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Effects of time delay and space 
on herbivore dynamics: linking 
inducible defenses of plants to 
herbivore outbreak
Gui-Quan Sun1,4,*, Su-Lan Wang2,*, Qian Ren2,*, Zhen Jin1 & Yong-Ping Wu3

Empirical results indicate that inducible defenses of plants have effects on herbivore populations. 
However, little is known about how inducible defenses of plants have influences on herbivore 
outbreak when space effect is considered. To reveal the relationship between inducible defenses 
and herbivore outbreak, we present a mathematical model to describe the interaction of them. It 
was found that time delay plays dual effects in the persistence of herbivore populations: (i) large 
value of time delay may be associated with small density of herbivore populations, and thus causes 
the populations to run a higher risk of extinction; (ii) moderate value of time delay is beneficial 
for maintaining herbivore density in a determined range which may promote the persistence of 
herbivore populations. Additionally, we revealed that interaction of time delay and space promotes 
the growth of average density of herbivore populations during their outbreak period which implied 
that time delay may drive the resilience of herbivore populations. Our findings highlight the close 
relationship between inducible defenses of plants and herbivore outbreak.

Herbivores are diverse, ranging in size from microscopic zooplankton to the largest of land vertebrates 
from the point of view of taxonomy and ecology1. By feeding on different plant parts or materials, 
herbivores can affect plant growth, transfers of nutrients to the soil surface, and habitat and resource 
conditions for other organisms. In many plants, particularly trees, damages or stresses by herbivores 
populations can result in changes in the chemical, physical or other aspects of leafs, which are called as 
“inducible defenses”2–6. Both theoretical and experimental studies have shown that inducible defences 
affect stability and persistence of herbivore populations7–16.

Empirical findings suggested that populations of many herbivorous insects exhibit outbreak, in which 
short-lived peaks of high density and lots of fallen leaves alternate with long periods of low density17–21. 
As a result, the mechanisms on herbivore outbreak have been attracted considerable attention by ecol-
ogists and other experts in the relevant research area. The existing work revealed that interactions with 
enemies22–24, physiological stress2,9,11,25, the case that herbivore populations’s parents and grandparents 
experienced in preceding generations26, environmental forcing27 and limited resource28,29 may be the 
significant factors for herbivore outbreak. Although some previous works link inducible defenses to 
population-level effects on herbivore2,11,25, internal connections of inducible defenses and herbivore out-
break are far from being well understood. Especially, two main questions need to be well addressed: 
(1) Can inducible defenses of plants induce herbivore outbreak when space is considered? (2) How do 
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inducible defenses affect the persistence of herbivore populations in different aspects during their out-
break period?

It is difficult to characterize the relationship between inducible defenses and herbivore outbreak 
empirically due to that long time series of the density of both plant and herbivore is needed. It may 
provide useful information by constructing mathematical models to explain the phenomenon observed 
in the real world. Edelstein-Keshet posed a model to show how changes in plant quality have influence 
on herbivore populations30. Clark and Harvell used dynamic-optimization models to estimate the rel-
ative fitness consequences of inducible versus constitutive defenses strategies and found that inducible 
defenses played a more important role31. Abbott and Dwyer showed that outbreaking insects may be 
induced by a food limitation in the herbivore and defoliation and intraspecific competition in the host 
plant28. Anderson et al. presented a mathematical model on herbivore competition mediated by inducible 
changes in plant quality and obtained several types of competition outcomes32. Most studies to date only 
consider the evolution in time2,7,9. Nevertheless, it has been observed in the literature that spatial effects 
on plant and herbivore had been generally overlooked despite its potential ecological reality and intrinsic 
theoretical interest. In our paper, we will investigate the plant-herbivore interactions with time delay (it 
arises between herbivore damage and deployment of inducible defenses) and spatial diffusion and aim 
to link inducible defences to herbivore outbreak.

Results
Since overall data of herbivore is not available, we may not find out the intrinsic mechanisms on herbi-
vore outbreak empirically. Instead, we are aim to use a simple model to reflect the interactions between 
inducible defenses and herbivore populations (see Method section).

