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Regression of Gastric Cancer 
by Systemic Injection of RNA 
Nanoparticles Carrying both 
Ligand and siRNA
Daxiang Cui1, Chunlei Zhang1, Bing Liu1, Yi Shu2, Tong Du1, Dan Shu2, Kan Wang1, 
Fangping Dai3, Yanlei Liu1, Chao Li1, Fei Pan1, Yuming Yang1, Jian Ni1, Hui Li2,  
Beate Brand-Saberi3 & Peixuan Guo2

Gastric cancer is the second leading cause of cancer-related death worldwide. RNA nanotechnology 
has recently emerged as an important field due to recent finding of its high thermodynamic stability, 
favorable and distinctive in vivo attributes. Here we reported the use of the thermostable three-way 
junction (3WJ) of bacteriophage phi29 motor pRNA to escort folic acid, a fluorescent image marker 
and BRCAA1 siRNA for targeting, imaging, delivery, gene silencing and regression of gastric cancer in 
animal models. In vitro assay revealed that the RNA nanoparticles specifically bind to gastric cancer 
cells, and knock-down the BRCAA1 gene. Apoptosis of gastric cancer cells was observed. Animal trials 
confirmed that these RNA nanoparticles could be used to image gastric cancer in vivo, while showing 
little accumulation in crucial organs and tissues. The volume of gastric tumors noticeably decreased 
during the course of treatment. No damage to important organs by RNA nanoparticles was 
detectible. All the results indicated that this novel RNA nanotechnology can overcome conventional 
cancer therapeutic limitations and opens new opportunities for specific delivery of therapeutics 
to stomach cancer without damaging normal cells and tissues, reduce the toxicity and side effect, 
improve the therapeutic effect, and exhibit great potential in clinical tumor therapy.

Gastric cancer is the second most common cancer in China, and the second leading cause of cancer-related 
death in the world1,2. It remains very difficult to cure effectively, primarily because most patients pres-
ent advanced stages of the diseases. Up to date, surgery, radiation and chemotherapies are generally 
very effective for early and in situ gastric cancers, but advanced and metastatic cases do not respond 
to chemo- or radiation therapies3–5. Resistance to chemotherapy-induced apoptosis is a major cause for 
the failure of conventional therapies6–8. The current prognosis of gastric cancer is very poor with 5-year 
survivals of less than 24%9. Therefore, how to recognize, track or kill early gastric cancer cells is a great 
challenge for patients with early gastric cancer.

We have previously tried to develop multifunctional nanoprobes to realize targeted imaging and 
simultaneous therapy of gastric cancer10,11. Our previous studies show that subcutaneous and in situ gas-
tric cancer tissues with 5 mm in diameter could be recognized and treated using multifunctional nano-
probes such as BRCAA1(breast cancer associated antigen 1,AF208045) monoclonal antibody-conjugated 
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fluorescent magnetic nanoparticles12, Her2 monoclonal antibody–conjugated RNase-A-associated CdTe 
quantum dots13, folic acid conjugated upper conversion nanoparticles14, Folate conjugated gold nano-
rods15, ce6-conjugated carbon dots16, ce6-conjugated Au nanoclusters(Au NCs)17,18. However, clinical 
translation of these prepared nanoparticles still presents great challenge because all these prepared nan-
oparticles are not only distributed to the site of gastric cancer, but also partially accumulated in other 
organs. The development of safe and effective nanoparticles for in vivo targeted delivery, imaging and 
simultaneous therapy of early gastric cancer have become our major concerns.

In recent years, several new nano-delivery systems with different materials and physic-chemical 
properties have been developed19. However, effective strategies to block tumor progression and prevent 
metastasis are lacking, there are several challenges including specific cancer targeting, tissue penetra-
tion, intracellular delivery, toxicities and side effects due to organ accumulation, nonspecific cell entry, 
particle heterogeneity, aggregation, dissociation due to dilution after systemic injection, and unfavora-
ble pharmacological profiles20–24. In recent years, RNA nanotechnology has shown great advances as a 
new theranostic platform for medical applications25,26. RNA nanoparticles can be fabricated with precise 
control of shape, size and stoichiometry, as demonstrated by the packaging RNA (pRNA) of the bacte-
riophage phi29 DNA packaging motor, which forms dimmers, trimers, and hexamers via hand-in-hand 
interactions of the interlocking loops27–29. The pRNA contains an ultra-stable three-way junction (3WJ) 
motif30–32, which can be assembled from three short fragments with extremely high affinity. Recently we 
have obtained the crystal structure of the pRNA-3WJ motif33 and a variety of therapeutic RNA nanopar-
ticles using the pRNA-3WJ and pRNA-X motifs as scaffolds have been constructed34,35. The pRNA-3WJ 
nanoparticles display thermodynamically stable properties, including high melting temperature with low 
free energy, resistance to denaturation in 8 M urea, and resistance to dissociation at very low concentra-
tions in the blood31. Boiling resistant RNA nanoparticles with controllable shapes and defined stoichi-
ometry have recently been reported36. Various imaging groups, such as fluorophores; targeting ligands, 
such as receptor binding aptamers; and therapeutic modules, such as siRNA, miRNA or ribozymes can 
be integrated into the 3WJ scaffold without affecting the folding and functionality of the core motif 
and incorporated functional moieties27,30,31,35. Upon 2’-Fluoro (2’-F) modifications of Uracil (U) and 
Cytosine (C) nucleotides, the RNA nanoparticles become resistant to RNase degradation with enhanced 
in vivo half-life while retaining authentic functions of the incorporated modules32,37. Furthermore, the 
pRNA nanoparticles are non-toxic, non-immunogenic, and display favorable biodistribution and phar-
macokinetic profiles in mice32. These favorable findings prompted the use of this novel platform for the 
treatment of stomach cancer, which is one of the challenging tasks in clinical oncology.

