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Quantum Emulation of 
Gravitational Waves
Ivan Fernandez-Corbaton1,2,3, Mauro Cirio1,2, Alexander Büse1,2, Lucas Lamata4, 
Enrique Solano4,5 & Gabriel Molina-Terriza1,2

Gravitational waves, as predicted by Einstein’s general relativity theory, appear as ripples in the 
fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude 
gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of 
electromagnetic states. We use this result to propose the use of entangled photons to emulate the 
evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic 
setups featuring metamaterials.

Gravitational waves are commonly described as ripples in the fabric of spacetime that travel at the speed 
of light. According to general relativity, their direct detection on Earth will only be possible for waves 
created when spacetime is stirred by the movement of very massive astrophysical objects, like black 
holes and neutron stars (Sec. 36.3 in Ref. 1). We have indirect evidence of the existence of gravitational 
waves2–3, but they have not yet been detected directly. The considerable efforts placed in developing and 
building detectors4 should allow the direct observation of these elusive objects in the near future5. The 
analysis of gravitational radiation should provide a completely new source of information about our 
universe. For example, while we will never have access to electromagnetic information older than the 
Cosmic Microwave Background, we may one day be able to study gravitational waves produced at earlier 
epochs, much closer to the Big Bang6.

From the theoretical side, gravitational waves are modeled as propagating perturbations of the spa-
cetime metric. A wide class of approximate gravitational wave solutions can be studied by means of 
Isaacson’s high frequency limit7,8. This limit is analogous to the geometric-optics approximation of 
Maxwell’s equations. The analogy between gravitation and electromagnetism goes well beyond this par-
ticular mathematical approach. Several different analogies are collected under the name gravitoelectro-
magnetism. We refer the reader for to Sec. II.3 in Ref. 9 a concise review with numerous references. The 
analogies range from the similarity between Coulomb’s law of electricity and Newton’s law of gravitation, 
through the use of electric like and magnetic like vectors to approximately describe general relativity, 
to the non-perturbative covariant formulation of Maxwell-like forms of gravitational tensors and their 
dynamical equations10.

In this article, we develop an equivalence between the propagation of gravitational waves in a curved 
spacetime background and the propagation of a restricted set of electromagnetic tensor waves in the 
same background. The factorization of a circularly polarized gravitational wave as the tensor product of 
two circularly polarized electromagnetic waves, which is not possible for linear polarizations, is central to 
this equivalence. Its physical meaning becomes clear when treating polarization by means of the helicity 
operator and its eigenstates. As far as we know, this equivalence has not been reported before.

After establishing the equivalence, we use it to propose a path for the emulation of the propagation 
of gravitational waves in a curved spacetime background by means of electromagnetic setups in a lab-
oratory. To achieve the proposed equivalence for all regimes, it is necessary to use a genuine quantum 
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system, i.e. entangled photons. Therefore, we propose the simulation of a purely classical system with a 
genuinely quantum setup. Conformal invariance is used to shrink the astronomical sizes down to labo-
ratory scales, and suitable metamaterial media to mimic spacetime curvature. Up to our knowledge, this 
is a new emulation approach, but we point out that there has been an intensive research on quantum 
simulations of gravitational phenomena as black holes and gravitational waves in Bose-Einstein con-
densates11–13. In parallel, several proposals for detecting gravitational waves using cold atoms have been 
made14,15.

Physics of gravitational waves
Let us first of all outline the gravitational wave physics that we want to capture. We adopt the conventions 
of Einstein’s summation over repeated indexes, a flat metric ημν =  diag(1,−1,−1,−1), and bold symbols 
to denote spatial three-vectors.

The first step for studying the propagation of gravitational waves is to decompose the total metric 
tensor gμν into a slowly varying background γμν and a rapidly varying wave hμν(see Ref. 1 and Sec. 35.13 
14 in Ref. 7): 

γ= + . ( )μν μν μνg h 1

The gravitational wave hμν is assumed to be a small perturbation on top of the background γμν, and 
the wavelengths in hμν are assumed to be much smaller than any inhomogeneity scale of the background. 
More explicitly, if λh is the largest wavelength contained in hμν and Lγ the characteristic distance over 
which the background changes, we will assume throughout the paper that

λ
,

( )γ


L
1

2
h

which, in particular, limits the maximum curvature of the background which is of order γ
−L 2.

