-right) Example of GWAS SNPs in LD with CKD trait-associated 
noncoding SNP rs10794720 (red bar). (Bottom) Distribution of GWAS SNPs (blue bar) in strong LD 
(r2 >  0.8) with rs10794720. The HOT region is extended by 250 kb.
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Figure 6. SNPs in cancer-specific HOT regions. (A) (Upper-left) Radar plot that shows the density of 
SNPs associated with breast cancer in HOT regions identified in 13 cancer cells. The centre of the plot is 
0, and the coloured dot on the respective axis indicates the SNP density (SNP/MB) in the HOT regions 
of each cancer cell (the same as following radar plots). Yellow circles represent the percentage of breast 
cancer-associated SNPs in the noncoding GWAS catalogue (97/4,985, 1.94%). (Upper-right) Distribution 
of breast cancer-associated SNPs within HOT regions in MCF7 cells and 24 other cancer cells. (Bottom) 
A breast cancer-associated common variant rs6788895 is only located in a cancer-specific HOT region in 
the SIAH2 locus. (B) (Upper-left) Radar plot that shows the density of SNPs associated with CLL in HOT 
regions identified in 13 cancer cells. Yellow circles represent the percentage of CLL-associated SNPs in the 
noncoding GWAS catalogue (26/4,985, 0.52%). (Upper-right) Distribution of CLL-associated SNPs within 
HOT regions in CLL cells and other 24 cancer cells. (Bottom) A CLL risk loci rs13397985 is only located 
in a cancer-specific HOT region surrounding the TSS of gene SP140 and SP110. (C) (Upper-left) Radar 
plot that shows the density of SNPs associated with prostate cancer in HOT regions identified in 13 cancer 
cells. Yellow circles represent the percentage of prostate cancer-associated SNPs in the noncoding GWAS 
catalogue (97/4,985, 1.94%). (Upper-right) Distribution of prostate cancer-associated SNPs within HOT 
regions in LNCaP cells and 24 other cancer cells. (Bottom) Two prostate-cancer-associated SNPs (rs7501939 
and rs4430796) are located in a cancer-specific HOT region in the HNF1b locus. (D) (Upper-left) Radar 
plot that shows the density of SNPs in strong LD (r2 >  0.8) with breast cancer-associated GWAS SNPs in 
HOT regions identified in 13 cancer cells. Yellow circles represent the percentage of breast cancer-associated 
SNPs in the noncoding GWAS catalogue (97/4,985, 1.94%). (Upper-right) The r2 values of LD analysis of the 
four intronic SNPs in the studied population of North India. (Bottom) Four breast-cancer-associated SNPs 
(rs2981582, rs1219648, rs2981578 and rs7895676) are found in or near a cancer-specific HOT region in 
FGFR2 intron 2.
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long-range chromatin looping, transcription factor overexpression, gene fusion, and focal amplifica-
tion of lncRNA (Fig. 7B–E). For instance, a previously non-annotated lncRNA (CCAT1) located 515 kb 
upstream of the MYC locus plays an important role in MYC transcriptional regulation and promotes 
long-range chromatin looping. CCAT1-L interacts with CTCF and modulates the chromatin confor-
mation in these loop regions68. In the human colon cancer cell line HCT116, two HOT regions were 
found in the MYC and CCAT genes, respectively (Fig.  7B). The aberrant expression of the oncogenic 
transcription factor TAL1/SCL can be detected in the majority of cases of human T cell acute lymph-
oblastic leukaemia (T-ALL)69,70. We observed that the overexpression of TAL1 in T-ALL is associated 
with HOT region formation in the MYC locus (Fig. 7C). A recent study demonstrated that the break-
points in MCF-7 were not evenly distributed across the genome. Four rearrangement clusters emerged 
in 1p13.1–21.1, 3p14.1–p14.2, 17q22–q24.3, and 20q12–q13.33 and contained 43% of all MCF-7 somatic 

