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Analytic descriptions of cylindrical 
electromagnetic waves in a 
nonlinear medium
Hao Xiong, Liu-Gang Si, Xiaoxue Yang & Ying Wu

A simple but highly efficient approach for dealing with the problem of cylindrical electromagnetic 
waves propagation in a nonlinear medium is proposed based on an exact solution proposed recently. 
We derive an analytical explicit formula, which exhibiting rich interesting nonlinear effects, to 
describe the propagation of any amount of cylindrical electromagnetic waves in a nonlinear medium. 
The results obtained by using the present method are accurately concordant with the results of 
using traditional coupled-wave equations. As an example of application, we discuss how a third wave 
affects the sum- and difference-frequency generation of two waves propagation in the nonlinear 
medium.

Superposition principle is the fundamental feature of linear optics. Using the superposition principle, 
complex light fields can be decomposed into simple light fields, and a lot of effective research meth-
ods, such as spectrum analysis method and Green’s function method, come up. However, linear media 
give only an approximation of the real media. The real media are usually nonlinear. This makes wave 
propagation in nonlinear media to be a fundamental problem and central issue in physics, and a lot of 
interesting phenomena occur when the dielectric susceptibility of a medium is not a linear function 
of the electric field amplitude1. One of the typical phenomena, second-harmonic generation, was first 
observed in quartz2, and a phenomenological approach to describe nonlinear optics phenomena by using 
coupled-wave equations was developed in the 1960s3,4. In the following 50 years, nonlinear optics become 
one of the most active research areas and a number of important features of nonlinear optics have been 
found, including nonlinear optics with few-cycle5 or Single-cycle6 laser fields, nonlinear optics at low 
light levels7, surface nonlinear optics8, nonlinear optics in photonic nanowires9, cylindrical nonlinear 
optics10, nonlinear optics with semiconductor microcavities11, nonlinear optics in the extreme ultravio-
let12, optomechanical nonlinear optics13, solitons14, and nonlinear optics in nanostructures15. In a general 
way, analytical methods based on the superposition principle are difficult to build in nonlinear optics. 
Numerical methods become an important tool for dealing with problems of electromagnetic waves prop-
agation in a nonlinear medium5.

Electromagnetic waves with cylindrical symmetry are always studied in linear media, such as elec-
tromagnetic scattering16,17 and optical cloaking18. The features of cylindrical electromagnetic waves in 
a nonlinear medium, however, remain poorly studied19. In this work, we present a simple but highly 
efficient approach to deal with interactions between any amount of cylindrical electromagnetic waves in 
a nonlinear medium. Obtained explicit analytical expressions reproduce accurately the results of using 
the coupled-wave equations. Our work is an interesting extension of the recent publication19, which put 
forward an important technique to construct exact axisymmetric solutions of Maxwells equations in a 
nonlinear nondispersive medium. As a new exact solution, it is useful and interesting to find and exam-
ine the physical nature contains in it. We show that this solution can be used to deal with the problems 
of cylindrical electromagnetic waves propagation in a nonlinear medium, and nonlinear optical effects, 
such as wave mixing, come out quite naturally from the exact solution. As an example of application, we 
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show that sum- and difference-frequency generation of two waves propagation in a nonlinear medium 
is affected by a third wave.

Results
Axisymmetric cylindrical electromagnetic model. We shall introduce the physical model dis-
cussed in this work. Considering the medium possesses an axis of symmetry which is taken as the z 
axis of a cylindrical coordinate system (r, φ, z), we use the axisymmetric model in which the fields are 
independent of φ and z, then the Maxwell equations can be written as follows19:
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where H ≡ Hφ(r, t), E ≡ Ez(r, t), ε(E) =  dD/dE =  ε0ε1exp(αE), with ε1 and α are certain constants. 
Such model describes cylindrical electromagnetic waves propagation in a nonlinear medium, and some 
works19–23 have been done in this topic. Exact solution of such system has been obtained by using an 
interesting technique19:
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where ρ =  r/a, t a0 1 0( )τ ε μ= / , Z0 0 0μ= /  and a is a constant with the dimension of length. 
ε ρ τ( , ) and  ρ τ( , ) represent the solution of linear problem, for more clearly Eqs. (1) with α =  0, in 
variables ρ τ( , ).

