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Frequency-resolved optical 
gating technique for retrieving 
the amplitude of a vibrational 
wavepacket
Yasuo Nabekawa1, Yusuke Furukawa1, Tomoya Okino1, A. Amani Eilanlou1, 
Eiji J. Takahashi1, Kaoru Yamanouchi2 & Katsumi Midorikawa1

We propose a novel method to determine the complex amplitude of each eigenfunction composing a 
vibrational wavepacket of +H2 / +D2  molecular ions evolving with a ~10 fs time scale. We find that the 
two-dimensional spectrogram of the kinetic energy release (KER) of H+/D+ fragments plotted against 
the time delay of the probe pulse is equivalent to the spectrogram used in the frequency-resolved 
optical gating (FROG) technique to retrieve the complex amplitude of an ultrashort optical pulse. By 
adapting the FROG algorithm to the delay-KER spectrogram of the vibrational wavepacket, we have 
successfully reconstructed the complex amplitude. The deterioration in retrieval accuracy caused by 
the bandpass filter required to process actual experimental data is also discussed.

The coherent ultrafast dynamics of matter is governed by the coherent superposition of multiple quan-
tum states described with wavefunctions, which we call a wavepacket. We can find many studies that 
deal with the real-time evolution of a wavepacket composed of various quantum states, such as electronic 
bound states in an atom1–4, continuum electronic states with the ionization of an atom5, and rotational6 
and vibrational7,8 states of a molecule. This is due to the fact that the wavepacket exhibits the fundamen-
tal characteristics of quantum mechanics9–11, and thus has fascinated many researchers. In addition, the 
wavepacket is a strong candidate system for manipulating quantum information12.

As a specific target for investigating fundamental physics in a molecule, the vibrational wavepacket of 
H2
+/D2

+13–18 has strongly attracted our interest because H2
+/D2

+ is the simplest molecular system composed 
of only two nuclei and one electron. The ultrashort vibrational period with 10 fs order is another feature 
attractive to the community of ultrafast optical science.

The common basic scheme for observing the wavepacket dynamics follows the conventional 
pump-probe measurement, in which the pump pulse ionizes a neutral H2/D2 molecule to create a vibra-
tional wavepacket, and then, after a delay, the probe pulse is irradiated to dissociate a H2

+/D2
+ molecular 

ion. The spectrogram of the kinetic energy release (KER) determined from the observed H+/D+ frag-
ment ions with the scanning delay of the probe pulse reveals the vibrational motion of the wavepacket. 
The most significant and basic requirement for the pump and probe pulses is that both pulse durations 
should be much shorter than the vibrational period. Ergler et al.14 successfully observed the vibrational 
motion by using a pair of intense sub-10-fs pulses of a Ti:sapphire laser as the pump and probe pulses. 
Kelkensberg et al.16 demonstrated that an isolated attosecond pulse generated as a high-harmonic field 
of an a-few-cycle Ti:sapphire laser pulse is useful for generating the vibrational wavepacket of H2

+, the 
time evolution of which was revealed with another a-few-cycle Ti:sapphire laser pulse. We have also 
shown18 that an attosecond pulse train (APT), which was generated from a 14 fs terawatt pulse of a 
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Ti:sapphire laser, can decompose the time evolution of vibrational states into the KER region thanks to 
the multiple color components in deep/vacuum ultraviolet (DUV/VUV) regions included in the sub-
10-fs probe pulse.

The physical model for specifying the vibrational wavepacket of H2
+/D2

+ is also common in these 
studies13,19–22. The probability amplitude for finding the wavepacket at the internuclear distance R at time 
t is described as a coherent superposition of the vibrational states with the time-evolving phase factor:

R t a R e;
1

g g i tg∑ϕ χ( ) = ( ) ,
( )ν

ν ν
ω− ν

where Rgχ ( )ν  and  gων  are the νth vibrational eigenfunction and its eigenenergy, respectively. We denote 
Planck’s constant divided by π as ħ. The amplitude of each eigenfunction, aν, which determines the 
wavepacket function at the initial time, should be found by considering all the quantum degrees of free-
dom in the pumping (ionization) process. Nevertheless, the overlap integral between Rgχ ( )ν  and Rv

X
0χ ( )′=  

is often substituted for this amplitude by assuming the Franck-Condon principle via ionization, where 
Rv

X
0χ ( )′=  is the ground vibrational function of the H2/D2 molecule. The phase of the complex amplitude 

aν, arg{aν}, is fixed under this approximated condition (Franck-Condon approximation, FCA). Urbain  
et al. found that the magnitude of aν significantly deviated from that obtained under the FCA via tun-
neling ionization23. Jiang and coworkers17,24 pointed out that aν should generally be a complex number 
and that the non-FC model accompanying the transition of the electronic state with a continuum elec-
tron was essential for reproducing their experimental data. They still did not, however, observe arg{aν}.