Figure 7. HOT regions in cancer. (A) Cancer cells acquire cancer-specific HOT regions. DNase-seq profiles 
are shown surrounding the oncogenes BRCA2, MYC, CANT1 and FAS in breast cancer, hepatocellular 
carcinoma, prostate cancer, and malignant melanoma, respectively, as well as in their healthy counterparts. 
Cancer-specific HOT regions surround the TSS of the oncogene. (B) Colorectal cancer-specific CCAT1-L 
lncRNA regulates long-range chromatin interactions at the MYC locus. DNase-seq profiles are shown within 
the region between CCAT1 and MYC; the HOT regions are found surrounding these two genes. (C) Tal1 
binding is observed in HOT regions in K562 cells. The DNase-seq profile and ChIP-seq binding profile of 
TAL1 are coloured grey and yellow, respectively. (D) Two breakpoints of the fusion gene BCAS3-BCAS4 
are found in breast cancer-specific HOT regions. DNase-seq profiles surrounding these two breakpoints in 
MCF7 cell are shown. (E) Large HOT regions are observed at the site of focal amplification in breast cancer. 
See also Fig. S3 and Table S1.



www.nature.com/scientificreports/

1 2Scientific RepoRts | 5:11633 | DOi: 10.1038/srep11633

breakpoints71. We observed that HOT regions were significantly enriched within these four rearrange-
ment clusters (binomial test, p-value =  7.66 ×  10−16) (Fig. S3C). BCAS3-BCAS4 gene fusion, which has 
previously been reported in breast carcinomas, was validated as the product of a fusion gene between 
BCAS4 and BCAS3, which resulted from amplification followed by a translocation event between the two 
loci chr20q13 and chr17q2372. Strikingly, both of the breakpoints associated with BCAS3-BCAS4 gene 
fusion were found in the HOT regions in the cancer cells but not in their healthy counterparts (Fig. 7D). 
Comparative genomic hybridisation (CGH) on cDNA microarrays revealed hundreds of novel genes 
whose overexpression was attributable to gene amplification; these genes may provide insight into the 
clonal evolution and progression of breast cancer and highlight promising therapeutic targets73. Notably, 
we found that DNA amplification in breast cancer involved a large HOT region (Fig. 7E). Our findings 
suggest that cancer cells acquire cancer-specific HOT regions through diverse mechanisms of cancer 
pathogenesis.

Discussion and Conclusions
Several recent studies have suggested that many noncoding variants associated with common diseases 
and traits are concentrated in regulatory DNA elements marked by DHSs14,35. However, the noncoding 
regulatory effects responsible for human disease and cancer biology remain poorly understood. To better 
characterise the cis-regulatory effects of noncoding variants, we performed a comprehensive analysis of 
the genetic variation in HOT regions, which were defined as TFBS-clustered regions with extremely high 
TFBS complexity in our recent study34.

First, we explored the dynamic changes in the genetic variation landscape along the hematopoie-
tic lineage. Our findings demonstrated that GWAS variants in HOT regions undergo a substantial net 
decrease during haematopoiesis. Further enrichment analysis of disease- and trait-specific GWAS var-
iants in HOT regions during hematopoietic development revealed development-specific enrichment of 
phenotype-associated variants within HOT regions. Taken together, our findings demonstrate cell- and 
development-specific localisation of GWAS variants within disease-relevant cell or tissue types and sug-
gest a recurring connection among HOT regions, regulatory genotypes, and the risk for specific classes 
of diseases and traits. These results also highlight the potential for using a comprehensive map of HOT 
regions to illuminate associations between GWAS variants, diseases, HOT regions and their associated 
genes both within disease-relevant cell types and within definitive lineage derivatives.

Next, we examined the enrichment of genetic variants in both disease-relevant cells and cancer cells. 
We observed that genetic variants are disproportionally enriched in HOT regions compared with LOT 
regions in both disease-relevant and cancer cells, and the disproportional enrichment is not completely 
determined by the high concentration of TFBSs. Importantly, the enrichment is biased toward disease- or 
cancer-specific cells. Considering that HOT regions drive the expression of genes that control cell devel-
opment and differentiation, our findings suggest that the altered expression of cell developmental genes 
may often contribute to human diseases and cancers. These results also suggest that the understanding 
of a cell- or tissue-specific regulatory role for GWAS variants in human diseases and cancers might be 
elucidated by investigation of disease- or cancer-specific HOT regions.