Exact solutions and explicit analytical expressions. Now we will use this exact solution to deal 
with problems of interactions between cylindrical electromagnetic waves in a nonlinear medium. The 
solution of single cylindrical wave propagation in an infinite and linear medium is:  r t J kr tcos0ζ ω( , ) = ( ) ( ) 
and  r t J kr tsin1ζ ω( , ) = − ( ) ( ). Here Jm is a Bessel function of the first kind of order m, ζ is an ampli-
tude constant, and k 0 1 0ω ε μ=  is the wave number. For linear medium, the superposition principle is 
always applicable. Now we will use the superposition principle to obtain the exact solutions of the non-
linear case accordingly. Starting from the superposition principle, the exact solution of the linear problem 
can be easily extended to describe cylindrical waves in the medium:
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Rewriting it in variables ρ τ( , ), the solution becomes: E εJ k a acosi i i i0 0 1 0( )ρ τ ζ ρ ω τ ε μ( , ) = ∑ ( )  and 
H εJ k a asini i i i1 0 1 0( )ρ τ ζ ρ ω τ ε μ( , ) = − ∑ ( ) . By using Eqs. (2) we can obtain the solution of the non-
linear problem:
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This solution is in implicit form, describes cylindrical electromagnetic waves in a nonlinear medium, 
and shows that the electric field and magnetic field of all the cylindrical electromagnetic waves in the 
nonlinear medium are not separate, but coupling with each other by nonlinear coefficient α. If α →  0, 
obviously Eqs. (4) will go to the linear case (3) and the coupling between the electric field and magnetic 
field of all the cylindrical electromagnetic waves will be disappeared.

Interactions between cylindrical electromagnetic waves in a nonlinear medium have been shown in 
Eqs. (4), however, it is difficult to use this exact solution to analyse nonlinear interactions and phenom-
ena. In what follows, we will propose a method to obtain an analytical explicit formula from the exact 
solution (4), and from the analytical explicit formula we can know some more details of such physical 
process.

We consider that there are q fundamental electromagnetic waves in the nonlinear medium and 
|αE/2| <<  1 where q is an arbitrary number. After some deductions (see Section Methods), we obtain:
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x r J k r Z rk J k r2 2ij i j j i j j0 1 1 0 1( ) ( )αμ ω ε ζ α ζ= − /( ) = − /  and δij is the Kronecker Delta. Physical sig-
nificance of Eqs. (5) is that if q electromagnetic waves with different frequencies propagate in a nonlinear 
medium, then there are frequency mixing generation and the amplitude of electric field with frequency 
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For the case α =  0, then xij =  0, and Eqs. (5) become
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Equations (10) and (11) are exactly the linear solution (19) and (20), which verifies that Eqs. (5) go 
into the linear case (19) and (20) when α =  0.

By using Eqs. (5), one can obtain the amplitude of the electric and magnetic field of various nonlinear 
effects, such as second harmonic, sum frequency and difference frequency generation. In what follows, 
we will give some examples.



www.nature.com/scientificreports/

4Scientific RepoRts | 5:11071 | DOi: 10.1038/srep11071

Discussion
Comparison of the calculations with traditional coupled-wave equations. Reference21 have 
used this method to study second-harmonic generation and shown that second-harmonic generation 
comes out quite naturally from the exact solutions (2). There are higher harmonics due to existence of 
sum frequency and difference frequency of base frequency and second-harmonic. Here we will give a 
detailed discussion by using Eqs. (5). In the case of q =  1, Eqs. (5) become:
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where x =  − αrkζJ1(kr)/2. It can be found that there are second and higher harmonics exist in the 
medium. To describe the amplitude of cylindrical second-harmonic generation, the component of neg-
ative frequency in Eqs. (12) should also be considered.