Under these restrictions, the propagation of hμν in empty space follows the wave equation (Eq. 5.12 
in Ref. 7):

Δ = , ( )γ μνh 0 3{ }

where Δ {γ} is the d’Alembertian operator in the spacetime geometry determined by γμν. In flat spacetime 
it reduces to the common form of the wave operator Δ = ∂ / − ∑ ∂η =ct i x{ }

2
1

3 2
i
, where c is the speed of 

light which we will set to 1 from now on. Equation (3) already assumes the choice of a Lorenz and 
traceless gauge: Dνhμν =  0, γμνhμν =  0, where Dν denotes the covariant derivative (Eqs. 5.8,5.9 in Ref. 7). 
Exhausting the last remaining gauge freedom, we set hμ0 =  0 and turn hμν into a purely spatial symmetric 
tensor (the symmetry hμν =  hνμ is a gauge independent property of any metric tensor). This collection of 
gauge choices is known as the transverse traceless gauge, and selects the gauge invariant part of the wave 
(Sec. 35.4 in Ref. 1), thereby isolating its physical degrees of freedom. We will work in the transverse 
traceless gauge throughout the article.

Exploiting the assumption that γμν varies much slower than hμν, approximate solutions of Eq. (3) are 
obtained with the ansatz7:

φ( ) = ( ) ( ( )), ( )μν α μν α αh x B x i xexp 4

where Bμν changes slowly with the spacetime coordinates xα, and φ has a possibly large first derivative 
pμ(xα) =  ∂μφ(xα), which also changes slowly with xα, and no significant derivatives of higher orders. In 
this complex notation, the real part of hμν is used for the metric tensor. Substituting Eq. (4) into Eq. 
(3) leads to the important results that the pμ are null vectors (pμ(xα)pμ(xα) =  0), gravitational waves are 
transverse (pμ(xα)Bμν(xα) =  0), and that their propagation can be understood as the parallel transport of 
both pμ and Bμν along the null geodesics dxμ/dl =  pμ. Indexes are lowered and raised using γμν.

Identical results can be reached for the propagation of electromagnetic waves in curved spacetime 
(Box 22.4 in Ref. 1), except that instead of the symmetric tensor hμν, they apply to the electromag-
netic four-vector potential Aμ. We will now show that the analogy with electromagnetism is exact when, 
instead of considering one instance of the electromagnetic field (Aμ), one considers a subspace of the 
tensor products of two instances of it (AμAν). As we will show later, the states in this subspace can be 
physically realized by two-photon states.

Relationship between gravitational waves and electromagnetic waves in flat 
spacetime
We start by considering solutions of Eq. (3) in a flat background, i.e. γμν =  ημν. We will study the gener-
alization to curved backgrounds in the next section. In a flat metric, plane waves constitute a complete 
basis of the space of propagating solutions. Plane waves are characterized by a null four-momentum and 
a constant polarization tensor. For each four-momentum pμ, there are only two independent polarization 
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tensors that meet the constraints of the transverse traceless gauge. For pμ =  (ω, 0, 0, ω), the tensors that 
are typically chosen are (Sec. 6 in Ref. 16):

= ⊗ − ⊗ , = ⊗ + ⊗ , ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆs mx x y y x y y xand 5

where ⊗  denotes the tensor product. The tensors in Eq. (5) are called the “plus” and “cross” linear 
polarizations. Another possible choice is the combinations s ±  im, which are referred to as circular 
polarizations. There is a key difference between these two sets of tensors: The linear polarization ten-
sors s and m cannot be written as the tensor product of a vector with itself ⊗ˆ ˆa a, but the s ±  im 
combinations can

+ = ⊗ − ⊗ + ( ⊗ + ⊗ )

= ( + ) ⊗ ( + ),

− = ⊗ − ⊗ − ( ⊗ + ⊗ )

= ( − ) ⊗ ( − ). ( )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ

s im i
i i

s im i
i i

x x y y x y y x
x y x y

x x y y x y y x
x y x y 6

This factorization has notable implications. We can use Eq. (6) to factorize the complete expressions 
of the corresponding gravitational plane waves into a tensor product of two vector plane waves