The aim of our research reported in this paper is to determine the complex amplitude, aν, from exper-
imental data so as to completely reconstruct the vibrational wavepacket of H2

+/D2
+. This is very similar 

to the determination of the Fourier amplitude of an ultrashort optical pulse at the (angular) frequency 
ω, ε ω( ) , because the complex amplitude of the optical electric field, ε(z;t), is described as

z t d e e; 2
ik z i t∫ε ωε ω( ) = ( ) ( )
ω ω( ) −



when we can approximate the optical electric field as a plane wave propagating along the z-axis. The 
plane-wave function, eik(ω)z, alters with ω through the dispersion relation of the wavenumber, k(ω), 
against ω and gives us the functional basis set used to expand ε(z;t), as the vibrational wavefunction, 

Rgχ ( )ν , in Eq.(1) forms the functional basis for ϕg(R;t).
Therefore, it is reasonable to consider that a technique used to retrieve the amplitude of an optical 

pulse may also be useful for reconstructing a vibrational wavepacket. We have developed this simple idea 
and found that the experimental scheme in our previous study18 is desirable for applying the 
frequency-resolved optical gating (FROG) technique25,26, which is nowadays considered a conventional 
technique for characterizing an ultrashort optical pulse in the range from ps27 to as28. In the following 
section, we briefly review our previous study in which we observed the real-time motion of the vibra-
tional wavepacket of D2

+, and then we show that the physical model of the probing process for the vibra-
tional wavepacket is very similar to that for describing the FROG spectrogram. After describing the 
development of the FROG algorithm for the vibrational wavepacket, which we call ‘Matter-Wave FROG 
(MW-FROG)’, we report on the implementation of MW-FROG for a modeled vibrational wavepacket 
and discuss the accuracy of the retrieved data.

Experimental scheme
The experimental setup for the measurement of the vibrational wavepacket of D2

+ reported in ref. 18 was 
similar to that adopted for the measurement of the interferometric autocorrelation (IAC) signal of an 
APT29,31, as shown in Fig.  1. The high-order harmonic fields of a Ti:sapphire laser with a duration of 
14 fs32 were generated from a Xe gas target in a 10-cm-long static gas cell and spatially split into two 
beams with a pair of silicon harmonic separator mirrors. Each harmonic separator mirror strongly atten-
uated the fundamental laser pulse, while the 11th- or higher-order harmonic fields, the photon energy 
of which exceeded the ionization energy of the H2 molecule, were efficiently reflected by the harmonic 
separator mirrors. The weak residual fundamental, 3rd-, and 5th-order harmonic components were also 
contained in the reflected pulse.

The twin harmonic pulses reflected from the silicon mirror pair were focused into a molecular beam 
of D2 injected through a skimmer to partition the chamber from a differential pumping section that con-
tained a pulsed gas valve. The generated ion fragments of D+ were analyzed using a velocity-map-imaging 
(VMI) spectrometer to resolve the angular distribution and kinetic energy (KE) of the fragments. We 
obtained the KER spectrum for the dissociation of D+ +  D by angularly integrating the recorded VMI 
with double the KE.

We had already specified in preceding studies18,29 that the dissociation process was accompanied by 
the excitation of the D2

+ molecule from the ground bound electronic state (1sσg) to the repulsive elec-
tronic state (2pσu) by the one-photon absorption of the fundamental, 3rd-order, and 5th-order harmonic 
components. We could discriminate which order harmonic component contributed to the dissociation 
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by resolving the KER spectrum, because the excitation is likely to occur at the nuclear distance where 
the energy difference between the two states is similar to the photon energy. The energy diagram of the 
relevant adiabatic potentials is shown in Fig. 2.

We scanned the delay between the twin harmonic pulses by translating one of the silicon harmonic 
separator mirrors and found that the KER spectrum is periodically modulated in accordance with the 
delay, as shown in Fig. 3 in ref. 18, as clear evidence of the vibrational wavepacket motion with a period 
of ~22 fs. This is due to the short pulse duration of the ionizing pulse, which was expected to be ~5 fs or 
less from the results of the IAC measurement utilizing the two-photon ionization of the N2 molecule33,34, 
and that of the probe pulse with a duration expected to be ~7 fs. We adopt a well-known theoretical 
model for the two-level system of the electronic state to describe the probing process used in the exper-
iment in the next subsection.

Theoretical model for the probe process. We assume that the initial vibrational wavepacket 
instantaneously appears in the ground electronic state of H2

+ (1sσg), instead of D2
+, for simplicity, at t =  0, 

and then the probe optical pulse, which is composed of the coherent superposition of the 3rd- and 
5th-order harmonic pulses of a Ti:sapphire laser pulse, is irradiated at a delay of τ, resulting in the 
excitation of H2

+ from the 1sσg state to the 2pσu state. The essential features of the vibrational states of 

Figure 1. Experimental setup for observing the vibrational wavepacket of D2
+ in our previous study. An 

attosecond pulse train (APT) with an a-few-pulse train envelope is utilized for both the pump (ionizing D2 
molecules) and probe (one-photon excitation to the repulsive electronic state of D2

+) pulses.
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H2
+ and D2

+ are the same. We neglect the contribution of the fundamental laser pulse because of the low 
signal-to-noise ratio of the beat frequency observed in the experiment18.

It is well known13,19–22 that the physical model of this system can be described with the Hamiltonian
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Figure 2. Energy diagram of the D2 molecular system relevant to the pump-probe measurement in our 
experimental scheme. The vibrational wavepacket on the adiabatic potential of the s1 gσ  state is created by 
one-photon ionization by the irradiation of harmonic components in the APT, the orders of which are 11th 
and higher. The vibrational state is probed by excitation to the p2 uσ  state with the one-photon absorption of 
the fundamental, 3rd-, and 5th-order components in the APT.
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Figure 3. (a) Delay-KER spectrogram calculated from |T(ωu;τ)|2 in Eq.(16) by assuming that aν coincides 
with the overlap integral and that the gate pulse is the Fourier-limited pulse obtained from the measured 
spectra of the 3rd- and 5th-order harmonic fields. (b) Magnitude square of the Fourier transform of the 
delay-KER spectrogram depicted in Fig. 3(a). The color scale used to plot the intensity is logarithmic. The 
bandpass filter applied to the test target image depicted in the first panel in the last figure of this paper is 
also shown as contour plots.
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and with the electronic state