From a different point of view, such second-harmonic generation also can be described by the cylin-
drical coupled-wave equations21,22:
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where Eω and E2ω present the electric field amplitude of the wave with frequency ω and 2ω, respectively. 
deff is effective second order nonlinear optical coefficient of the nonlinear medium, and the relationship 
between α and deff is α =  2deff, which have been obtained previously21. The initial condition of equations 
(13) is
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It means that at r =  0, there is only cylindrical electromagnetic wave with fundamental frequency ω 
and unit amplitude, and equations (13) describe the amplitude of cylindrical second-harmonic genera-
tion at arbitrary r, which can be solved by Runge-Kutta method.

Figure 1(a) shows a comparison of using the coupled-wave equations and the analytical explicit for-
mula (5) or (12) to calculate efficiencies of second-harmonic generation which is defined as η =  E2ω/Eω, 
and we can find that the results obtained by the two methods are concordant with each other.

Further more, if we consider that there are two fundamental electromagnetic waves with frequencies 
ω1 and ω2 propagating in the nonlinear medium, then q =  2 and Eqs. (5) can be expressed as:
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Equations (15) contains second and higher harmonic generation, sum- and difference-frequency, and 
even frequency mixing. We use Eω1, Eω2, Eω1+ω2, and Eω1−ω2 to present the electric field amplitude of the 
wave with frequency ω1, ω2, ω1 +  ω2 and ω1− ω2, respectively. Eω1, Eω2, Eω1+ω2, and Eω1−ω2 can be easily 
obtained from Eqs. (15): Eω1 =  A(1,0) +  A(− 1,0), Eω2 =  A(0,1) +  A(0,− 1), Eω1+ω2= A(1,1) +  A(− 1,− 1), 
and E A A1 1 1 1

1 2
= ( , − ) + (− , )ω ω− , where A(n,m) have been given in equations (6).

Sum- and difference-frequency generation can also be described by the coupled-wave equations22. The 
coupled-wave equations which describe the sum-frequency generation are
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Figure 1. Comparison diagram of using coupled-wave equations (CWE) and the analytical explicit 
formula. The blue solid curve presents calculation results of using coupled-wave equations while the red 
dashed curve presents calculation results of using the analytical explicit formula. Efficiencies of generation 
of (a) second harmonic, (b) sum frequency and (c) difference frequency with different nonlinear coefficient 
have been shown. We use ζ1 =  ζ2 =  1 and ε1 =  2. In Fig. (a) the fundamental frequency is ω =  6 ×  108 MHz, 
and in Fig. (b) and (c) the fundamental frequencies are ω1 =  6 ×  108 MHz and ω2 =  8 ×  108 MHz.
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where k3 =  k1 +  k2 and k4 =  k1 −  k2. Figure 1(b,c) shows a comparison of using coupled-wave equations and 
the analytical explicit formula (5) or (15) to calculate efficiencies of sum and difference frequency genera-
tion, which are defined as E Esum 1 2 1

η = /ω ω ω+  and E Edis 1 2 1
η = /ω ω ω− . We can find that, the same as the 

second harmonic generation case, the results obtained by two methods are concordant with each other.
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Interactions between cylindrical electromagnetic waves. Now we will use the analytical 
explicit formula (5) to discuss some more interactions between cylindrical electromagnetic waves in a 
nonlinear medium. Figure 2 give a comparison of cylindrical electromagnetic waves propagation in a 
linear medium and in a nonlinear medium. We fix ω1 =  6 ×  108 MHz, and use three different ω2. We 
consider that different ω2 will lead to different effects via interactions between cylindrical electromag-
netic waves. Figure  2(a) shows the results of interactions between wave with ω1 =  6 ×  108 MHz and 
wave with lower frequency ω2 =  1 ×  108 MHz. The presented plots show clear modulation of amplitude 
of the wave with lower frequency ω2. The modulation of the amplitude of wave ω1 is not clear because 
amplitude of wave ω2 is weaker than wave ω1. To the contrary, we choose ω2 =  100 ×  108 MHz which is 
much higher than ω1 and the results are shown in figure 2(c). In this case, wave ω1 is clearly affected 
by wave ω2. There is modulation of the amplitude of wave ω1 which similar to the oscillation of a wave 
packet. The oscillation frequency is ω2. Wave ω2 is also affected by wave ω1. There is fluctuation of 
amplitude at a frequency ω1 and the amplitude of wave ω2 is repressed for most r. Figure 2(b) shows 
interactions between two waves with frequencies are close together. Modulations of the amplitudes are 
still existing, however, not clearly due to the small differences between the modulation frequency and 
the natural frequency of the waves.