ω

κ ω κ ω

( + ) ⊗ ( + ) ( ( − ))=

( + ) ( ( − )) ⊗ ( + ) ( ( − ) ( − )), ( )+ +

ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ

i i i z t
i i z t i i z t

x y x y
x y x y

exp
exp exp 1 7

ω
κ ω κ ω

( − ) ⊗ ( − ) ( ( − ))=

( − ) ( ( − )) ⊗ ( − ) ( ( − ) ( − )), ( )− −

ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ

i i i z t
i i z t i i z t

x y x y
x y x y

exp
exp exp 1 8

where κ± are scalars whose allowed values and significance will be discussed later. The vectorial waves 
have polarization vectors ( ± )ˆ ˆix y , transverse to their four-momentum, which is proportional to that 
of the gravitational wave and hence also of null length. We recognize the expressions of the constitu-
ent vectorial waves in Eqs. (7) and (8) as the spatial part of the four-vector potential of circularly 
polarized electromagnetic plane waves in the transverse gauge (∇  ⋅  A =  0). In this gauge, A collects the 
transverse degrees of freedom of the electromagnetic field. These physically relevant components are 
radiative, and are said to belong to the “free field”. On the other hand, the non-radiative longitudinal 
degrees of freedom of the field can always be attached to the sources (I.B.5 in Ref. 17, Chap. XXI.S22 
in Ref. 18). In the transverse gauge the longitudinal components are contained in A0, the time com-
ponent of the vector potential. By setting A0 =  0, the resulting electromagnetic gauge has the same 
physical significance as the transverse traceless gauge in the gravitational case. This is seen by noting 
that with A0 =  0, the transverse gauge is equivalent to the Lorenz gauge (∂μAμ =  0), and that the zero 
trace and purely spatial conditions eliminate the non-radiative and longitudinal degrees of freedom of 
the gravitational field (Sec. 35.4 in Ref. 1).

Up to this point, we have just formally factorized two particular gravitational plane waves as tensor prod-
ucts of electromagnetic plane waves. We will now use a constructive procedure to show that there exists a for-
mal equivalence between each gravitational plane wave and a set of physically valid entangled photon states.

Let us denote by |p λ 〉  an electromagnetic plane wave with momentum p and helicity λ =  ± 1. The 
helicity operator is the projection of the angular momentum operator vector in the direction of the linear 
momentum operator vector Λ  =  J ⋅  P/|P| (Chap. 8.4.1 in Ref. 19). Its eigenstates have the same polari-
zation handedness in all their momentum components. Any valid electromagnetic tensor wave can be 
written as a linear superposition of states of the kind:

λ λ λ λ⊗ + ⊗ , ( )p p p p 9

where the correct exchange symmetry for bosonic fields is enforced in an obvious way.
From the point of view of field theory, an object with zero mass and allowed helicity eigenvalues 

λ =  ± 1 is associated with the electromagnetic field, while an object with zero mass and allowed helicity 
eigenvalues λ =  ± 2 is associated with the gravitational field (Chap. 2.5 in Ref. 20). Consequently, for 
states of the kind (9) to be equivalent to gravitational waves, they must have their associated character-
istics, i.e., zero mass and allowed helicity eigenvalues equal to ± 2.

Let us first apply the mass squared operator to Eq. (9):

∑ λ λ λ λ−





−




( ⊗ + ⊗ ),

( )=

P P p p p p
10i

i0
2

2
1

3
2

2

where 2Pμ is the generator of translations along direction μ in the tensor product space. Its expression as 
a function of Pμ, the momentum operator for a single constitutive space, is: 2Pμ =  Pμ⊗ I +  I⊗ Pμ, where I 
is the identity operator. Using that
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we find that the result of (10) is:
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Since ω =  |p| and ω = p , the term between brackets in the last line of Eq. (12) can be written as 
− ⋅p p p p. To get mass squared equal to zero we then need

= ⋅ , ( )p p p p 13

which is only met if α=p p for real α >  0. Therefore, for a state of the kind (9) to have zero mass, the 
two momenta p and p must be parallel.

Let us now look at the polarization of this kind of states using the helicity basis. Given a p and a p 
that fulfill the zero mass condition, the possible states of the kind (9) are:

α α
α α
α α
α α

+ ⊗ + + + ⊗ + ,

− ⊗ − + − ⊗ − ,

+ ⊗ − + − ⊗ + ,

− ⊗ + + + ⊗ − , ( )

p p p p
p p p p
p p p p
p p p p 14

The application of the helicity operator 2Λ  =  Λ ⊗ I +  I⊗ Λ  to these states shows that the four of them 
are eigenstates of helicity with eigenvalues + 2, − 2, 0 and 0, respectively. The last two do not correspond 
to a gravitational wave and must be discarded for our purposes.