Our analysis is to link inducible defenses and herbivore outbreak by three steps. Firstly, we obtain 
the conditions on critical value of time delay for herbivore outbreak analytically. Secondly, we revealed 
dual effects of time delay on herbivore outbreak: on the one hand, large value of time delay brings about 
herbivore density to be zero which implied that time delay may be harmful to survival of herbivore; on 
the other hand, moderate value of time delay promotes the persistence of herbivore during the stage 
of herbivore outbreak. Finally, we display that joint forces of time delay and space boost the growth of 
average density of herbivore populations.

Critical value of time delay for herbivore outbreak. Based on mathematical analysis, one can find 
the critical value of time delay to ensure the outbreak of herbivore populations (see Method section). The 
smallest critical value of time delay has the following form:
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To well see the effect of time delay on herbivore outbreak, critical value of time delay is shown as a 
function of diffusion coefficient of herbivore populations in Fig. 1. As seen from this figure that, when 
the moving speed of herbivore populations is small (d2 <  0.45), larger diffusion rate of herbivore requires 
larger value of time delay to ensure their outbreak; when the moving speed is large enough, critical value 
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Figure 1. Critical value of time delay with respect to diffusion rate of herbivore populations. This figure 
indicates that critical value of time delay is an increasing function of diffusion coefficient of herbivore 
populations as d2 is small. As d2 further increases, critical value of time delay is a decreasing function of 
diffusion coefficient of herbivore populations. Region I: Outbreak domain; II: No outbreak domain.
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of time delay is a decreasing function of the diffusion rate. Biological speaking, there is a balance between 
time delay and spatial motion of herbivore populations in the mechanisms on herbivore outbreak. When 
diffusion rate of herbivore populations is small, herbivore populations will consume more resources as 
d2 increases, which needs larger time delay to hold back their growth and thus herbivore will periodic 
outbreak. When diffusion rate of herbivore populations is large enough, the remained resources are 
limited which may induce negative growth of herbivore populations. In this case, smaller time delay can 
lead to herbivore outbreak.

In Fig.  2, we show the herbivore outbreak numerically for fixed parameters sets: α =  200, β =  1, 
δ =  0.75, b =  5, θ =  3, r =  1, K =  10, m =  0.01, d1 =  0.01 and d2 =  0.25. Under these circumstances, one can 
find that τc ≈  4.7412. Herbivore populations are considered as a function of space (in one-dimensional 
space) and time. In Fig. 2(A), the solutions are stable as τ =  3.2 <  τc; while in Fig. 2(B), periodic solutions 
emerge as τ =  4.8 >  τc. In other words, time delay induces the outbreak of herbivore populations.

In order to better show the outbreak of herbivore populations, time series are shown in Fig.  3. In 
Fig.  3(A), herbivore populations exhibit a oscillation behavior with decreased amplitude and converge 
to a constant state with τ <  τc. This figure suggests that periodic outbreak of herbivore will not appear 
with τ <  τc. However, when τ >  τc, herbivore populations will outbreak with fixed period and amplitude 
as evolution time is long enough showed in Fig. 3(B).

Dual effects of time delay on the persistence of herbivore. Synchronization is a fundamental 
phenomenon arising in many biological contexts, which can be an important part of the function or 
malfunction of a biological system33. We checked that during the period of herbivore outbreak, herbivore 
populations and inducible defenses exhibit synchronous phenomenon (cf. Fig. 4). However, this figure 
also indicates that, when time delay is too large, the minimum value of herbivore density will reach 
zero which may cause the herbivore populations to run a high risk of extinction which can be seen 
from Fig.  4(A). This phenomenon can be explained in two different directions: on the one hand, the 
presence of synchronization may decrease the global persistence34–36; on the other hand, it was observed 
that herbivore can remain persistent when inducible defenses are small and thus it may go extinct with 
high density of inducible defenses7. In this sense, time delay plays a negative role for the persistence of 
herbivore populations.