R t R t u R t g 4u gψ ψ ψ( , ) = ( , ) + ( , ) , ( )

satisfying the Schrödinger equation

i
t

R t H R t R t 5ψ ψ
∂
∂

( , ) = ( , ) ( , ) . ( )
ˆ

Here, R is the relative nuclear distance coordinate, and the vectors |u〉  and |g〉  are the eigenvectors 
of the electronic excited and ground states, expressed as |u〉  ≡ T(1,0) and |g〉  ≡ T(0,1), respectively. The 
Hamiltonian Hu/g(R) describes the nuclear motion in the 2pσu and 1sσg states, and is defined as Hu/g 
(R) ≡ − (2M)−1ħ2∂2/∂R2 +  Vu/g(R) for the reduced hydrogen mass M and adiabatic potential Vu/g(R). The 
delayed probe laser pulse at time t is expressed as E(t −  τ), and this laser pulse interacts with the elec-
tronic states via the dipole moment μ(R), which generally depends on the relative nuclear distance. 
Thus, D(R,t) in the off-diagonal elements in the Hamiltonian matrix on the right-hand side of Eq.(3) 
is expressed as D(R,t) ≡ μ(R) E(t −  τ). The wave functions ψu(R,t) and ψg(R,t) give us the probability 
amplitudes of the nuclear motion in the 2pσu and 1sσg states, respectively.

When we already know the eigenstates of Hu/g(R), we can regard H R H R H Ru u g g0 σ σ( ) ≡ ( ) + ( )ˆ ˆ ˆ  as 
the unperturbed Hamiltonian, and the total Hamiltonian, H R t( , )ˆ , should be divided into two parts, 
H R D R t0( ) + ( , )ˆ ˆ , where we define the perturbing Hamiltonian as D R t D R t D R tσ σ( , ) ≡ ( , ) + ( , )↑ ↓

ˆ ˆ ˆ . 
In these equations, we define the projection operator to the 2pσu (1sσg) state as u uuσ ≡ˆ  ( g ggσ ≡ˆ ) 
and the raising (lowering) operator from the 1sσg (2pσu) state to the 2pσu (1sσg) state as u gσ ≡↑ˆ  
( g uσ ≡↓ˆ ).

Thus, we apply the standard recipe of time-dependent perturbation theory to Eq.(5) with the initial 
condition that the wavefunction, |ψ(R, t =  0)〉 , is equal to ψ0g(R)|g〉 , where ψ0g(R) should be the initial 
vibrational wavepacket,

R a R
6g

g
0 ∑ψ χ( ) = ( ),

( )ν
ν ν

by considering the amplitude of the 2pσu state to be 0 at t =  0. The νth vibrational wavefunction, Rgχ ( )ν , 
satisfies the eigenequation H R R Rg

g g gχ ω χ( ) ( ) = ( )ν ν ν , and this functional basis set satisfies the orthog-
onal relation dR R Rv

g g
v0∫ χ χ δ( ) ( ) =ν ν

∞
′ ′ .

The general solution up to the first order of the perturbation should be in the form

{ }R t G R t G R t R t 0 7
0 1
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ˆ ˆ

where G R t
0
( , )

( )ˆ  is the 0th-order expansion term describing the free propagator in each electronic state 
and is expressed as
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The first-order term of the propagator, G R t
1
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( )ˆ , expresses the one-photon transition between the 
two electronic states, that is,
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We observe, in the actual experiment, the KE spectrum of H+ (D+) from the dissociation, which should 
be equivalent to the KER spectrum of the dissociative H +  H+ (D +  D+) in the 2pσu state. Thus, we 
impose the final state, R tfinψ ( , ) , as an eigenstate of Hu(R) in the 2pσu state, which is given by
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R t R u; e 10u u i tfin u
ψ χ ω( , ) = ( ) , ( )ω τ− ( − )

where χu(ωu; R) satisfies the eigenequation Hu(R)χu(ωu; R) =  ħωuχu(ωu; R). The phase factor of e i tuω τ− ( − ) 
describing the time evolution of the wavefunction appears in Eq.(10) because the time interval from τ 
to t is t −  τ. We can obtain the transition amplitude by the first-order approximation,

{ }
t

dR R t G R t G R t R t

; ;

0 11

u1

0

fin 0 1
∫

ρ ω τ

ψ ψ

( )

= ( , ) ( , ) + ( , ) ( , = ) . ( )

( )

∞ ( ) ( )ˆ ˆ

Putting the initial and final states in this equation and using the eigenequations for Rgχ ( )ν  and χu(ωu; 
R), ρ(1)(ωu; τ; t) should be given by

�
M

t

i
a dt E t e

; ;
1 ;

12

u

u g t i t

1

0
1 1

u g
1∫∑

ρ ω τ

ω ω τ
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= ( ) ( − ) ,
( )ν

ν ν
ω ω

( )

( − )ν

with the dipole matrix elements

 dR R R R; ; 13
u g u u g

0∫ω ω χ ω µ χ( ) ≡ ( ) ( ) ( ). ( )ν ν

∞

It is reasonable to assume that time t at the detection of H+ (D+) is infinitely large compared with the 
delay τ; thus, the upper limit of the time integral in Eq.(12) can be infinity.