Applying the 2Pμ operators shows that the states in Eq. (14) have four-momentum eigenvalues equal 
to (1 +  α)pμ. At this point we can affirm that, given an arbitrary gravitational plane wave of helicity λg 
and four-momentum qμ, the following set of electromagnetic tensor waves is equivalent to the gravita-
tional wave:

κ
λ

κ
λ

κ
λ

κ
λ

⊗ ( − ) + ( − ) ⊗ ,
( )

q q q q
2

1
2

1
2 2 15

g g g g

for any real κ ∈  (0,1). The allowed values of κ follow from the massless condition κq =  α(1 −  κ)q, with 
real α >  0.

Figure 1 illustrates the results of the derivation.
These results are consistent with and get reinforced by group theoretical arguments involving the 

decomposition of tensor products of two identical massless representations of the Poincare group. The 
reduction of the direct product of two massless representations with the same helicity λ results in both 
massless and massive irreducible representations21. All of the massless representations have helicity equal 
to 2λ, and their multiplicity is infinite and uncountable, following the range of a real and positive con-
stant (Eq. 7.1 in Ref. 21), which corresponds exactly to our parameter α.

Since any gravitational wave solution of Eq. (3) in flat spacetime can be written as a linear combina-
tion of gravitational plane waves of well-defined helicity, we conclude that any gravitational wave in a flat 
background is equivalent to a sum of electromagnetic tensor waves. Each electromagnetic tensor wave is 
the tensor product of two plane waves of the same helicity and parallel momentum.

Equations (7) and (8) can now be interpreted in light of these results. By re-writing the right hand 
side of Eq. (7) in an exchange symmetric form (similarly for Eq. (8))

κ ω κ ω

κ ω κ ω

( + ) ( ( − )) ⊗ ( + ) ( ( − ) ( − ))

+ ( + ) ( ( − ) ( − )) ⊗ ( + ) ( ( − )), ( )
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we obtain a representation of the state

κ ω κ ω κ ω κ ω+ ( − ) + + ( − ) + + , ( )+ + + +ˆ ˆ ˆ ˆz z z z1 1 17

restricted to equal position and time coordinates (z and t) in both factors of the tensor products. This 
restriction is needed to fully equate measurements on two-body objects to measurements on single-body 
objects.

Generalization to curved spacetime backgrounds
We will now show that these flat spacetime results also hold in the case of gravitational waves propa-
gating in a non-flat background, provided that the waves have a small amplitude and vary rapidly with 
respect to the background metric γμν, as indicated by Eq. (2). With these restrictions, we go back to 
the approximate solution of Eq. (4), hμν(xα) =  Bμν(xα)exp(iφ(xα)), and start by exploiting the conditions 
that the polarizability tensor must meet. In the chosen gauge, Bμν(xα) is transverse to the phase gradient 
four-vector pμ(xα) =  ∂μφ(xα), and purely spatial. This leaves a space which can be expanded using tensor 
products of two linearly independent spatial vectors. Since the tensor must also be symmetric, we can 
write:

( ) = ( ) ( ) ⊗ ( )

+ ( ) ( ) ⊗ ( )

+ ( ) ( ) ⊗ ( ) + ( ) ⊗ ( ) , ( )

μν α α α α

α α α

α α α α α

ˆ ˆ
ˆ ˆ
ˆ ˆ ˆ ˆ

B x c x x x

c x x x
c x x x x x

e e

e e
e e e e

[ ]

[ ]
[ ] 18

1 1 1

2 2 2

3 1 2 2 1

where ci(xα) are complex scalars. We also know that gravitational waves have only two gauge invariant 
degrees of freedom, and that the transverse traceless gauge isolates them. Therefore, expression (18) has 
one degree of freedom too many. In order to eliminate it, we will impose that the two degrees of freedom 
correspond to helicity eigenstates with eigenvalues ± 2. This demand is consistent with the fact that the 
equations of general relativity in vacuum are invariant under the gravitational version of the duality 
transformations (Sec. 3 of Ref. 10). It follows that their solutions can be classified by the eigenvalues of 
the generator of duality transformations: Helicity22,23. We hence require the existence of waves ( )μν α