Such targeted delivery systems call for a ligand-receptor pair that is specifically found in cancer cells. 
Many, but not all, cancer cells, including stomach, ovarian, lung, breast, kidney, endometrium, colon and 
hematopoietic cells, over-expressed folate receptors (FRs) than normal cells for high uptake of folate38, 
since folate is essential component during DNA replication and methylation in highly proliferating 
cells39. Folic acid (FA), a synthetic oxidized form of folate, has been widely used as a ligand conjugate 
in various cancer targeting materials40–48. BRCAA1 (breast cancer-associated antigen 1,AF208045) has 
been confirmed to exhibit over-expression in breast cancer and gastric cancer, and no or lower expres-
sion in normal gastric mucosa and normal breast tissues49. Our previous studies have demonstrated 
that gastric cancer MGC803 cells were transfected with constructed plasmids of shRNA-BRCAA1, the 
cell growth was greatly inhibited and the rate of cell apoptosis was significantly higher than those of 
untransfected group and mock plasmid transfected group50. We also screened out a new antigen epitope 
SSKKQKRSHK49, and also screened out matched two monoclonal antibody cell lines, and successfully 
prepared monoclonal antibody conjugated fluorescent magnetic nanoparticles, and realized the targeted 
imaging and hyperthermal therapy of in vivo gastric cancer12,51–54. Therefore, the BRCAA1 gene is a 
potential therapeutic target for gastric cancer. We also confirmed that folic acid receptor exhibited over-
expression in gastric cancer MGC803 cells, prepared folic acid-conjugated silica-modified gold nanorods 
were successfully used for X-ray/CT imaging-guided dual-mode radiation and photothermal therapy of 
gastric cancer15.

Herein, we adopted an innovative RNA nanotechnology approach to overcome some of the aforemen-
tioned challenges, and report for the first time a new strategy to target and deliver therapeutic BRCAA1 
siRNA to in vivo stomach cancer tissues using FA-conjugated pRNA-3WJ nanoparticles. Our objective 
is to construct multi-functional, thermodynamically and chemically stable RNA nanoparticles that allow 
specific binding to stomach cancer specific cell surface antigens or receptors resulting in the internaliza-
tion of RNA nanoparticles into target cells and delivery of the siRNA, miRNA, and drugs for attaining 
synergistic effects for the treatment of stomach cancer, we also investigated the effects of prepared RNA 
nanoparticles on the regression of gastric cancer tissues in vivo, and potential molecular mechanism, 
with the aim of laying foundation for further clinical application in near future.

Materials and Methods
Construction and characterization of FA conjugated BRCAA1-siRNA pRNA-3WJ nanoparti-
cles. The pRNA-3WJ nanoparticle consisted of three fragments, a3WJ, b3WJ and c3WJ, was functionalized 
with folate, as targeting ligand; Alexa647, as imaging module; and BRCAA1 siRNA (or scrambled control), 
as therapeutic module. The RNA fragments were then synthesized chemically (TriLink), self-assembled 
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into RNA nanoparticles, and characterized by 1.2% agarose gel shift assays and Atomic Force Microscopy 
(AFM) imaging as well as Zeta potential/Particle Sizer, as described previously52.

In order to evaluate the effects of a wide pH range on the stability of RNA nanoparticles, the prepared 
RNA nanoparticles were dispersed in varied pH buffers for 12 h, RNA nanoparticles/ buffer =  1:1(v/v), 
and pH ranged from 2 to 13 (Table s1 in supporting data: details of preparation of a series of buffer 
solutions), then 1.2% agarose gel electrophoresis was used to characterize the stability of prepared RNA 
nanoparticles. Effects of pH on the fluorescent intensity of RNA nanoparticles were investigated by meas-
uring the fluorescent intensity of RNA samples with different pH via the photoluminescence (PL) spectra 
(Perkin Elmer LS55 spectrofluorimeter).