We apply another approximation to Eq.(12). The magnitude of the probe pulse, |E(t)|, should be neg-
ligibly small in the time regions t  – τp and τp  t, where τp is the pulse (train envelope) width of |E(t)|. 
Therefore, we can approximate the time integration as

dt E t e

dt E t e 14

i t
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1 1
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under the condition τ  τp With this approximation, we obtain
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where E (Ω)
(+)
  and E (Ω)

(−)
  are the positive- and negative-frequency parts of the complex Fourier ampli-

tude E dtE t ei t1
2 ∫(Ω) ≡ ( )
π

Ω
 , respectively.

We neglect the negative-frequency part in Eq.(15) (rotating wave approximation) because (i) the 
relation (Ω) = (−Ω)

(−) (+)
 

⁎E E{ }  holds for the real optical field of E(t), (ii) the magnitude of E (Ω)
(+)
  

should be finite only in the frequency region around Ω ~ω3 >  0 and Ω ~ω5 >  0 and 0 otherwise, and (iii) 
the argument of the Fourier amplitude u gω ω− ν  is a positive number for all eigenenergies of ħωu and 
 gων .

By removing the overall constant factor from the right-hand side in Eq.(15) and replacing E (Ω)
(+)
  

with G(Ω) , which is equivalent to the Fourier amplitude of the complex optical field of the probe (gate) 
pulse, we obtain the transition amplitude, T(ωu;τ), as

T G a; ; e
16

u u g u g i g

∑ω τ ω ω ω ω( ) = ( ) ( − ) .
( )ν

ν ν ν
ω τ− ν



We can easily recognize the similarity between the transition amplitude, T(ωu;τ), in Eq.(16) and the 
FROG amplitude obtained by the equation

S

dt t G t d G

;

e e 17
i i∫ ∫

τ

ε τ ω ω ε ω
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= ( ) ( − ) = (Ω − ) ( ) , ( )
τ ωτΩ −
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where |S(Ω ;τ)|2 gives us the frequency-delay spectrogram of the correlation signal of an optical field of 
ε(t) and the gate field G(t −  τ), by considering the correspondence between gω ω↔ν , ∑ν ↔  ∫dω, 
a ε ω↔ ( )ν  , and ωu ↔  Ω . Although we find the difference of T(ωu;τ) from S(Ω ;τ) by  ;u gω ω( )ν , we can 
obtain this matrix element with a modeled theoretical calculation based on the spectroscopic data. Thus, 
we conclude that the FROG algorithm can be applied to T(ωu; τ) provided that we give the theoretical 
result of  ;u gω ω( )ν  to the algorithm.

We show the delay-KER spectrogram calculated from |T( ωu;τ)|2 in Fig. 3(a). We substitute a fc
ν  for aν, 

where a fc
ν  is the conventional overlap integral under the FCA condition in this calculation. We put the 

square root of the measured profile of the spectrum of the probe pulse, which is obtained by the super-
position of the measured spectra of the 3rd- and 5th-order harmonic fields, into the magnitude profile 
of the gate field, G(Ω) . We also assume a flat spectral phase of G(Ω) . The vibrational structure lies in 
two separate KER regions, one of which is around ~3 eV and the other is around ~5.6 eV. The 3rd- and 
5th-harmonic components in the gate field contribute to the formation of the structure in the former 
and latter KER regions, respectively.

Note that we cannot distinguish an arbitrary delay of the gate field from an advance of the wavepacket 
by observing |T(ωu;τ)|2. When the gate field includes an additional delay, τG, the transition amplitude, 
T(ωu;τ), is modified to TG(ωu;τ) such that
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We find that a e i g G

ν
ω τ− ν  is the wavepacket amplitude that has already evolved with time τG. This group 

delay (GD) may also be an unintentional offset of the delay origin; thus, we can eliminate an arbitrary 
phase proportional to the binding energy from the retrieved phase of aν to find a nontrivial phase mod-
ulation.

The magnitude square of the Fourier transform of |T(ωu;τ)|2 shown in Fig.  3(b) exhibits the beat 
frequency components 2g g

1ω ω π( − )/ν ν+  and 2g g
2ω ω π( − )/ν ν+ , which are spectrally resolved along the 

KER direction. This is due to the fact that the gate field, G(Ω) , actually performs a ‘gate’ action by band-
pass filtering for ωu so as to satisfy the condition ω ω ω ω− ( − ) ∆ν n

u g
n (n =  3, 5), where ωn and 

Δ ωn are the peak frequency and bandwidth of the nth harmonic component, respectively. The highest 
vibrational number that appears as a beat frequency is 9 or 10. Thus, we do not expect the reconstruction 
of the wavepacket amplitudes of these vibrational states and higher states from the delay-KER spectro-
gram. Although the gate action restricts the range of beat frequency components that can be observed, 
it is essential to retrieve the amplitude of the wavepacket by using the FROG algorithm. We show the 
numerical values of beat frequencies that appear in Fig.  3(b) in Table  1. These values do not exhibit 
significant differences from the beat frequencies calculated from the vibrational energies given in ref. 35, 
and hence we conclude that our MW-FROG software code can correctly reproduce the vibrational period 
in the frequency-KER spectrogram. The frequency-KER spectrogram in Fig. 3(b) can be used to calibrate 
the delay and KER of the experimental data and to generate the bandpass filter mentioned in the follow-
ing subsections.