±h x  
that are invariant under rotations by an arbitrary angle θ along the spatial momentum direction (Rp(θ)), 
and pick up a factor of θ( )iexp 2 . In the geometric optics approximation, the spatial momentum direc-
tion is given by the spatial part of pμ(xα). The requirement of definite helicity equal to ± 2 reads then:

Figure 1. Equivalence between electromagnetic tensor product states and gravitational waves. The 
different tensor products of electromagnetic plane waves of well-defined helicity equal to ± 1 (in the left 
panel) result in electromagnetic tensor waves of helicity ± 2 and 0 (middle panel), see Eq. (14). Only the first 
two have a gravitational wave equivalent (right panel). The momenta of the two electromagnetic plane waves 
do not need to be equal (as is depicted): parallel momenta is enough to ensure that the tensor product will 
have a gravitational wave equivalent.
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θ θ( ) ( ) = ( ) ( ). ( )μν α μν α( )
± ±

α
ˆR h x i h xexp 2 19xp

Our requirement is met by assigning the first two degrees of freedom in Eq. (18) to the two helicities 
(± 2) and discarding the third one. The required transformation properties of the tensors are then:

θ

θ θ

θ

( ) ( ) ⊗ ( ) =


 ( ) ( )  ⊗


 ( ) ( ) =

( ) ( ) ⊗ ( ) , ( )

α α

α α

α α

( ) ± ±

( ) ± ( ) ±

± ±

α

α α



ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ

ˆ ˆ

R x x

R x R x

i x x

e e

e e

e e

[ ]

exp 2 [ ] 20

x

x x

p

p p

which means that the two vectors ( )α±ˆ xe  must meet

θ θ( ) ( ) = ( ) ( ). ( )α α( ) ± ±α


ˆ ˆˆR x i xe eexp 21xp

With this choice of = +ˆ ˆe e1  and = −ˆ ˆe e2 , the discarded degree of freedom is, as in the flat background 
case, a helicity eigenstate with zero eigenvalue. With these results and the insight from the flat spacetime 
case we can write:

φ

κ φ κ φ

κ φ κ φ

κ φ κ φ

κ φ κ φ

( ) = ( ) ( ( ))=
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e e

e e
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exp

2
[ exp 1 exp ]

2
[ exp exp 1 ]
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2 [ exp exp 1 ] 22

According to Eq. (21) the constituent vector waves in Eq. (22) are helicity eigenstates with eigenvalues 
± 1. According to Eq. (22), their four-momenta have zero length because they are proportional to pμ(xα). 
We recognize them again as electromagnetic waves, this time in the geometric optics approximation. We 
note that the decomposition of the polarization tensor into two components of definite helicity can be 
also achieved by taking the gauge invariant part of the null vierbein decomposition of Bμν that appears 
in Eq. (5.17) of Ref. 24.

Let us now consider the propagation of the waves in Eq. (22). We recall that in the geometric optics 
approximation, propagation is accomplished by parallel transporting both the phase gradient four-vector 
pμ and the polarization tensor along the null geodesics dxμ/dl =  pμ. All the tensors in Eq. (22) have the 
same total phase attached to them. They will be transported along the same path. This null geodesic ray 
must also be the path of parallel transport for the constitutive vector waves, otherwise the factors would 
split up and break the required structure. This imposes κ± ∈  (0,1), since if either κ or (1 −  κ) were neg-
ative, the corresponding factor would propagate backwards along the geodesic. In the case of flat space-
time, we obtained the same allowed range of values for κ± from requiring massless states. The requisite 
of a consistent null geodesic ray is the massless condition in geometric optics. When higher order terms 
are added to the geometric optics solution, the two helicity components do not follow the same path (Sec. 
II.3.5 in Ref. 9). Nevertheless, since the vectorial factors in each helicity should still propagate together, 
the same restriction κ± ∈  (0,1) is needed.

The exact value of κ± does not change the null ray or the helicity. Its meaning is hence the same as 
in the flat spacetime case: It collects the set of electromagnetic tensor waves which are equivalent to a 
single gravitational wave.