As we previously reported25,26, the RNA nanoparticles contained 2’-F modified U and C nucleotides 
to make them resistant to RNase degradation. However, Effects of RNAase A on the stability of RNA 
nanoparticles was still investigated. RNase A-free purified water was used to dilute RNAse A (Sigma 
Company), the resulting solutions were respectively exhibited different concentration of RNAse A (10 U, 
50 U, 100 U, 500 U, 1000 U, 10000 U) , then, each tube was respectively added into 1μ g RNA nanoparti-
cles, incubated at 37 °C for 12 h, then we used 10% SDS-PAGE(sodium dodecylsulfate-polyacrylamide gel 
electrophoresis) gel electrophoresis to observe effects of RNAse A on the stability of RNA nanoparticles. 
The pRNA-3WJ was prepared by diluting 100 μ M of the complexes in diethylpyrocarbonate (DEPC) 
treated water with PBS at 1:1 (v/v) right before the experiments.

Effects of prepared RNA nanoparticles on cell binding efficiency and specificity. The human 
gastric cancer MGC803 cells and human gastric epithelial GES-1 cells (Cell Bank of Type Culture 
Collection of Chinese Academy of Sciences) were maintained at 37 °C (5% CO2) in Dulbecco’s Modified 
Eagle’s Medium (DMEM, HyClone) supplemented with 10% (v/v) fetal bovine serum (Gibco), 100 U/mL 
penicillin, and 1 mg/mL streptomycin. Cell culture products and reagents were purchased from GIBCO. 
200 nM AlexaFluor647 labeled 3WJ-FA-A647 was incubated with 1 ×  105 MGC803 and GES-1 cells at 
37 °C for 1 h, after washing with PBS for three times, the cells were collected and resuspended in PBS 
buffer, followed by analyzed with a FACS Calibur (BD Biosciences).

In order to investigate the specificity of RNA nanoparticles binding to MGC803 cells, MGC 803 cells 
were cultured in a humidified 5% CO2 balanced air incubator at 37 °C for 2 days. All the cells were 
collected and implanted onto 18 mm glass coverslips in a 12-well tissue culture plate, and culturing was 
continued for 3 days. After the cells were rinsed 3 times, 500 μ L of medium containing prepared RNA 
nanoparticles was added into each dish and incubated for 30 min. Three dishes of all dishes were first 
incubated with free folic acids for 30 min, then incubated with RNA nanoparticles, then washed with 
PBS buffer, and then examined under the dark field microscopy. Dark-field images were obtained on 
an upright Olympus IX71 optical mi8croscope integrated with a CRi Nuance multispectral imaging 
system(Cambridge Research & Instrumentation, Inc., Woburn, MA, USA).

Effects of RNA nanoparticles on the silencing of BRCAA1 gene in MGC803 cells. MGC803 
cells were transfected with a positive BRCAA1 siRNA control using Lipofectamine 2000 (Invitrogen) as 
the carrier. Two 3WJ-RNA constructs were assayed for the subsequent BRCAA1 gene silencing effects: 
one harboring folate and BRCAA1 siRNA; and, the other harboring folate and BRCAA1 siRNA scramble 
control. After 48 h of treatment, total RNAs from MGC803 cells were isolated by using Trizol (Invitrogen) 
and Direct-zol™ RNA MiniPrep (Zymo Research) according to manufacturer’s instructions. First-strand 
cDNA was obtained by using 1 μ g of total RNA and random primers and M-MLV reverse transcriptase 
(Promega). All reactions were carried out in a final volume of 25 μ l and assayed in triplicate. qRT-PCR 
was performed using a BioRad iQ5 iCycler Detection System with a three-step PCR protocol (95 °C for 
10 min, followed by 40 cycles of 95 °C for 5 s, 60 °C for 30 s and 72 °C for 30 s) with HieffTM qPCR SYBR® 
Green Master Mix (Yeasen). The data was analyzed by the Δ Δ CT method. The primers for BRCAA1 
and GAPDH are as follows:

BRCAA1: forward: 5’-ACCAAATCTCCCGCAAGG-3’;
 reverse: 5’-CATATTTTCCAGGTCCGACA-3’.

GAPDH: forward: 5’-GAAGGTGAAGGTCGGAGTC-3’;
 reverse: 5’-GAAGATGGTGATGGGATTTC--3’.

The qRT-PCR data were treated by using comparative Ct method, the calculation formation is as fol-
lows: 2-Δ Δ Ct; Δ Δ Ct =  (treated group Ct- treated group GAPDH Ct)-(control group Ct-control group 
GAPDH Ct). The results obtained indicate the relative ratio is calculated that target gene mRNA expres-
sion levels in the treated group are divided by mRNA expression level in the control group.

