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Constructing three-dimensional 
(3D) nanocrystalline models of 
Li4SiO4 for numerical modeling and 
simulation
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The three-dimensional (3D) nanocrystalline models of lithium silicates with the log-normal grain 
size distribution are constructed by constrained Voronoi tessellation. During evolution process, the 
algorithm is improved. We proposed a new algorithm idea by combining Genetic Algorithm (GA) with 
Least Square (LS) method to make up for the disadvantages of traditional genetic algorithm which 
may be easily trapped in local optimal solution. In the process of modeling, it is the first time, to the 
best of our knowledge, that we keep the whole sample showing the charge neutrality by deleting the 
excess atoms on the polyhedron boundary during the modeling. By using the molecular-dynamics 
method, the relaxation procedure of nanostructured Li4SiO4 is carried out. The results show that the 
average mass density of the sample is slightly lower than the experimental data of the perfect crystal 
after relaxation process. In addition, boundary component proportion (BCP) and density reduction 
proportion (DRP) of the sample is obtained, respectively. The present results display a significantly 
reduced BCP but an increased DRP when increasing the mean grain size of the sample.

With the decrease of the fossil energy, the improvement of mankind energy demand year by year. 
International Thermonuclear Experimental Reactor (ITER plan) project, which is also referred to as 
man-made sun, is an important plan to solve the energy problem. Recently, the use of solid breeding 
material is a promising option to breed tritium safely and economically, and ternary lithium- contain-
ing oxide Li4SiO4 with high tritium generation and fast tritium release has been considered as the first 
candidate for tritium breeding materials in ITER test blanket module (TBM)1–3. In fact, for a better of 
understanding tritium release, Carrera et al. investigated tritium recovery from nanostructured LiAlO2 
which was also a tritium breeding material by X-ray diffraction and electron microscopy and indicated 
superlattice nanostructure may modify tritium release4. Therefore, it will be interesting to investigate the 
nanostructural features of the tritium breeding materials.

Even though there exists a number of experimentally and theoretically for the intrinsic structure, 
effective thermal conductivity, lattice dynamical, optical and thermodynamic properties of Li4SiO4 using 
different methods5–9, its many characteristics have still not been researched sufficiently, such as, diffusion 
constants of tritium, the mechanism of tritium release, the generation condition of the defects, and so on. 
Indeed, as the experimental capabilities for investigating the characteristics under dynamic conditions 
are extremely limited, it is an urgent need for modeling techniques of nanocrystals which can permit a 
wider and deeper understanding of some of the effects have been observed and may help to explain the 
mechanism of the phenomena.
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Several methods have been proposed to generate digital nanostructured materials for use in the pre-
diction of properties from microstructure. Such as, Monodispersive grain size (MGS) model10, Poisson–
Voronoi tessellation (PVT) model11, Laguerre–Voronoi tessellation (LVT)12, Johnson–Mehl(JM) model13, 
and so on. According to the experimental grain size, shape and orientation statistics in two orthogonal 
sections through an aluminum polycrystal, Saylor et al. used a voxel-based tessellation technique to cre-
ate a statistically representative 3D model microstructure for input into computer simulations14. Gross et 
al. used the inverse Monte Carlo method to build the microstructures of poly and nanocrystalline mate-
rials15. By utilizing the genetic algorithm, Tomoaki et al. developed a method to numerically construct 
a polycrystalline structure with a specified grain size distribution16. L. St-Pierre et al. applied Voronoi 
tessellation method to construct the 3D simulations of microstructure, using TiAl and grade 702 zirco-
nium as the sample materials17. Although their models, to some extent, reflected some characteristics 
of nanocrystalline materials, they had not presented a good solution method for the complex struc-
tural nanocrystals. To data, it is generally accepted that many single-phase fully dense nanocrystals are 
described by a log-normal grain size distribution14–17. Therefore, by using the improved algorithm based 
on the genetic algorithm combined with least square method, the 3D models of nanostructured Li4SiO4 
with the log-normal grain size distribution have been built successfully in this work.