Let us now investigate the effects of propagation in the factorized polarization tensor. We write the 
parallel transport equation for the total polarization tensor in (22) by means of the covariant derivatives 
Dμ:

= ⊗ + ⊗ . ( )σ
σ + + + − − −ˆ ˆ ˆ ˆp D c ce e e e0 [ ] 23

The first order linear differential equation (23) with the initial condition at some initial point xα =  xβ 
has a unique solution at each point of the path. We now make the guess that the solution can be obtained 
by first parallel transporting both ±ê  and then taking their tensor products. This guess turns out to be 
correct. To verify it, we expand the covariant derivatives in (23) across the tensor products:

= ( )( ( ) ⊗ + ⊗ ( ) )+

( )( ( ) ⊗ + ⊗ ( ) ). ( )
β

σ
σ

σ
σ

β
σ
σ

σ
σ

+ + + + +

− − − − −

ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ

c x p D p D
c x p D p D

e e e e
e e e e

0 [ ] [ ]

[ ] [ ] 24
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Note that the covariant derivatives do not act on the scalars c±(xβ), which are fixed initial conditions. 
Our guess assumes that the parallel transport equations for the polarization vectors ±ê  are met, i.e:

( ) = , ( )σ
σ ±ˆp D e 0 25

which is clearly a solution of Eq. (24).
We can hence conclude that, in order to propagate the tensorial gravitational wave in Eq. (22), we 

may as well take the constitutive electromagnetic waves in the tensor product factors, propagate them 
in the curved background by the rules of geometric optics, take the tensor products of the results and 
add both tensor products weighted by c±(xβ). The two helicity components of an electromagnetic vector 
wave do not mix during parallel transport. They pick up phases with the same absolute value and differ-
ent sign25,26. The same is true for gravitational waves. The factorization allows us to recover the known 
result that the phase for the gravitational case is exactly twice that of the electromagnetic wave (Sec. IV 
in Ref. 24).

All the wave (Sec. IV in Ref. 24) above arguments are valid for any initial xβ and pμ(xβ), so they apply 
in all spacetime to each of the terms in a sum of an arbitrary number of solutions of the type Bμνexp(iφ):

∑ φ= ( ) ( ( )).
( )μν μνh B n i nexp
26n

This finishes the proof of the equivalence: Any gravitational wave of the kind (26) propagating in 
curved spacetime is equivalent to a sum of electromagnetic tensor product waves propagating in the 
same spacetime. Each term of the sum is the tensor product of two electromagnetic waves of the same 
helicity and parallel momentum. These results hold under the assumptions of small amplitude and fast 
variation of the gravitational wave with respect to the background metric (see Eq. (2)).

We finalize this discussion by noting that the expression of the stress-energy tensor of the waves 
does not depend on whether they are gravitational or electromagnetic (see Eq. (35.77j) in Ref. 1 and 
Secs. 4 and 6 in Ref. 8). Therefore, the portion of the background curvature due to the waves themselves 
is also equivalent in both cases, and extends the equivalence to the back action of the waves onto the 
background.

Throughout the analysis, we have assumed propagation in empty space. The different couplings of the 
electromagnetic and gravitational fields to material particles, for example to electrically charged particles, 
indicates that the equivalence will not hold in the presence of matter.

Quantum emulation of gravitational waves with entangled photon states
We now use these results to propose a path for the quantum emulation of the propagation of gravitational 
waves in a laboratory by means of experimental electromagnetic setups. Besides the equivalence that we 
have shown, we will need two more ingredients: The conformal invariance of electromagnetism, and the 
fact that Maxwell’s equations in an empty but curved spacetime are identical to Maxwell’s equations in 
a material medium in flat spacetime.

Let us assume that we are interested in emulating a given scenario where gravitational waves from 
one or more sources propagate through curved spacetime regions (see the upper panel of Fig.  2). The 
wavelengths of the detectable gravitational field are typically very large, larger than 105 meters7, as are 
the features of the curved background. Using the results contained in this article, we can map the sce-
nario of interest to one where the gravitational waves are substituted by electromagnetic tensor waves. 
Now, the conformal invariance will allow us to shrink the problem. One of the symmetry transforma-
tions allowed by conformal invariance is a pointwise scaling of spacetime: = ( )α α αx s x x . We will use a 
constant s(xα) =  s. Let us say that we want to study the solutions of Maxwell’s equations in a spacetime 
with metric γμν(xα). The invariance under scalings means that we can equivalently study the solutions of 
the system obtained after the change =α αx sx , whose metric is γ ( / )μν α