For western blot assays, the total cell lysates were prepared in high KCl lysis buffer (10 mM Tris-HCl, 
pH 8.0, 140 mM NaCl, 300 mM KCl, 1 mM EDTA, 0.5% Triton X-100 and 0.5% sodium deoxycho-
late) with complete protease inhibitor cocktail (Roche). Thirty micrograms of protein were separated 
by SDS-PAGE and electrophoretically transferred to PVDF membranes (Millopore). The membranes 
were incubated respectively with BRCAA1 antibody (1:2000 diluted), Bcl-2 antibody(1:2000 diluted), 
Rb antibody(1:2000 diluted), Bax (1:2000 diluted) and β –actin antibody (Epitomics) (1:4000 diluted) 
for overnight, followed by 1:10000 anti-mouse secondary antibody conjugated with HRP (Epitomics) 

http://www.nature.com/nchembio/journal/vaop/ncurrent/compound/nchembio.xxx_compTable s1.html
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for 2 h. Membranes were blotted by Westar EtaC ECL kits (Cyanagen Srl) and exposed to film for auto-
radiography.

Effects of RNA nanoparticles on growth and apoptosis of MGC803 cells. Effects of prepared 
RNA nanoprobes on viability of MGC803 cells and GES-1 cells were analyzed using Cell Counting Kit-8 
(CCK8) assay23. MGC803 cells and GES-1 cells were cultured in the 96-well microplate at the concen-
tration of 5000 cells per well and incubated in a humidified 5% CO2 balanced air incubator at 37 °C for 
24 h. Except for control wells, the remaining wells were added into medium with prepared RNA nano-
particles, final concentrations were, respectively, 10, 20,40 and 80 μ g/ml, then those cells were continued 
to culture for 24 h, 48 h and 72 h, respectively, then, the ODs were measured using the thermomultiskan 
MK3 ELISA plate reader according to the protocol of CCK8 assay kit, and calculated the survival rate of 
cells. The survival rate of cells can be calculated by the following equation:

Cell viability (%) =  optical density (OD) of the treated cells/OD of the non− treated cells ×  100
The prepared RNA nanoparticles were incubated with MGC803 cells for 48 h, cell apoptosis and 

necrosis were determined by Annexin V-FITC/PI double staining and quantified by flow cytometry. 
Briefly, 1 ×  105 MGC 803 cells were harvested 48 h after transfection and resuspended in 100 μ L binding 
buffer containing 5 μ l annexin V-FITC and 5 μ l PI provided with the Annexin V-FITC/PI Apoptosis 
Detection Kit (Yeasen) for 15 min at room temperature in the dark. Samples were then analyzed with 
a FACSCalibur (BD Biosciences). The live cells were identified as Annexin V-FITC−/PI−(lower left 
quadrant), early apoptotic cells as Annexin V-FITC+/PI−(upper left quadrant), late-stage apoptotic cells 
as Annexin V-FITC+/PI+(upper right quadrant), and necrotic cells as Annexin V-FITC−/PI+ (upper 
left quadrant). Annexin V-FITC/PI Apoptosis Detection Kit was purchased from Yeasen Corporation 
(Shanghai, China).

RNA nanoparticles for fluorescent imaging of in vivo gastric cancer. All animal experiments 
(no. SYXK2007-0025) were approved by the Institutional Animal Care and Use Committee of Shanghai 
Jiao Tong University. All procedures involved in the animal experiments were carried out in accord-
ance with the approved protocols and guidelines. Female athymic nude mice (18–22 g) were purchased 
from Shanghai Slac Laboratoty Animal Co. Ltd (Shanghai, China). For the establishment of tumor 
model, MGC803 cells were resuspended in PBS and 2 ×  106 cells/site was subcutaneously injected in the 
right flank. When the tumor nodules had reached a volume of 0.1–0.3 cm3 after approximately 3 weeks 
post-injection, mice were used for biodistribution and imaging studies. For tumor imaging, FA-Alexa 
Fluor 647-labeled pRNA-3WJ nanoparticle (about 20 nmol in PBS buffer, equal 32 mg/kg) was adminis-
trated intravenously into the MGC-803-tumour-bearing mice. Time-course fluorescent images (excita-
tion: 630/20 nm, emission: 700/30 nm, integration time: 15 s) were acquired on a Bruker In-Vivo F PRO 
imaging system (Billerica, MA). All the post injection images were captured at the same parameter 
setting and are scaled to the same maximum values. For the ex vivo imaging, the mice (3 mice per time 
point) were then sacrificed and collected tumors and the major organs after 3, 24,48, 96 h and 7 day intra-
venously (iv) injection. Excised tumor and organs were imaged by the Bruker In-Vivo F PRO imaging 
system with the same parameters as mentioned above.

RNA nanoparticles for targeted therapy of in vivo gastric cancer. Nude mice loaded with gas-
tric cancer MGC803 cells were prepared according to our previous reports12–15, and were randomly 
divided into three groups: test group (10 mice) (FA-pRNA-3WJ-BRCAA1siRNA, 1 mg/kg body weight); 
control group (10 mice) (FA-pRNA-3WJ-Scram siRNA, 1 mg/kg body weight) and blank control (10 
mice) (untreated). When the tumor sizes reached about 5 mm in diameter, the nude mice were injected 
with prepared RNA nanoparticles in PBS via tail vein (1 mg/kg body weight). Every two days, the tumor 
volume was measured, up to 15 days. Then, these mice were sacrificed.