One also can consider the case of more fundamental electromagnetic waves propagation in the non-
linear medium, and there are abundant nonlinear wave-wave interactions. Here, as an example, we con-
sider the three fundamental waves case, and show that sum- and difference-frequency generation of two 
waves propagation in the nonlinear medium is affected by a third wave.

Equations (5) in the three waves case can be expressed as:
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where ω1, ω2, and ω3 are frequencies of the three waves, and the electric field strength of the wave with 
frequency ωi is recorded as Ei. A(n,m,p) and B(n,m,p) can be obtained easily from Eqs. (6). Equations 
(18) contains a lot of frequency-mixing effects, while here we focus on the modification of sum- and 
difference-frequency generation in the presence of a third wave.

(i) Modification of sum-frequency generation. In this case, p =  0, m =  n =  1 or m =  n =  − 1 describes the 
sum-frequency generation process, so the amplitude of the sum-frequency generation can be obtained 
as Eω1+ω2 =  A(1,1,0) +  A(− 1,− 1,0).

Figure 3 shows the calculation results of modification of sum-frequency generation in the presence of 
a third wave (the green dotted curve). We also plot the sum-frequency generation Eω1+ω2 in the nonlinear 
medium without a third wave by using a red solid curve. In Fig. 3(a), the amplitude of the third wave is 
zero, viz. ζ3 =  0, so there is no modification, and these two lines coincide with each other. In Fig. 3(b), 
the amplitude of the third wave is ζ3 =  0.5. There is a little modification, which, however, is very small. 
In Fig. 3(c) and Fig. 3(d), the amplitude of the third wave are ζ3 =  1 and ζ3 =  1.5, respectively. The mod-
ification is obvious, and there is a big gap between the two lines at some special r.

(ii) Modification of difference-frequency generation. In this case, p =  0, m =  − n =  1 or m =  − n =  − 1 
describes the difference-frequency generation process, so the amplitude of the difference-frequency gen-
eration can be obtained as Eω1−ω2 =  A(1,− 1,0) +  A(− 1,1,0).

Figure 4 shows the calculation result of difference-frequency generation modification in the nonlinear 
medium in the presence of a third wave (the green dotted curve). Difference-frequency generation in 
the nonlinear medium without a third wave is also plotted by using a red solid curve. In Fig. 4(a), the 
amplitude of the third wave is zero, so there is no modification either. In Fig. 4(b), the amplitude of the 
third wave is ζ3 =  0.5. There is some modification, although not very large. In Fig. 4(c), the amplitude of 
the third wave are ζ3 =  1. The modification is obvious. For r ≈  9 μm, direction of the difference-frequency 
field Eω1−ω2 is even changed. It is much easier to see such phenomenon under a stronger E3. In Fig. 4(d), 
the amplitude of the third wave is ζ3 =  1.5. We can find that the direction of the difference-frequency 
field Eω1−ω2 is inverted near r ≈  6 μm and r ≈  9 μm.

The above discussions is based on Eqs. (18), and show that the sum- and difference-frequency gener-
ation of two waves propagation in the nonlinear medium can be greatly affected by a strong third wave. 
One also can discuss the modification of the sum- and difference-frequency generation in the presence 
of more additional waves by using the same way.

Our previous works22,23 preliminarily studied how to find and examine the physical nature contains in 
the new exact solution put forward by Petrov and Kudrin recently. A previous work22 studies the problem 
of single cylindrical wave propagation in a nonlinear medium, and finds that the second-harmonic gener-
ation comes out quite naturally from the exact solutions. Another previous work23 studies two cylindrical 
waves propagation in a nonlinear medium, and finds that the sum- and difference-frequency generation 
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comes out quite naturally from the exact solutions. In the present work, we present a set of mathemat-
ical methods to deal with interactions between any amounts of waves in a nonlinear medium. For the 
case of three or more fundamental electromagnetic waves propagating in the nonlinear medium, there 
are abundant nonlinear wave-wave interactions. The modification of the sum- and difference-frequency 
generation in the presence of a third wave can be calculated easily by using the explicit analytical expres-
sion obtained.