MW-FROG algorithm. We define Iex(ωu;τ) as the experimental data of a delay-KER spectrogram and 
T ;u gω ω( )ν  as

T G a; ; 19u g u g u gω ω ω ω ω ω( ) ≡ ( ) ( − ) , ( )ν ν ν ν




to simplify the expressions. The amplitude of the delay-KER spectrogram described in Eq.(16) is 
expressed as

T T; ; e
20

u u g i g

∑ω τ ω ω( ) = ( )
( )ν

ν
ω τ− ν



with this notation. The retrieval algorithm that we have adopted is the same as the conventional FROG 
algorithm using a generalized projection method to optimize the wavepacket (aν) and gate-field ampli-
tudes (G u gω ω( − )ν ) in the frequency domain, as shown schematically in Fig. 4. The initial guesses for 
G u gω ω( − )ν  and aν generate the frequency-KER amplitude, T ;u gω ω( )ν , by multiplying the projection 
matrix  ;u gω ω( )ν  by the product of these two quantities in operation (i) in this figure. The 
frequency-KER amplitude is converted to a delay-KER amplitude, T(ωu;τ), by accumulating T ;u gω ω( )ν  
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in terms of ν with the phase factor e i gω τ− ν  ((ii)). We obtained the experimental delay-KER amplitude, 
Tex(ωu;τ), by substituting (Iex(ωu;τ))1/2 for |T(ωu;τ)|, such that

T
T
T

I;
;
;

;
21

u
u

u
uex exω τ

ω τ
ω τ

ω τ( ) =
( )

( )
( )

( )

in operation (iii). We apply a Fourier transform to Tex(ωu;τ) and choose the frequency components at gων  
to obtain T ;u gex

ω ω( )ν  ((iv)). The next guesses for aν and G u gω ω( − )ν  for the second loop of iterations 
are determined by minimizing the functional distance Z between T ;u gex

ω ω( )ν  and T ;u gω ω( )ν  ((v)) 
defined as

Z d W T T; ; ;
22

u u g u g u gex 2
∫ ∑ω ω ω ω ω ω ω= ( ) ( ) − ( ) ,

( )ν
ν ν ν

 

where W ;u gω ω( )ν  is the weight function used to ensure the appropriate convergence in iterations. Note 
that we do not perform the singular value decomposition of Tex ;u gω ω( )ν  to determine aν and 
G u gω ω( − )ν  as principal components25 because the number of ν (vibrational states) is much smaller 
than the number of discretized ωu and the gων  are unequally spaced in the frequency axis. We instead 
sequentially determine aν and G u gω ω( − )ν  such that the functional derivative of Z with respect to aν or 
G u gω ω( − )ν  should be 0. We can also limit the parameters to be optimized in the functional space; for 
example, |aν| can be optimized with a fixed arg{aν}. The convergence of the iterative loop is monitored 
by the normalized functional difference defined as Δ rms ≡ (Z/Zex)1/2, where Zex is the area of  T ;u gex 2

ω ω( )ν  
weighted with W ;u gω ω( )ν .

In the actual optimization of aν and G(Ω) , we implement the following procedures to make the unin-
tentional GD in aν, which is complementary to the advance of G u gω ω( − )ν  as stated in the explanation 
for Eq.(18), as small as possible. First, we substitute a fc

ν  into aν and then optimize the heights of the two 
peaks in the gate field while the magnitude profiles are fixed to the measured spectral magnitudes of the 
3rd- and 5th-order harmonic fields. The spectral phase of the gate field is also fixed to 0 in this process. 
Second, we optimize |aν| under the condition of the fixed gate and the 0-phase of aν. Third, the gate field 
is optimized under the initial condition of the noise field. An unintentional GD should be mainly 
imposed on the GD of the gate field in this process because the phase of aν is fixed to 0. After the third 
process, we repeat the optimization of aν and G(Ω)  sequentially, and finally, we optimize the polynomial 
coefficients describing the phase of aν. The reason for performing the last process will be given later.

In order to determine whether our software code implementing the MW-FROG algorithm can accu-
rately reproduce a known target spectrogram, we generate a target spectrogram, as shown in Fig. 5(a), 
in accordance with a model wavepacket amplitude and gate field, the magnitude and phase of which 
are depicted in Fig. 5(c,d), respectively. In this model calculation, the magnitude of aν is similar to that 
obtained in a theoretical model of ionization with the one-photon absorption of an APT. The phase of aν 
is modulated with the 5th-order polynomial with respect to the binding energy. The modulation depth 
is approximately 0.2 rad. The target amplitude of aν for all ν is determined in this manner, while we set 

(ν,ν + 1) 
Δf1 

[THz]
diff. 
[%] (ν,ν + 2)

Δf2 
[THz]

diff. 
[%]

(0,1) 65.925 + 0.36 (0,2) 128.28 + 0.56

(1,2) 62.356 + 0.78 (1,3) 121.14 + 0.90

(2,3) 58.787 + 1.00 (2,4) 114.01 + 1.10

(3,4) 55.218 + 1.10 (3,5) 106.87 + 1.10

(4,5) 51.650 + 1.00 (4,6) 99.730 + 0.94

(5,6) 48.081 + 0.82 (5,7) 92.592 + 0.64

(6,7) 44.512 + 0.44 (6,8) 85.455 + 0.2

(7,8) 40.943 − 0.07 (7,9) 78.317 − 0.37

(8,9) 37.374 − 0.70

(9,10) 33.805 − 1.40

(10,11) 30.236 − 2.2

Table 1: List of beat frequencies appearing in our MW-FROG algorithm. The beat frequencies between 
pairs of adjacent vibrational states are denoted as Δ f1 =  (ων+1 −  ων)/(2π), and those between the next pairs of 
adjacent vibrational states are denoted as Δ f2 =  (ων+2 −  ων)/(2π). These numerical values are compared with 
those obtained from ref. 35. The resultant differences are shown as diff. in %.
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aν to zero for ν >  8 in the retrieved result because of the missing beat frequencies for this range of vibra-
tional numbers in the spectrogram. The magnitude of the gate field coincides with the magnitude profile 
composed of the measured 3rd- and 5th-order harmonic components. The group delays of the 3rd- and 
5th-order harmonic components are set to 0.9 rad/eV (  592 as) and 0.5 rad/eV (  263 as), respectively.