Effects of RNA nanoparticles on important organs. The mice in testing group were sacrificed 
after being raised for 15 days. For histological evaluation, excised important organs including heart, 
liver, spleen, lung and kidney were frozen and embedded by medium at − 20 °C, and then were sectioned 
into 8 μ m slices, then were stained by hematoxylin and eosin (HE) stain method, and were observed by 
microscopy to confirm whether there is pathological lesion in important organs existed.

Statistical analysis. Each experiment was repeated three times in duplicate. The results were pre-
sented as mean ±  SD. Statistical differences were evaluated using the t-test and considered significance 
at P< 0.05.

Results
Construction and characterization of triple-functional pRNA-3WJ nanoparticles. The pRNA-
3WJ nanoparticles were prepared by mixing the three strands a3WJ, b3WJ, and c3WJ respectively, at equal 
molar ratio (Fig. 1a). The dynamic light scattering (DLS) experiments showed that the size of the nan-
oparticle is 5.20 ±  0.83 nm in diameter, and the zeta potential is − 16.57 ±  0.75 mv, as shown in Figure 
S1A and S1B (supporting data). The effects of pH on the fluorescent intensity and stability of RNA nan-
oparticles were also investigated. As shown in Figure S2A (supporting data), in the range of pH 2 to 13, 

http://www.nature.com/nchembio/journal/vaop/ncurrent/compound/nchembio.xxx_compFigure S1A and S1B.html
http://www.nature.com/nchembio/journal/vaop/ncurrent/compound/nchembio.xxx_compFigure S1A and S1B.html
http://www.nature.com/nchembio/journal/vaop/ncurrent/compound/nchembio.xxx_compFigure S2A.html
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RNA nanoparticles exhibited different fluorescent intensity, in the range of pH 5–9, RNA nanoparticles 
displayed more than 90% strong fluorescent signals. As shown in Figure S2B (supporting data), prepared 
RNA nanoparticles displayed the identical position on the gel, similar brightness, no degradation, which 
highly suggest that prepared RNA nanoparticles are very stable in the range of pH 2 to 13.

The melting temperature of the 3WJ-BRCAA1 siRNA nanoparticle was determined as 69.2 ±  0.9 °C 
by real-time PCR, as shown in Figure S3 (supporting data). Effects of RNAase A on the stability of 
RNA nanoparticles were also investigated. As shown in Figure S4 (supporting data), RNA nanoparti-
cles on different lanes exhibited identical position, similar brightness, no obvious degradation, which 
highly suggests that prepared RNA nanoparticles own good stability against RNase A (less than 10000 U) 
 degradation.

The resultant pRNA-3WJ nanoparticles are thermodynamically and chemically stable, which makes 
them an attractive candidate for in vivo nano-delivery for the purpose of cancer detection or treatment. 
In our study, we incorporated folate, as targeting ligand; Alexa647, as imaging module; and BRCAA1 
siRNA (or scrambled control) into the pRNA-3WJ scaffold.

Binding efficiency of pRNA nanoparticles to gastric cancer cell. Flow cytometry data in Fig. 2 
showed that the prepared 3WJ-FA-A647 nanoparticles can bind with the MGC803 cells with almost 
100% binding efficiency, while the GES-1 cells display a weak signal, which highly suggested that the 
prepared RNA nanoparticles did not bind with GES-1 cells. Our results also demonstrate that folate 
receptor exhibits over-expression on the surface of MGC803 cells, no expression on the surface of GES-1 
cells, similar to our previous report15.

Effects of RNA nanoparticles on the silence of BRCAA1 gene in MGC803 cells. The qRT-PCR 
results in Fig.  3a showed that, prepared FA-pRNA-3WJ-BRCAA1 siRNA nanoparticles could knock-
down the expression of BRCAA1 gene in MGC803 cells after incubating with MGC803 cells for 48 h, 
in contrast, prepared FA-pRNA-3WJ-Scram siRNA nanoparticles could not knockdown the expression 
of BRCAA1 gene in MGC803 cells after incubation for 48 h, between two groups, there existed statis-
tical difference (P <  0.01). Compared with BRCAA1 siRNA, prepared FA-pRNA-3WJ-BRCAA1 siRNA 
nanoparticles achieved similar silencing efficiency of BRCAA1 gene in MGC803 cells. The Ct, ΔCt, and 
ΔΔCt values for the qRT-PCR assay are shown in Table S2 (supporting data). Additionally, as shown 
in Fig.  3b, Western blotting results further confirmed that prepared FA-pRNA-3WJ-BRCAA1 siRNA 