Before ending this section, we would emphasize the notable merits of such reliable analytical method 
include:

1. We give an explicit analytical expression which contains all the main nonlinear optical effects, 
including second-harmonic generation, sum- and difference- frequency generation, electro-optical 
effect and waves mixing. The traditional method describing nonlinear optical effects is the cou-
pled-wave-equations approach which can be solved only numerically in the cylindrical geometry. 
It is very difficult to give an explicit analytic expression which contains all the main nonlinear 
optical effects by using the coupled-wave equations.

2. Such an explicit analytical expression can deal with the problem of any amount of cylindrical 
electromagnetic waves propagation in a nonlinear medium. It is very difficult to deal with this 
problem by using the traditional coupled-wave-equations method1.

Figure 2. Comparison diagram of cylindrical electromagnetic waves propagation in a linear and 
nonlinear medium. We consider that there are two waves propagate in the medium and we use ζ1 =  1, 
ζ2 =  0.8, α =  0.4, and ε1 =  2 in equations (6). The red solid curve presents calculation results of E

1ω
 in the 

nonlinear medium, the blue solid curve presents calculation results of E
2ω

 in the nonlinear medium, the red 
dashed curve presents calculation results of E

1ω
 in the linear medium and the blue dashed curve presents 

calculation results of E
2ω

 in the linear medium. We fix ω1 =  6 ×  108 MHz, and use (a) ω2 =  1 ×  108 MHz, (b) 
ω2 =  7 ×  108 MHz and (c) ω2 =  100 ×  108 MHz.
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3. Our work is an interesting extension of the recent publication19, and deepening the understanding 
of the exact solution. From a solution of waves in a linear medium, one can obtain the solution of 
waves in a nonlinear medium through a simple variable substitution: ρ →  ρeαE/2, Z H

2
0

1
τ τ→ + αρ

ε
. 

Starting from the exact solution, we present a simple but highly efficient approach to deal with the 
interaction of any amount of cylindrical electromagnetic waves in a nonlinear medium. Descrip-
tion of interactions between a large amount of cylindrical electromagnetic waves in a nonlinear 
medium is a very complex question1, especially analytic description.

Methods
Equations (4) can be approached by using the following method. At first, we give the linear solution as 
the zeroth approximation of Eqs. (4), as follows:

E J k r tcos
19i

q

i i i
0

1
0∑ζ ω= ( ) ( ),

( )
( )

=

H
Z

J k r tsin
20i

q

i i i
0

1

1

0
1∑ζ

ε
ω= − ( ) ( ).

( )
( )

=

Figure 3. Sum-frequency generation of two waves propagation in the nonlinear medium is affected 
by a third wave, and the modification is increasing with the amplitude of the third wave. We consider 
that there are three waves propagation in the medium, and we use ζ1 =  0.5, ζ2 =  0.5, α =  0.4, and ε1 =  2 
in equations (6). The red solid curve presents calculation result of sum-frequency generation Eω1+ω2 in 
the nonlinear medium without a third wave, the green dotted curve presents calculation results of Eω1+ω2 
under a third wave with amplitudes (a) ζ3 =  0, (b) ζ3 =  0.5, (c) ζ3 =  1, (d) ζ3 =  1.5. We fix ω1 =  9 ×  108 MHz, 
ω2 =  5 ×  108 MHz, ω3 =  2 ×  108 MHz.
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Substituting the zeroth approximation into Eqs. (4) leads the first approximation:

E J k re t rHcos 2
21i

q

i i
E

i i
1

1
0

2
0

00( )∑ζ ω αμ ω= ( + / ),
( )

α( )

=

/ ( )( )

H
e
Z

J k re t rHsin 2
22i

q

i

E

i
E

i i
1

1

1
2

0
1

2
0

0
0

0( )∑ζ
ε

ω αμ ω= − × ( + / ).
( )

α
α( )

=

/
/ ( )

( )

( )

Effective approximations. In this section we will give effective approximations of J kre E
0

2
( )

α /  and 
e J kreE E2

1
2

( )
α α/ / .