Figure 2. Density of herbivore populations of system (3) with respect to space and time. (A) τ =  3.2 <  τc; 
(B) τ =  4.8 >  τc. Initial conditions are small random perturbation of the positive stationary solution of 
system (3).
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As seen from Figs 2–3, we know that herbivore populations have property of periodic solutions. One 
may ask whether the periodic solutions are stable or not. Based on stability analysis (see Method section), 
we obtained that for all the parameters sets to ensure the outbreak of herbivore, β <  0 which means the 
periodic solutions are stable. From biological point of view, time delay plays a positive role in herbivore 
persistence due to that it can keep the density of herbivore in a determined range from extinction.

The period of the periodic solutions has the following expression:
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. Figure  5 shows the period of periodic solutions as a function of time delay. It 

shows that period is a increasing function of time delay. At the same time, the maximum value of her-
bivore density is becoming larger and the minimum value is becoming smaller as time delay increases.

Combination of time delay and space promotes the growth of average density of herbivore 
populations. In the parameters sets which ensure the emergence of herbivore outbreak, it is found 
that average density of herbivore populations increases as time delay increases which was shown in 
Fig. 6. We checked that if herbivore populations do not outbreak, i.e., value of time delay is smaller than 
the critical value, this phenomenon can not be observed. Meanwhile, the results can not be obtained if 
space is not included. Accordingly, we concluded that interaction of time delay and space promotes the 
growth of average density of herbivore and then drive more resilience for herbivore populations. The 
existing results revealed that spatial scaling laws37, multiple scale spatial patterns38,39 or insects popula-
tions40 may increase the robustness in some biological systems. Therefore, our results enrich the findings 
in ecosystem functioning.

Figure 3. Time series of herbivore populations with H t H x t Lx
L

1( ) = ∑ ( , )/=  (L is the space length). (A) 
Stable solutions with τ =  3.2 <  τc; (B) Periodic solutions with τ =  4.8 >  τc.
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Discussion
An extensive body of scientific research on inducible defenses of plant to herbivore populations demon-
strated that inducible defenses may have great influences of dynamics of herbivore populations41–44. 
However, the studies on how inducible defenses exactly affect herbivore populations when space is under 

Figure 4. Synchrony of the herbivore and inducible defenses with τ = 8 and the other parameters are 
as the same in Table 1. This figure also shows that herbivore populations suffer a higher likelihood of 
extinction if time delay is too large.
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Figure 5. Period of periodic solutions with respect to time delay. As time delay increases, the period will 
increase with large amplitude.
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consideration, especially on the effect of herbivore outbreak, is still limited. As a result, a simple model 
to describe the interaction of inducible defenses and herbivore populations is investigated. It was found 
that time delay arising from plant defenses response to herbivore attacks can lead to periodic outbreak 
of herbivore populations. Furthermore, time delay has dual functions on the persistence of herbivore 
populations: large time delay may result in the extinction of herbivore and moderate value of time delay 
enlarges the possibility of herbivore persistence by keeping the periodic solutions to be stable. This find-
ing implies that inducible defense with different intensities resolves the paradox of enrichment in the 
spatial sense.

Vos et al. found that inducible defenses play different roles on herbivore populations. On the one 
hand they promote local stability and thus persistence and on the other hand they may reduce the like-
lihood of herbivore persistence13. In our paper, we confirm the conclusions still hold when spatial effects 
are included. Meanwhile, we found that interaction of time delay and space may drive the resilience of 
herbivore populations on account of that time delay and space increase average density of herbivore 
populations during their outbreak period.

It should be noted that herbivore populations not only consume resources, but they are resources for 
other consumers. Consequently, they have much potential roles of connecting link between up and down 
trophic chains in evolution process of the whole ecosystems45. In this sense, it needs to be a balance in 
the control of herbivore populations and thus human beings can not blindly kill or protect herbivore 
populations.