Figure 1. Global structure of the therapeutic RNA nanoparticles with BRCAA1 siRNA. (a) Design of 
the RNA nanoparticles. Left is the one use in animal trial. Right is the extended one to prepare the AFM 
images. (b) AFM image of extended 3WJ RNA nanoparticles. The RNA complex in left of a is estimated 
to be around 10 nm. Due to convolution of the tip size (5~10 nm in diameter) in AFM images, features 
close to the size of the tip cannot be resolved. To characterize the structure of the RNA constructs, the 3WJ 
nanoparticles were extended by 39–60 base-pairs (in red color), which is within the persistence length of 
dsRNA and will not affect the 3WJ folding as described before31, to generate the AFM image as shown.

http://www.nature.com/nchembio/journal/vaop/ncurrent/compound/nchembio.xxx_compFigure S2B.html
http://www.nature.com/nchembio/journal/vaop/ncurrent/compound/nchembio.xxx_compFigure S3.html
http://www.nature.com/nchembio/journal/vaop/ncurrent/compound/nchembio.xxx_compFigure S4.html
http://www.nature.com/nchembio/journal/vaop/ncurrent/compound/nchembio.xxx_compTable S2.html
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nanoparticles and BRCAA1 siRNA could down-regulate BRCAA1 expression in MGC803 cells, while 
prepared FA-pRNA-3WJ-Scram siRNA nanoparticles had little down-regulation of BRCAA1 protein 
expression in MGC803 cells, thus showing prepared FA-pRNA-3WJ-BRCAA1 siRNA nanoparticles 
can specifically reduce the expression of BRCAA1 protein in MGC803 cells. Importantly, the silencing 
potency was comparable to the Lipofectamine 2000 carried BRCAA1 siRNA group.

Effects of RNA nanoparticles on growth and apoptosis of gastric cancer cell MGC803. As 
shown in Fig. 4, MGC 803 cells were treated with 400μ g/mL FA-pRNA-3WJ-BRCAA1 siRNA nanoparti-
cles for 24 h, 48 h and 72 h, the inhibition rate of MGC 803 cells increased as the incubation time increased, 
at 48 h, maximal inhibition rate of MGC803 cells is 44.5 ±  2.6%, compared with FA-pRNA-3WJ-Scram 

Figure 2. Flow cytometry analysis for specific binding of 3WJ-FA-A647 nanoparticles to MGC803 cells 
(left, folate positive), GES-1 cells (right, folate negative control). 

Figure 3. The BRCAA1 silencing effects of FA-pRNA-3WJ-BRCAA1siRNA assayed by (a) qRT-
PCR (GADPH is the endogenous control)(there existed statistical difference between FA-pRNA-3WJ-
BRCAA1siRNA group and FA-pRNA-3WJ-Scramb-siRNA group, P <  0.01) and (b) western blot assay 
(β -actin bands served as loading control). 
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siRNA group, inhibition rate is 12.5 ±  1.9%, there existed statistical difference between two groups, 
P <  0.01.

Our previous study shows that BRCAA1 can inhibit MGC803 cell apoptosis and improve the pro-
liferation of MGC803 cells, we hypothesized that the performed RNA interference (RNAi) by RNA 
nanoparticles could induce MGC803 cell apoptosis. As shown in Fig.  5, the transfection with 25 nM 
FA-pRNA-3WJ-BRCAA1 siRNA in MGC803 cells induced 2.51% of early apoptotic cells and 15.0% 
of late apoptotic cells, respectively, in the normal control, MGC803 cells exhibited 0.085% of early 
apoptotic cells, there existed statistical difference between treated group with FA-pRNA-3WJ-BRCAA1 
siRNA and control group, P <  0.05. The light scattering plot of MGC 803 cells treated with FA-pRNA-
3WJ-BRCAA1 siRNA nanoparticles for 48 h is shown in Figure S5. These results show that prepared 
FA-pRNA-3WJ-BRCAA1 siRNA nanoparticles can induce apoptosis of MGC803 cells.

Fluorescent RNA nanoparticles for in vivo imaging of gastric cancer. It has been reported that 
unmodified siRNA ribonucleic acid sequences have extremely poor pharmacokinetic properties due to 
short in vivo half-life and fast kidney clearance caused by their small size (hydrodynamic diameters, HDs; 
typically < 5 nm, which is smaller than the kidney filtration threshold (KFT) of 5.5 nm). Tumor targeting 
efficiency by RNA nanoparticles was investigated by collecting and analyzing in situ fluorescence images 
of MGC803 xenografts in nude mice at different post-injection (p.i.) time points (Fig. 6a,c). Tumor area 

Figure 4. Inhibition of the growth of MGC803 cells by the nanoparticle of FA-pRNA-3WJ-
BRCAA1siRNA using CCK8 (Cell Counting Kit-8) assays. The “Control” is non-treated MGC803 cells.