J xm( ) is a Bessel function of the first kind of order m and can be presented as:

J x
k m k

x1
2 23m

k

k m k

0

2

∑( ) =
( − )

!( + )!






 ⋅

( )=

∞ +

If x 0→ , then Eq. (23) can be used to give an effective approximation of J xm( ) by series truncation. 
However, in the present case, kre E 2α /  is not 0→  and in fact can be any number. So such series can not 
be used to give an effective approximation of our case24.

Figure 4. Difference-frequency generation of two waves propagation in the nonlinear medium is 
affected by a third wave, and the modification is increasing with the amplitude of the third wave. We 
consider that there are three waves propagation in the medium, and we use ζ1 =  0.5, ζ2 =  0.5, α =  0.4, and 
ε1 =  2 in equations (6). The red solid curve presents calculation result of difference-frequency generation 
Eω1−ω2 in the nonlinear medium without a third wave, the green dotted curve presents calculation results 
of Eω1−ω2 under a third wave with amplitudes (a) ζ3 =  0, (b) ζ3 =  0.5, (c) ζ3 =  1, (d) ζ3 =  1.5. We fix 
ω1 =  9 ×  108 MHz, ω2 =  5 ×  108 MHz, ω3 =  2 ×  108 MHz.
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We take notice of αE is small, so we can write J0(kreαE/2) as:

J kre J kr E[ 1 2 ] 24E
0

2
0 α( ) ≈ ( + / ) . ( )α /

We introduce a function fn(x, b) as

J xb J x f x b 25n n n( ) = ( ) ( , ), ( )

thus fn(x, 1) =  1 and

f x f x f x1 1 1 26n n n ∆( , + ∆) ≈ ( , ) + ′ ( , ) , ( )

where 1∆ 
 and f x f b n x J x J x1n n b n n1 1′ ( , ) = (∂ /∂ ) = − ( )/ ( )

= + . So

f x n x J x J x1 1 27n n n1( , + ∆) ≈ ( + ∆) − ∆ ( )/ ( ), ( )+

Using Eq. (25) and Eq. (27) we can give an approximation of J kre E
0

2( )α /  and e J kreE E2
1

2( )α α/ / . 
Following Eq. (24) we can write J kre E

0
2( )α /  as:

J kre J kr f kr E1 2 28E
0

2
0 α( ) ≈ ( ) ( , + / ). ( )α /

Using Eq. (27) we obtain:

J kre J kr Ekr J kr 2 29E
0

2
0 1α( ) ≈ ( ) − ( )/ . ( )α /

Similarly one can get:

J kre E J kr Ekr J kr1 2 2 30E
1

2
1 2α α( ) ≈ ( + / ) ( ) − ( )/ , ( )α /

and

e J kre J kr J kr
kr J kr

E
2 31

E E2
1

2
1 1

2α
α

( ) ≈ ( ) +





( ) −
( ) 




.
( )

α α/ /

Some identical equations. Here we give some identical equations which is used in our work:

∑ ∑ ∏ ∑

∑ ∑ ∏ ∑

λ

λ






+





=





( )












+




,






+





=





( )












+




.

( )

λ λ λ
λ

λ λ λ
λ

= , , , =−∞

∞

= =

= , , , =−∞

∞

= =





a a x J a a x

a a x J a a x

cos sin cos

sin sin sin
32

i

q

i i
i

q

i
i

q

i i

i

q

i i
i

q

i
i

q

i i

0
1 1

0
1

0
1 1

0
1

q
i

q
i

1 2

1 2

We demonstrate such identical equations from following identical equations:

∑ ∏





+





= .
( )= =

a a x e eexp i i sin
33i

q

i i
a

i

q
a x

0
1

i

1

i sini i0

Using formula

∑= ( ) ,
( )

θ θ

=−∞

∞

e J x e
34

x

n
n

ni sin i

it can be find that:

∑ ∏ ∑





+





= ( ) .
( )λ

λ
λ

= = =−∞

∞

a a x e J a eexp i i sin
35i

q

i i
a

i

q

i
x

0
1

i

1

i

i
i

i i0

Exchange the sequence of summation and product, we can obtain:

∑ ∑ ∏ ∑λ





+





=





( )












+




.