By setting the target delay-KER spectrogram to that obtained by the exact calculation of |T(ωu;τ)|2, 
we retrieve the delay-KER spectrogram shown in Fig. 5(b). The retrieved magnitude and phase of aν are 
shown as squares with bars and squares with connecting lines in the bottom and top panels in Fig. 5(c), 
respectively. The deviation (root mean square of differences) of the magnitude of the retrieved aν from 
that of the target aν is estimated to be only 6.5 ×  10−3 on the arbitrary unit scale of |aν| depicted in the 
bottom panel of Fig. 5(c). This result ensures the reliability of our MW-FROG algorithm. Nevertheless, 
it should be noted that the wavepacket magnitude should always include the deviation from the actual 
magnitude obtained from experimental data because we use an approximated formula (Eq.(13)) to obtain 
 ;u gω ω( )ν  in Eq.(16).

The phase of aν, labeled ‘retrieved 1’ in the top panel in Fig. 5(c), is derived by optimization of aν. We 
corrected the GD so as to minimize the deviation from the target phase. The resultant phase shows 
scattering from the target phase with an r.m.s. error of 56 mrad. This is due to the processes in the 
MW-FROG algorithm labeled (ii) and (iv) in Fig. 4. The operation of T ; eu g i g

ω ω∑ ( )ν ν
ω τ− ν

  in process (ii) 
is not exactly the same as the inverse Fourier transform of T ;u gω ω( )ν  because of the unharmonicity of 
the vibrational frequencies, gων . Nevertheless, we execute the Fourier transform of Tex(ωu;τ) in process 
(iv) as the inverse operation in process (ii), then obtain the Fourier amplitude of 
T d T e; ;u g u iex ex g

∫ω ω τ ω τ( ) = ( ) ω τ
  by assuming that ωg is a continuos variable. In the actual calculation 
in this process, the variables τ and ωg are discretized with equal steps of Δ ωg and Δ τ, respectively, where 
these two quantities satisfy the equation Δ ωg =  2π/(NΔ τ), where N is the number of points. We replace 
ωg by nn

g g g
offsetω ω ω≡ + ∆  (n =  0,1,…,N −  1) and τ by τm ≡ τoffset +  mΔ τ (m =  0,1,…,N −  1). The 

Fourier amplitude is expressed as T T e; ;u
n
g

m
N u

m
iex

0
1 ex n

g
mω ω ω τ( ) = ∑ ( ) ω τ

=
−

 . Therefore, we have to 
always choose the nearest-neighbor frequency, n

gω
ν
, as the approximated gων  and regard T ;u n

gex( )ω ω
ν

  as 
T ;u gex
ω ω( )ν . This situation is graphically explained in FIG. S-1 of the supplementary information. The 

deviation of T ;u n
gex( )ω ω
ν

  from T ;u gex
ω ω( )ν  in the algorithm is the source of the scatter in the retrieved 

phase of aν.
We have confirmed that the scatter is significantly reduced by zero padding to increase the number 

of points, N, before the Fourier transform because of the reduced frequency step, Δ ωg. The results are 
presented in FIG. S-2 of the supplementary information. Currently, the maximum available N is 216, 
which is limited by the 4 GB memory size in the 32-bit architecture of our personal computer software, 
resulting in the phase error of 56 mrad mentioned above. The functional error, Δ rms, is 3.1%. In FIG. S-5 
of the supplementary information, we also show another test of the performance of the MW-FROG 
algorithm using a different target aν and G(Ω) , resulting in a phase error of 73 mrad.

Although this accuracy is sufficient to detect a phase modulation with a magnitude of 0.2 rad, even a 
small amount of scattering can cause deviation in the differentiation of the phase with respect to the 
frequency, which is regarded as a GD modulation possibly contained in the measured spectrogram. Thus, 
we expand the phase into a polynomial in terms of gων  to smoothly connect the adjacent phases and 
optimize the coefficients in the MW-FROG algorithm. The resultant phase using the optimized 

Figure 4. Retrieval algorithm of MW-FROG. 
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polynomial coefficients is shown as ‘retrieved 2’ in the top panel of Fig. 5(c). Although Δ rms somewhat 
increases to 3.2%, the phase deviation is reduced to 47 mrad.

We note that the phase of the wavepacket amplitude should be accurately obtained from the experi-
mental data even though we use the approximated formula of  ;u gω ω( )ν  in the MW-FROG algorithm. 
This is because the phase information is only contained in the phases at the beat frequency components 
in the Fourier domain, which should not be affected by the deviation of a real function of  ;u gω ω( )ν . 
Hence, there may be another possible analytical method to extract the phase of the wavepacket from the 
relative phases in the beat frequencies if we can determine the characteristic of the gate field by a separate 
measurement. The robustness for phase retrieval under worse situations that mimic experiments is 
shown in the next section and the supplementary information.