Finally, we investigated the functional roles of HOT regions in cancers because the noncoding 
genome has been disregarded in the search for causes of cancer, with the exception of a few isolated 
examples5–9. We identified HOT regions in 25 human cancer cells and their associated genes, and we 
observed that a remarkably broad spectrum of oncogenes that have been described in cancers74–78 were 
significantly enriched in HOT regions compared with LOT regions. Importantly, we observed that can-
cer cells generally acquired cancer-specific HOT regions at key oncogenes during tumour pathogenesis 
through a variety of mechanisms, including lncRNA long-range chromatin looping, transcription factor 
oncogene overexpression, gene fusion, and focal amplification. These findings suggest that HOT regions 
can provide biomarkers for cancer-specific pathologies that may be valuable for investigations into cancer 
biology, diagnosis, and therapy.

Collectively, our findings demonstrate a significantly strong association between HOT regions and 
disease-associated variants and cancers and reveal functional roles of HOT regions in human diseases 
and can  cers. These findings provide a key step toward targeting the noncoding genome for clinical 
purposes. Future studies should focus on the molecular mechanisms of HOT regions in human dis-
eases and cancers, especially in combination with the recently developed CRISPR/Cas9 system. Two 
recently published studies utilised a CRISPR/Cas9 genome editing strategy to reveal the functional roles 
of super-enhancers79,80. Gröschel et al. applied functional genomics and genome editing to characterise 
chromosome 3q-rearrangements of a super-enhancer in primary AML samples and human cell lines79. 
Another study demonstrated that a distal super-enhancer was required for the maintenance of the pluri-
potency transcription program in mouse ESCs using a double-CRISPR genome editing technique80. 
Thus, the systematic association of HOT regions with human diseases and cancers can be further vali-
dated using the efficient CRISPR/Cas9 genome editing strategy. This study will serve as a paradigm for 
investigations of functional annotation of the noncoding genome.
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Materials and Methods
Data sets. The DNaseI Hypersensitivity by Digital DNaseI data were obtained from the Duke and UW 
ENCODE groups. Gene annotations were obtained from the GENCODE data (V15). All of these data 
were provided through the ENCODE Project10,11, and use of the data strictly adheres to the ENCODE 
Consortium Data Release Policy.

Identification of TFBS-clustered regions and HOT regions. In our recent study34, we identified 
TFBS-clustered regions using Gaussian kernel density estimation (bandwidth 3 kb) across the binding 
profiles of 542 TFs and defined a “TFBS complexity” score based on the number and proximity of 
contributing TFBSs for each TFBS-clustered region. To identify HOT regions, we first ranked all the 
TFBS-clustered regions in a cell type and plotted them in order of increasing TFBS complexity. This 
plot revealed a clear point in the distribution of the TFBS-clustered regions at which the complexity 
signal began to increase rapidly. To geometrically define this point, we first scaled the data such that 
the x and y axes were from 0-1. We then found the x-axis point for which a line with a slope of 1 was 
tangent to the curve. We defined the TFBS-clustered regions above this point to be HOT regions and the 
TFBS-clustered regions below this point to be LOT regions. The pipeline for identifying HOT or LOT 
regions was applied uniformly to datasets from 349 samples, including 154 cell types studied under the 
ENCODE Project10,11.

Characterisation of disease-associated GWAS SNPs in HOT regions. Disease-associated SNPs 
were downloaded from the NHGRI database of GWAS on Feb 18, 2014; at this time, the database con-
tained 15,698 entries/rows. Because SNPs that are reproducibly associated with a trait have been sug-
gested to have a higher likelihood of being causative14, we only considered SNPs that contained a dbSNP 
identifier and were found to be associated with a trait by at least two independent studies. A total of 6,955 
SNP trait or disease associations were used in Fig. S1B. A total of 6,369 noncoding SNP-trait associations 
were used for Figs 1–2 and 4–5. A total of 4,985 unique SNPs located outside of the coding regions were 
used for Figs 1,6, and S1A.