Method
Mathematical Model. We give four main assumptions on our model: (1) To reflect delays in the 
deployment of inducible defenses, we assumed that induction changes at time t dependent on herbi-
vore densities at t −  τ time steps previously; (2) Inducible defenses is dependent on herbivore density 
(in saturation form) and the level of already inducible defenses; (3) In the absence of induced changes 
in plant quality, herbivore populations grows logistically with intrinsic rate r and carrying capacity K; 
(4) For some plants, their weeds can move in the space caused by environmental factors such as wind. 
Consequently, we consider that both inducible defenses and herbivore randomly move in the space with 
diffusion coefficients d1 and d2 respectively. Based on the above assumptions, we arrive at the following 
reaction diffusion equation:
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where I(γ,t) and H(γ,t) represent inducible defenses and herbivore density in both space and time. α 
is maximum per capita induced defenses, β is per unit reduction in the elicitation rate due to plant 
self-limitation, δ is per-unit induction decay rate, m is per unit reduction in the growth rate of her-
bivore caused by induction of defenses32, γ represents space, and Δ  =  ∂2/∂x2 is Laplacian operator in 
one-dimensional space. More details can be found in Table 1.

4.8 5.3 5.8 6.3 6.8 7.3 7.8
0

20

40

60

80

100

120

140

Time delay, τ

A
ve

ra
ge

 d
en

si
ty

 o
f 

he
rb

iv
or

e

Figure 6. Average density of herbivore populations with respect to time delay. As time delay increases, 
average density increases and thus it suggests that time delay promotes the growth of average density of 
herbivore populations.
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Analysis on Critical Value. Mathematical speaking, if a system undergoes hopf bifurcation, then it 
will exhibit periodic solutions. For system (3), if it has hopf bifurcation, the herbivore populations will 
outbreak. In this sense, we need to find the critical value for herbivore outbreak.

Denote E* =  (I*,H*) as the positive equilibria of system (3). We deduce the eigenpolynomial associated 
with wavenumber κ:
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Setting λ =  iw(w >  0) is a root of the eigenpolynomial (4) and separating the real and imaginary parts, 
one can have:
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By calculations, the transversality condition { }esign R 0d
d j
( ) >λ
τ τ τ= κ

 holds. As a result, system (3) 

undergoes a spatial Hopf bifurcation at the equilibrium E* =  (I*,H*) when j 1 2jτ τ= ( = , , ... )κ .  and peri-
odic solutions emerge in system (3) when jτ τ> κ .

Stability of Periodic Solutions for Herbivore Populations. We can use normal form and the 
center manifold theory to investigate the stability of the bifurcated periodic solutions46. In order to 
determine the properties of Hopf bifurcating periodic solutions at the critical value, we can compute the 
following values:

e C2R [ ]β = ,
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. Since the expressions of g02, g11, g20 and g21 are 
complex, we omit them here. The bifurcating periodic solutions are stable (unstable) if β <  0 (β >  0).

Parameter Value Comments References

α 200 maximum induction rate per herbivore 47

β 1 per-unit reduction of induction rate by self-
limitation 32

δ 0.75 per-unit induction decay rate 32

b 5 half-maximum for herbivore effectiveness of 
damage 47

θ 3 herbivore damage effectiveness shape tuning 
parameter 47

r 1 intrinsic rate of herbivore populations growth 32

K 10 herbivore carrying capacity 32

m 0.01 mortality rate by induction 32

d1 0.01 diffusion rate of plant populations 48

d2 0.01 ~ 1 diffusion rate of herbivore populations 49

Table 1.  Summary of the parameters used in system (3).
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Erratum: Effects of time delay 
and space on herbivore dynamics: 
linking inducible defenses of plants 
to herbivore outbreak
Gui-Quan Sun, Su-Lan Wang, Qian Ren, Zhen Jin & Yong-Ping Wu

Scientific Reports 5:11246; doi: 10.1038/srep11246; published online 18 June 2015; updated on 03 August 
2015

In the original version of this Article, the affiliations for Zhen Jin and Yong-Ping Wu were incorrectly 
listed as ‘College of Physics Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 
225002, P.R. China’ and ‘Complex Systems Research Center, Shanxi University, Taiyuan, Shanxi 030006, 
P.R. China’, respectively. The correct affiliations are listed below.

Zhen Jin
Complex Systems Research Center, Shanxi University, Taiyuan, Shanxi 030006, P.R. China

Yong-Ping Wu
College of Physics Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225002, 
P.R. China

These errors have now been corrected in both the HTML and PDF versions of the Article.
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