The retrieved gate field is depicted in Fig.  5(d). The magnitude of the retrieved gate field coincides 
with that of the target field. The retrieved phase is also similar to that of the target except for the GD 
offset. Although the GD difference between the 3rd- and 5th-order harmonic components is estimated 
to be 0.26 rad/eV ( 171 as) larger than that of the target (0.4 rad/eV =  (0.9 − 0.5) rad/eV), the resultant 
GD difference does not significantly change the temporal profile of the gate field.
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Figure 5. (a) Delay-KER spectrogram used as a target for retrieval in MW-FROG algorithm. This 
spectrogram is generated from the modeled wavepacket amplitude and gate field, the magnitudes of which 
are depicted as crosses with bars in the bottom panel of Fig. 5(c) and as a shaded area in the bottom panel 
of Fig. 5(d), respectively. The phases for these quantities are also shown as crosses with connecting lines in 
the top panel of Fig. 5(c) and as a dashed curve in the top panel of Fig. 5(d). (b) Delay-KER spectrogram 
retrieved from that in Fig.5(a). (c) Magnitude and phase of the wavepacket amplitude, aν. The magnitude 
and phase retrieved from the delay-KER spectrogram are shown as solid squares with bars (magnitude) and 
connecting lines (phase) in the bottom and top panels, respectively. The phases depicted as hollow squares 
are obtained by optimization of aν, while those depicted by solid squares are obtained by optimization of the 
polynomial expansion coefficients of the phases. (d) Magnitude and phase of the gate field G(Ω) . Solid 
curves in the bottom and top panels are the retrieved magnitude and phase, respectively.
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Toward application to experimental data. To apply the MW-FROG algorithm to the experimental 
data, we have to resolve some issues. One is the short scanning range of the delay. The beat frequency 
components among the vibrational states must be clearly distinguished from each other by the Fourier 
transform of the delay-KER spectrogram against the delay axis so as to execute the MW-FROG algo-
rithm correctly. The frequency resolution required is approximately 3 THz, and thus, the scanning range 
of the delay should be much longer than 300 fs, while the scanning range of our experimental data in 
the previous study18 is only ~140 fs. We can, however, easily extend the scanning range by replacing the 
translation stage used to adjust the position of the silicon harmonic separator mirror, and we expect a 
delay range of more than 500 fs with this modification.

Another issue may arise from the noise inherent in the experiment. This is common in conventional 
FROG measurements of ultrashort optical pulses, which can be resolved using a method similar to that 
adopted in the FROG measurement. High-frequency noise far from the relevant frequency range of the 
measured optical pulse is rejected using a low-pass filter before implementing the FROG algorithm25. 
We will also need a filter to eliminate the frequency components unnecessary for determining the wave-
packet amplitude from the target spectrogram in our MW-FROG measurement. For this purpose, it is 
appropriate to apply a bandpass filter to the target delay-KER spectrogram obtained with the experi-
mental data because the discrete frequency peaks of the Fourier transform of the spectrogram should be 
fixed to the beat frequencies of the vibration, unlike the continuum frequency spectrum of the Fourier 
transform of the FROG spectrogram for an isolated ultrashort optical pulse, as shown in Fig. 3(b).

In order to examine the performance of the MW-FROG algorithm with a filtered target spectrogram, 
we determined the transmission band of the bandpass filter, shown as contours in Fig. 3(b), by extracting 
the KER profile at each beat frequency in Fig. 3(b). The beat notes whose number difference is greater 
than 2 are omitted. The positions of KER peaks in the bandpass filter are adjusted to coincide with 
those in Fig. 3(b). The KER width of the filter, which is fit to a Gaussian profile, is set to twice that in 
Fig. 3(b). The window function for the frequency is the δ-function with a finite number of points, N, that 
is, sin((N +  1)(ω −  ωpeak)Δ τ/2)/sin((ω −  ωpeak)Δ τ/2), where Δ τ is the time step for the delay increment. 
N is set to twice the number of points used for delay scanning to reduce the endpoint effects.

Before Fourier transforming the spectrogram to apply the bandpass filter, we remove the DC compo-
nent from the spectrogram to eliminate the background tail (ringing) of the high-DC component in the 
beat frequency range. After applying the bandpass filter, we add a DC component as the delta function 
with the average KER profile such that the intensity of the spectrogram after the inverse Fourier trans-
form is greater than or equal to zero. Unintentional negative parts in the spectrogram are truncated.

We obtained the target delay-KER spectrogram by applying the bandpass filter, as shown in Fig. 6(a), 
then checked the accuracy of the retrieved aν and G(Ω) . The resultant delay-KER spectrogram is shown 
in Fig.6(b), and the magnitude and phase of aν are depicted as diamonds with bars and diamonds with 
connecting lines in the bottom and top panels of Fig. 6(c), respectively. The retrieved magnitude is scat-
tered from the target magnitude with a deviation of 0.15 on the arbitrary unit scale of |aν| depicted in 
the bottom panel of Fig.  6(c), which is sufficiently large to disturb the observation of the change in 
magnitude of the target aν. This is due to the fact that the bandpass filter accompanied by DC compen-
sation disturbs the intensity profile of the target spectrogram. The functional error is increased to 18.3% 
(with the optimization of aν) or 18.7% (with the optimization of the polynomial coefficients expressing 
the phase of aν).

In spite of the visible deviation of the retrieved magnitude, the retrieved phase is not significantly 
affected by the bandpass filter, as shown in the top panel of Fig. 6(c). The phase of aν does not depend on 
the magnitudes of beat frequencies nor that of the DC component. To retrieve the phase of aν, we only 
require the phase at each beat frequency. This is the reason why we can successfully retrieve the phase 
of aν. The r.m.s. error between the target and retrieved phases is sufficiently small and is estimated to be 
79 mrad. (with the optimization of aν) or 51 mrad. (with the optimization of the polynomial coefficients 
expressing the phase of aν).