GWAS SNPs localise in development-specific HOT regions along the hematopoietic lineage. SNPs 
that map in “lost” HOT regions along the hematopoietic lineage were defined as those SNPs located in 
HOT regions that belong to a progenitor cell type that were not found within a more differentiated cell 
type. Conversely, SNPs that map in “gained” HOT regions along the hematopoietic path were defined as 
SNPs located in HOT regions that belong to a more differentiated cell type but not its progenitor. SNPs 
that map in “shared” HOT regions within the hematopoietic lineage were defined as SNPs located in 
HOT regions that belong to a more differentiated cell type and its progenitor.

For each developmental stage along the hematopoietic lineage, we computed the enrichment of 
GWAS SNPs from particular diseases or traits in development-specific HOT regions (Fig. 2B) by divid-
ing the proportion of GWAS SNPs in development-specific HOT regions by the overall proportion of 
GWAS SNPs in development-specific HOT regions (44% for ESCs, 24% for Hemat, 63% for B cells, and 
41% for T cells). The enrichment is reported as the percentage enrichment or depletion. The individual 
significance levels of these enrichments were computed using the binomial distribution b(x; n, p), setting 
the parameter x to the number of GWAS SNPs of a given disease or trait in development-specific HOT 
regions, n to the number of GWAS SNPs for the disease or trait, and p to 0.44, 0.24, 0.63, 0.41 for ESC, 
hemat, B cells, or T cells, respectively. To compensate for the overall enrichment or depletion of disease 
categories in HOT regions in general, GWAS SNPs not located in any HOT regions were excluded.

Enrichment of SNPs in HOT and LOT regions. The densities of trait-associated noncoding SNPs 
in HOT and LOT regions of individual cell and tissue samples were calculated by first counting the 
number of SNPs found in these regions. Then, the numbers were divided by the number of base pairs 
in the HOT and LOT regions of the genome in these cells and multiplied by 1 million to obtain a SNP/
MB value (Figs. 3–6).

To explore the association of genetic variants with HOT regions in human diseases and cancers, we 
calculated the SNP densities in HOT/LOT regions identified in both disease-relevant cells and cancer 
cells (Fig 3A,B). To investigate the cause of the disproportional enrichment of HOT regions for genetic 
variants compared with LOT regions, we calculated the SNP densities within the genome-wide TFBSs 
in the human genome and TFBSs that map to corresponding HOT/LOT regions across 154 ENCODE 
cell lines (Fig. 3C,D).

Additionally, we used CEU population genotype data from the 1000 Genomes Project81 to compute 
the LD measurement r2 between GWAS SNPs and SNPs in the HOT regions located near them. We 
illustrated LD plots in Figs  5 and 6D using Haploview82. We computed r2 between each such GWAS 
SNP lying outside of a HOT region and every SNP within a 125 kb radius of a HOT region. Then, we 
calculated the density of trait-associated noncoding SNPs achieving r2 >  0.8 with a SNP lying within a 
HOT region and a LOT region within a 125 kb radius in individual cell and tissue samples (Fig. 5). For 
Fig. 6D, the r2 values of LD analysis of the four intronic SNPs in the studied population of North India 
were obtained from a recent study63.
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The significance of the number of SNPs in HOT regions was calculated using a permutation test. HOT 
regions were randomly shifted on the chromosome of origin 10,000 times. The number of SNPs that fell 
into these shifted regions was counted. No iteration of this test resulted in the same or a greater number 
of trait-associated SNPs in HOT regions.

Association of HOT regions with cancers. A total of 522 proto-oncogenes were obtained from 
COSMIC (Catalogue of Somatic Mutations in Cancer)75,76.

Accession numbers. The identified HOT regions across human cell and tissue types have been 
deposited with the Gene Expression Omnibus under the accession ID GSE54296.
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