Figure 5. Determination of cell death by flow cytometry of Annexin V-FITC/PI staining in MGC803 
cells transfected with 25 nM FA-pRNA-3WJ-BRCAA1siRNA or FA-pRNA-3WJ-Scram-siRNA for 48 h. 

http://www.nature.com/nchembio/journal/vaop/ncurrent/compound/nchembio.xxx_compFigure S5.html
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was hardly distinguished in the mouse in the first 30 min p.i. because of the strong fluorescence back-
ground in normal tissues. However, as the time increased, the decrease in the fluorescence background 
of normal tissues and the accumulations at the tumor site caused the tumor area became readily defined 
5 h p.i.. Ex vivo images of normal tissues, organs, and tumors taken from the RNA nanoparticles-injected 
mice showed that the tumors taken at 5 and 24 h p.i. exhibited the strongest signal (Fig. 6b). In terms 
of tumor accumulation kinetics, RNA nanoparticles reached their highest accumulation within 5 h and 
remained in the tumor site 96 h p.i., which indicted the high tumor targeting efficiency and tumor reten-
tion capability of the constructed RNA nanoparticles.

RNA nanoparticles for in vivo targeted therapy of siRNA to gastric cancer. As shown in Fig. 7 
and 8, the tumor in the mouse without treatment grew very rapidly, the size of tumor enlarged as a 

Figure 6. (a) Representative in vivo fluorescence images of MGC803-tumour-bearing mouse after iv-
injected with FA-AlexaFluor647-labeled pRNA nanoparticle. The tumor areas are indicated with arrows. (b) 
Representative ex vivo images of tumors and organs. Labels: 1, tumor; 2, heart; 3, liver; 4, spleen; 5, lung; 6, 
Stomach; 7, kidneys; 8, bladder; 9, muscle. (c) The average fluorescence intensities from the tumor areas of 
post-injection (3 mice per time point). The error bars represent SEM (n =  3).
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control. In contrast, the tumor in mice with treatment showed regressed growth and the size of tumor 
is smaller comparing to controls. The difference between FA-pRNA-3WJ-BRCAA1siRNA treated group 
and FA-pRNA-3WJ-Scram-siRNA treated group was statistically different (P< 0.01). The result fully 
demonstrated that prepared FA-pRNA-3WJ-BRCAA1 siRNA nanoparticles can specifically inhibit the 
growth of gastric cancer cells in vivo.

Undetectable of organ damage by RNA nanoparticles after systemic injection. We used 
Harris Hematoxylin and Eosin (HE) staining to check the potential damage to important organs includ-
ing the heart, liver, spleen, lung and kidney by the RNA nanoparticles. As shown in Fig. 9, no obvious 
tissue damages were observed, which indirectly suggested that the prepared RNA nanoparticles displayed 
good biocompatibility and no negative effects on important organs in the body was observed.

Figure 7. Tumor sizes in test group and control group under different days a) 0 day in un-treated mouse; 
b) 0 day in un-treated mouse; c) 14 days in control mouse; d) 14 days in test mouse e) tumor tissues from 
experiment. 
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Discussion
In recent years, RNA nanotechnology has made great advance. RNA has been used as nanomaterials to 
construct varieties of nanostructures for targeted imaging and cancer therapy in vivo with the advantages 
of high delivery efficient, high accumulation in the site of tumor, low toxicity, no damaging of normal 
cells and tissues, and integration of targeting imaging, nucleic acid drug, and therapy into one nanos-
tructure30–36,55–60, which displays great potential for applications in clinical imaging and therapy in the 
near future25,26.

Gastric cancer is the second most common cancer in China. How to achieve simultaneous diagnosis 
and therapy of early gastric cancer has become a great challenge. Although RNA nanoparticles have 
been constructed and in vitro studies exhibited great potential of using RNA nanoparticles for cancer 
theranostic applications, up to date, no report demonstrated RNA nanoparticles can be used for targeted 
imaging and therapy of gastric cancer in vivo. In order to investigate the feasibility of applying RNA 
nanoparticles as theranostic agents for gastric cancer diagnosis and therapy, we designed the pRNA-3WJ 
nanoparticle consisting of three fragments, a3WJ, b3WJ and c3WJ, and functionalized with folate, as targeting 
ligand; Alexa647, as imaging module; and BRCAA1 siRNA (or scrambled control), as therapeutic module, 

Figure 8. Tumor size curve as the post-treatment time increases. There existed statistical difference 
between FA-pRNA-3WJ-BRCAA1siRNA treated group and FA-pRNA-3WJ-Scram-siRNA treated group,  
P <  0.01.

Figure 9. Result of HE immunostaining of important organs showing the undetectable damage. 
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respectively. We successfully prepared FA-pRNA-3WJ-BRCAA1 siRNA nanoparticles and the resulting 
RNA nanoparticles showed good pH and thermodynamic stability, good stability against RNase A (less 
than 10000 U) degradation, and exhibited stability of fluorescent intensity. These results demonstrated 
that the prepared RNA nanoparticles should be very stable in the blood circulation and can act as high 
efficient theranostic agent for targeted imaging and siRNA therapy of gastric cancer in vivo, which lay 
foundation for RNA nanoparticles’ further clinical application.