The retrieved gate field, depicted in Fig. 6(d), exhibits somewhat degraded profiles in both the mag-
nitude and phase compared with the target gate field, whereas the discrepancy is negligibly small. The 
GD difference between the 3rd- and 5th-order harmonic components in the retrieved gate field deviates 
by only 0.11 rad/eV (74 as) from that in the target gate field.

In order to simulate an experimental situation, we further examined the retrieval of the wavepacket 
amplitude from target delay-KER spectrograms, which were intentionally deteriorated under the fol-
lowing conditions. (i) The KER resolution of our VMI spectrometer is 0.18 eV around the KER value 
of 5.6 eV. We thus generated a target delay-KER spectrogram by convolving a Gaussian KER response 
function with a width of 0.2 eV in full width at half maximum with the exact target spectrogram shown 
in Fig. 5(a). A noise was then added. (ii) We generated a delay-KER spectrogram by using a wavepacket 
showing non-polynomial phase modulation, which is different from the phase shown in Fig. 5(c). The 
gate field is the same as that shown in Fig. 5(d). We processed the generated delay-KER spectrogram in 
the same manner as that described for (i). (iii) We changed the spectral magnitude profile of the gate 
field to have double peaks in the photon energy regions of both the third and fifth harmonic compo-
nents. We also applied a group-delay dispersion to the spectral phase in both the photon energy regions 
and added a constant phase offset in the photon energy region of the fifth harmonic component. Then, 
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we generated a delay-KER spectrogram using this gate field and the same wavepacket as that used to 
generate the spectrogram in (ii). The exact spectrogram without applying the simulated experimental 
condition was used as the target spectrogram in the MW-FROG algorithm. (iv) We applied the same 
simulated experimental condition as that implemented for (i) to the exact spectrogram used in (iii) in 
order to generate the target spectrogram.

The retrieved spectrograms, wavepacket amplitudes, and gate fields are depicted in FIGS S-3, S-4, S-5, 
and S-6 in the supplementary information. We show how the phase offset in (iii) changes the temporal 
profile of the gate field in FIG. S-7 in the supplementary information. We confirmed that the convergence 
criterion of the spectrogram, R <  2, defined in refs. 36,37 was satisfied under our simulated experimental 
conditions (i), (ii), and (iv). Even though the r.m.s. errors of the retrieved phase in aν were increased 
under the simulated experimental conditions, they were still less than 120 mrad with the aν-optimization 
and less than 100 mrad with the optimization of the polynomial coefficients expressing the aν-phase.

As a result, we conclude that the MW-FROG algorithm is sufficiently reliable to resolve the aν-phase 
modulation with a depth larger than ~120 mrad even when the delay-KER spectrogram is degraded to 
have a finite KER resolution and noise. This is due to the extraction of the relevant phase information 
contained in the beat frequency peaks by the bandpass filter.
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Figure 6. (a) Target delay-KER spectrogram after passing through the bandpass filter, which is depicted as 
contour plots in Fig.3. The modeled wavepacket amplitudes and gate field are the same as those used to 
generate the delay-KER spectrogram in Fig. 5(a). (b) Delay-KER spectrogram retrieved from that in Fig. 
6(a). (c) Magnitude and phase of the wavepacket amplitude, aν. The magnitude and phase retrieved from the 
delay-KER spectrogram are shown as solid diamonds with bars (magnitude) and connecting lines (phase) in 
the bottom and top panels, respectively. The phases depicted as hollow diamonds are obtained by 
optimization of aν, while those depicted by solid diamonds are obtained by optimization of the polynomial 
expansion coefficients of the phases. (d) Magnitude and phase of the gate field G(Ω) . Solid curves in the 
bottom and top panels are the retrieved magnitude and phase, respectively.
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Summary and prospects. We have proposed the MW-FROG method to retrieve the vibrational 
wavepacket amplitude of aν generated in the ground electronic state of a H2

+/D2
+ molecule based on the 

theoretical model of photoexcitation from the bound ground state to the repulsive excited state. The 
similarity of the transition amplitude in Eq.(16) to the optical FROG amplitude in Eq.(17) is due to the 
fact that the excitation is induced by a simple one-photon absorption process without considering the 
distortion of adiabatic potentials usually caused by an intense near-infrared laser pulse15.

We have successfully retrieved the amplitude of the vibrational wavepacket by applying the MW-FROG 
algorithm to the modeled target spectrogram. Although a bandpass filter, which reduce s the noise of the 
spectrogram obtained in an actual experiment, degraded the accuracy of the magnitude of the vibrational 
wavepacket, we can still accurately find a phase modulation with a modulation depth larger than ~120 
mrad.

The MW-FROG method requires a priori knowledge of the nuclear wavefunctions of the system 
consisting of vibrational and dissociative electronic states. The scanning range of the delay should be 
sufficiently long to resolve each beat frequency between the vibrational states. Therefore, we may apply 
this method to diatomic molecules other than H2

+ provided we obtain accurate adiabatic potential curves 
relevant to the system through the use of theoretical calculation and spectroscopic data. The delay-KER 
spectrogram originating from the vibrational motion of N 2

+ demonstrated in ref. 38 may be suitable for 
the application of MW-FROG if the delay range can be extended to much longer than 1.1 ps (revival 
time) to resolve the beat frequencies.

We have already carried out an experimental study of MW-FROG measurement for both H2
+ and D2

+ 
molecules by extending the scanning delay range to ~700 fs. The resultant amplitudes of the vibrational 
wavepackets for H2

+ and D2
+ exhibit nontrivial phase modulations. Details of this study will be reported 

elsewhere.
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