( )λ λ λ
λ

= , , , =−∞

∞

= =

a a x J a a xexp i i sin exp i i
36i

q

i i
i

q

i
i

q

i i0
1 1

0
1q

i
1 2

Take the real part and imaginary part of Eq. (36) leads Eqs. (32).
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In what follows we will use Eqs. (32) to simplify some expressions, for example, t rHcos 2i i0
0ω αμ ω( + / )

( )  
and t rHsin 2i i0

0ω αμ ω( + / )
( ) . Substituting Eq. (20) into expressions leads:

t rH t x t

t rH t x t

cos 2 cos sin

sin 2 sin sin
37

i i i
j

q

ij j

i i i
j

q

ij j

0
0

1

0
0

1

∑

∑

ω αμ ω ω ω

ω αμ ω ω ω

( + / ) =





+ ( )






,

( + / ) =





+ ( )






,

( )

( )

=

( )

=

where xij have been defined as x rk J k r 2ij i j j1( )α ζ= − / . Using Eqs. (32) we can obtain:

t rH J x t

t rH J x t

cos 2 cos

sin 2 sin
38

i i
j

q

ij
j

q

j j

i i
j

q

ij
j

q

j j

0
0

1 1

0
0

1 1

q
j ij

q
j ij

1 2

1 2

∑ ∏ ∑

∑ ∏ ∑

ω αμ ω λ ω

ω αμ ω λ ω

( + / ) =





( )

















,

( + / ) =





( )

















.

( )

λ λ λ
λ δ

λ λ λ
λ δ

( )

, ,…, =−∞

∞

=
−

=

( )

, ,…, =−∞

∞

=
−

=

Using the same method we can simplify E t rHcos 2i i
0

0
0ω αμ ω( + / )

( ) ( )  and 
E t rHsin 2i i

0
0

0ω αμ ω( + / )
( ) ( ) . Here we give the results directly:

E t rHcos 2i i
0

0
0ω αμ ω( + / )=( ) ( )

J k r
J x J x t

2
cos

m

q
m m

j

q

ij
j

q

ij
j

q

j j
1

0

1 1 1q
j ij jm j ij jm

1 2
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ζ

λ ω
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,

λ λ λ
λ δ δ λ δ δ
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∞
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− −

=
− +

=

E t rHsin 2i i
0

0
0ω αμ ω( + / )=( ) ( )

J k r
J x J x t

2
sin

39m

q
m m

j

q

ij
j

q

ij
j

q

j j
1
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1 1 1q
j ij jm j ij jm

1 2

∑ ∑ ∏ ∏ ∑
ζ

λ ω
( ) 




( ) + ( )

















.

( )λ λ λ
λ δ δ λ δ δ

, ,…, =−∞

∞

= =
− −

=
− +

=

Derivation of explicit analytical expressions. Equations (21) and (22) can be simplified by using 
approximations :

E J k r
E k r J k r

t rH
2

cos 2
40i

q

i i
i i

i i
1

1
0

0
1

0
0∑ζ

α
ω αμ ω≈






( ) −
( ) 




( + / ),

( )

( )
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( )
( )

H
Z

J k r J k r
k r J k r

E t rH
2

sin 2
41i

q

i i i
i i

i i
1 1

0 1
1 1

2 0
0

0∑
ε

ζ α
α

ω αμ ω≈ −





( ) +






( ) −
( ) 








 ( + / ).

( )
( )

=

( ) ( )

These equations can be easily rewritten as:

E J k r t rH
k r J k r

E t rHcos 2
2

cos 2
42i

q

i i i i
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i
i i

i i
1

1
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α
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∑
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=
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Substituting identical equations (38) and (39) into Eqs. (42) and (43), we can obtain:
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E

J k r J x
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These expressions are exactly Eqs. (5).
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