−s x s2 . In terms of the electro-
magnetic field tensors, the solutions of the original and scaled system are related as ( ) = ( / )μν α μν α

−F x s F x s2 . 
Features of size L in the original spacetime geometry have size sL in the scaled system, and the same 
relationship holds for the electromagnetic wavelengths in the two systems. After shrinking the problem 
to a suitable size, we are left with the task of creating a spacetime curvature s−2γμν in the laboratory. 
Fortunately, we do not need to tackle this problem directly: The propagation of electromagnetic waves 
in a given empty but curved spacetime is equivalent to their propagation in a particular material medium 
in flat spacetime27. The constitutive relations of the material are a function of the metric and, in general, 
describe a continuous, inhomogeneous and anisotropic medium. Provided that one can fabricate such 
media, it is possible to emulate the propagation and interference of an arbitrary number of gravitational 
waves traveling through the spacetime geometry created by an arbitrary number of cosmological objects 
by means of experimental electromagnetic setups. Figure  2 illustrates this quantum emulation. It is 
important to note that the spacetime curvature caused by the gravitational waves themselves is not 
dynamically produced in this emulation framework. That is, the part of γμν attributable to them must be 
small enough so that it can be ignored.

A technical challenge for this quantum emulation framework is the fabrication of the appropriate 
inhomogeneous and anisotropic media that mimic the desired spacetime geometry. Their design and 
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fabrication is actively being investigated by the metamaterials community. These media implement trans-
formation devices like for example cloaks and perfect lenses28–30. Actually, the helicity preservation inher-
ent to a general curved spacetime (Sec. 11 in Ref. 31) can be exploited to provide design guidelines for 
transformation devices32.

Having solved the scale problem and the propagation in a curved spacetime, we now turn to the gen-
eration of electromagnetic fields with the desired properties: That they can be decomposed as sums of 
tensor products of two electromagnetic plane waves of the same helicity, whose momentum four-vectors 
are parallel and proportional to one another. A system which already fulfills most of these properties is 
a spontaneous parametric down-conversion (SPDC) source of momentum correlated photons. Entangled 
photon sources based on SPDC generated photons have been regularly used in quantum optics exper-
iments in the last 40 years. In these quantum light sources, a quadratic nonlinear crystal is pumped by 
a high frequency beam of light, typically in the ultraviolet or violet regime. The nonlinear crystal then 
mediates the low efficiency process of down-converting some of the pump photons into two photons 
at a lower frequency (typically in the infra-red). The possibility of engineering the phase matching of 
nonlinear crystals has allowed for a wide range of engineered quantum states of light.

In particular, the use of collinear sources, i.e. sources where the generated photons are emitted along 
the propagation direction of the pump beam, allows for a tight control of the momentum and polariza-
tion correlations of the down-converted photons. Collinear sources based on Type 0 periodically poled 
potassium titanyl phosphate (ppKTP) can generate entangled photons which are momentum correlated 
and have the same linear polarization. Their polarization can then be transformed to the required helicity 
basis with a quarter waveplate. The momentum correlation is achieved by using a pump beam with a 
width which is much smaller than (S/kp)1/2, where S is the length of the crystal and kp the wavenum-
ber of the pump beam. In the two-photon state, the terms exhibiting correlations between non-parallel 
momenta cannot be completely suppressed, but can be made arbitrarily small by either increasing the 
length of the crystal or using a tighter pump focus33.

In order to emulate an arbitrary gravitational wave, superpositions of photon pairs with both helicities 
are required. This can be achieved by combining two of the described sources with orthogonal linear 
polarizations before the quarter waveplate.