Nanotoxicity of nanotheranostic agents has caused broad attention. In this study, prepared RNA nan-
oparticles did not exhibit obvious toxicity. After being injected into in vivo blood circulation via tail vain, 
RNA nanoparticles gradually accumulated in the site of in vivo tumor within 6 h p.i., clearly displayed 
the imaging of tumor tissues, and exhibited specific targeting ability. The RNA nanoparticles were also 
proved to be able to retention in the tumor for long time and generate tumor regression effects. In addi-
tion, the alteration of biochemical parameters in the mice after treating with FA-pRNA-3WJ-BRCAA1 
siRNA nanoparticles was investigated as shown in Table S3 (supporting data) and no obvious tissue dam-
ages were observed for liver and kidneys. Further HE staining results also confirmed that prepared RNA 
nanoparticles did not damage important organs such as brain, heart, lungs, liver and kidneys. Therefore, 
we can confirm that the prepared RNA nanoparticles should be safe for in vivo application.

In this study, the results of in vivo evaluation of therapeutic efficacy also showed that the prepared 
RNA nanoparticles can actively target in vivo gastric cancer tissues and inhibited tumor growth signif-
icantly. However, the concrete molecular mechanism is not well understood. In order to investigate the 
potential molecular mechanism, we used Western Blot to detect the expression level of BRCAA1, Bcl-2, 
Rb and Bax in MGC803 cells treated with prepared RNA nanoparticles for 24 h and 48 h. As shown in 
Fig. 10, RNA nanoparticles can down-regulate or silence the expression of BRCAA1 gene, down-regulate 
the expression of Bcl-2 gene, adversely up-regulate the expression of Rb and Bax genes in MGC803 cells. 
Based on these results, we proposed a molecular mechanism of RNA nanoparticle induced MGC803 
growth inhibition: the prepared RNA nanoparticles (FA-pRNA-3WJ-BRCAA1 siRNA) actively bind to 
the folic acid receptor on the surface of MGC803 cells via folic acids conjugated on the RNA nanoparti-
cles, and then induce the endocytosis of RNA nanoparticles into tumor cytoplasm. The double-stranded 
BRCAA1 siRNA region on the RNA nanoparticle can be recognized by RNA-induced silencing complex 
(RISC) in the cytoplasm and processed. The released siRNA antisense strand can further recognize target 
BRCAA1 mRNA, degrade it, and result in silence of BRCAA1 gene in MGC80 3 cells. The down regu-
late or silencing of the BRCAA1 gene will cause subsequent down-regulation of Bcl-2 gene, and further 
up-regulation of Rb and Bax gene, which will end up with inducing cell apoptosis and inhibiting the 
cell growth. The proposed mechanism is summarized in Fig. 11 and the concrete study of the regulation 
signal pathway is under way.

In recent years, BRCAA1 gene, as an important member of ARID family, called as ARID4B, has been 
found to involve in the regulation of the male fertility and stem cells, ARID4B protein can regulate Rb 
binding protein 1, which highly suggest that ARID4B may be a tumor suppressor. Up to date, our exper-
iment data confirm that BRCAA1 exhibit over-expression in the gastric cancer MGC 803 cells, therefore, 
we predict that BRCAA1 (ARID4B) may exist in gastric cancer MGC 803 cells with gene mutation or 
other way, further investigation is still under way.

Figure 10. The expression of related apoptosis proteins of MGC803 cells at 48 h post-treatment by 
Western blotting. 1: scrambled control; 2: FA-AlexaFluor647-labeled pRNA nanoparticle; 3: control.

http://www.nature.com/nchembio/journal/vaop/ncurrent/compound/nchembio.xxx_compTable S3.html
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Conclusions
Folate-conjugated 3WJ-BRCAA1 siRNA-pRNA nanoparticles were successfully developed, and resulted 
in specific fluorescent targeted imaging, high efficient siRNA delivery, significantly inhibiting the growth 
of gastric cancer MGC803 cells, and reducing the size of gastric cancer xenografts in vivo, which 
exhibiting potential clinical applications. More importantly, the prepared RNA nanoparticles exhibited 
remarked accumulation in tumor as well as little accumulation in crucial organs such as liver, spleen, 
kidneys, etc. and no damage to non-tumor tissues. The potential molecular mechanism is: the prepared 
RNA nanoparticles can enter into the cytoplasm specifically via folic acid receptor mediated endocytosis 
and inhibit BRCAA1 expression in gastric cancer cells by uploaded BRCAA1 siRNA, resulting in the 
up-regulation of Rb and Bax, down-regulate the expression of BCl-2, and inducing of gastric cancer cell 
apoptosis. These actions finally regress the tumor growth in the studied mice. Our results also provide a 
new paradigm for the applications of RNA nanoparticles to specific tumor cells to maximize therapeu-
tic effects while minimizing the toxicity of the drug delivery system. The prepared RNA nanoparticles 
showed great potential in applications such as gastric cancer targeted imaging, drug delivery, and siRNA 
therapy in near future.
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