We note that the parameter κ ∈  (0,1) in Eq. (15), which ties together all the electromagnetic tensor 
states that are equivalent to a single gravitational wave, has a physical correspondence in the source of 
momentum correlated photons. It corresponds to the split of the frequency of the pump wp, which we 

Figure 2. Schematic comparison of a gravitational wave propagating through curved spacetime 
(upper panel) with the equivalent situation of two-photon states (lower panel) propagating through 
a metamaterial. The propagation of the gravitational wave is equivalent to the propagation of a subset of 
two-photon states. Conformal invariance is used to shrink the astronomical sizes down to laboratory scales, 
and a metamaterial media to mimic the specific spacetime curvature. The source for the two-photon states 
is a non-linear crystal, for example periodically poled potassium titanyl phosphate (ppKTP), pumped by 
a narrow band laser. An interference filter after the crystal removes the pump light and could restrict the 
frequencies for the down-converted photons. A quarter waveplate would finally transform the state to the 
helicity basis. In order to emulate an arbitrary gravitational wave polarization, superpositions of photon pairs 
with both helicities are required. This can be achieved by combining two sources with orthogonal linear 
polarizations before the quarter waveplate.
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assume monochromatic, into the frequencies of the emitted photons (ωs, ωi). Since energy conservation 
enforces ωp =  ωs +  ωi, we may write ωs =  κωp and ωi =  (1 −  κ)ωp for κ ∈  (0,1), which makes the corre-
spondence clear. Should the metamaterial exhibit a significant frequency dependence, κ± =  1/2 can be 
chosen by means of a narrow-band interference filter selecting the frequency degenerate down-converted 
photon. This completes the design of a quantum source of light, capable of emulating a gravitational 
wave.

For the detection of the field after it has passed through the metamaterial, we need to keep in mind 
that we are emulating single-body objects by means of two-body objects. The measurements should 
rely on detecting both photons “at the same place and at the same time”. This may be done by count-
ing coincidences, where both photons of a pair arrive at the detector within a very small time interval. 
Measurements that are unique to a two-particle state, like quantum interference, have no correspondence 
in the gravitational wave case, which places them outside the emulation framework.

The applicability of the emulation scheme to a particular background metric is determined by the 
applicability of the theoretical results contained in the previous section: The amplitudes of the gravi-
tational waves must be much smaller than those of the background, and, the waves must vary much 
faster than the background (see Eq. (2)). For a given wavelength, this last condition limits the maximum 
allowable curvature. When the curvature increases, e.g. while approaching a singularity, the applicability 
reduces to correspondingly smaller wavelengths.

Discussion
In conclusion, we have shown that the propagation of gravitational waves in a curved spacetime back-
ground is equivalent to the propagation of a restricted set of electromagnetic tensor product waves. The 
defining characteristics of gravitational waves, zero mass and possible helicities equal to ± 2, select the 
appropriate subspace of electromagnetic states. They turn out to be the tensor products of two electro-
magnetic waves of the same helicity and parallel momentum. Therefore, any linearly or elliptically polar-
ized gravitational wave can be expanded as the sum of two electromagnetic tensor waves, one for each 
circular polarization handedness. The consideration of helicity eigenstates of both the gravitational and 
the electromagnetic waves has been crucial: A linearly polarized gravitational wave cannot be formally 
factorized as a tensor product of two electromagnetic waves, while a circularly polarized gravitational 
wave can. Our analysis is restricted to gravitational waves of small amplitude that vary rapidly with 
respect to the spacetime background and propagate in empty space. As far as we know, this equivalence 
has not been reported before.

We have shown that the implementation of the equivalence needs genuine quantum correlations 
between two photon states. As an application of these results, we have proposed a path for the quantum 
emulation of the propagation of gravitational waves by means of experimental electromagnetic setups. 
First, the equivalence derived in this article is applied to map the gravitational waves into electromag-
netic tensor waves, then the conformal invariance of electromagnetism is used to shrink the problem 
from large wavelengths and large sized spacetime features down to suitable sizes, and finally, the scaled 
down curved spacetime background is emulated in the laboratory by an appropriate material medium. 
Precisely this type of media are already the object of research in the field of metamaterials.

To finish, we suggest that the decomposition of gravitational waves into tensor products of electro-
magnetic waves could be used to reduce the complexity of simulating gravitational waves in a computer. 
If the scenario of interest meets the specified restrictions, setting κ± =  1/2 in Eq. (22), one can first 
simulate the propagation of two electromagnetic vector waves, one for each helicity, and then sum the 
tensor products of each resulting vector wave with itself.

Future expansions of this framework could include its extension outside the geometrical optics 
approximation in order to study the interaction of gravitational waves with strongly curved spacetimes, 
and the use of nonlinear optical metamaterials capable of reproducing the back action of the gravitational 
wave on the background metric.
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