Results and Discussion
Construction of an initial nanocrystal.  As we know, the microstructure plays an important role in 
determining various properties of nanocrystals. This work uses Li4SiO4 with monoclinic structure as a 
model material and provides a new method to simulate the atomic structural properties of the sample. 
The algorithm we developed is described as follows:

(1)	 Construct an orthogonal box with volume V1, and randomly generate N points or grains within the 
box;

(2)	 The Voronoi tessellation using these center points is built and the size-distribution P di( ) and the 
penalty function W2 (W N P d P d1 [ ]i

N
r i i

2
1

2= / ∑ ( ) − ( )= ) are computed.For improving the quality of 
solutions and reducing execution time, we introduce the genetic algorithm method combined with 
the least square method instead of the inverse Monte Carlo method of Gross et al.15. and the Genet-
ic Algorithm of Tomoaki et al.16. The entire process repeats many times until W2 approaches the 
optimization criterion at W2 < 10-6. Finally, we need retain these ultimate points which meet the re-
quirements of W2 < 10-6, and rebuild Voronoi polyhedron cells around each of these ultimate points.

(3)	 When using the atoms to fill the orthogonal box, we select the volume V2, according to a certain 
proportion, from the entire box (V1) to fill atoms in order to observe the structure of nanomaterial 
more clearly (see Fig.  1a). Generate a big enough supercell of Li4SiO4 with the volume V3 which 
should contain the circumscribed sphere of the volume V2 (V3 >  V2); Move the supercell and make 
the center of the supercell and the center of the new box with the volume V2 overlap;

(4)	 Select the supercell’s rotation axis randomly and rotate the supercell according to arbitrary rotation 
angle. Fill one of Voronoi polyhedron cells in the new box with qualified atoms in the supercell. The 
qualified atoms need meet the following conditions18: The distance between the atom and the edge of 
a polyhedron is smaller than BDV (Boundary Displacement Variable) =  β r0, (β  ≥  0, r0 is the atomic 
radius), while the nearest distance between two atoms on the two adjacent polyhedra is set no less 
than the diameter of the atom according to the idea of the hard-sphere model.

(5)	 The fourth step is repeated until all polyhedra in the new box are filled.
(6)	 Delete the excess atoms on the polyhedron boundary in order to keep the whole nanocrystalline 

material showing the charge neutrality (see Fig. 1b). At the same time, three-dimensional periodic 
boundary condition for the large-block is adopted, which will make the block effectively infinite and 
eliminate the influence of the boundary on the simulation results.

Mean Grain Size Distribution.  Among the simulation variables, the mean grain size (D) is the most 
important one because it direct controls the volume fraction of the boundary atoms. By using the new 
stochastic search and geometric computation, the mean grain size distribution of the 3D nanocrystal-
line model of Li4SiO4 with 1000 grains is obtained (see Fig. 2). The targeted grain size distribution is a 
log-normal grain size distribution with a variance of (0.35)2, the same as reported in Refs15,16.

During evolution process, we improve the algorithm by combining Genetic Algorithm (GA) and 
Least Square (LS) method to produce better quality results in smallest amount of time. The GA is a kind 
of global optimal searching algorithm based on Darwin’s nature evolution theory and Mendel’s genetics 
and mutation theory. The conceptualisation of GA in current form is generally attributed to Holland19. 
Compared with any other optimization algorithms, the outstanding excellences of GA are the capability 
of global optimization, strong robustness and inherent parallelism. However, GA has the shortcoming 
that it is easy to trap at local minima and time-consuming to find an optimal solution20,21. Therefore, we 
introduce the Least Squares (LS) method in this work. It is known to all that LS is a very good math-
ematical optimization technique which is usually used to find the best match solution by minimizing 
the error value between actual data and calculated data. Moreover, the volume of each Voronoi Cell is 
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Figure 1.  (a) The constructed box. (b) The unrelaxed atomic structure of a Li4SiO4 nanocrystal. (The color 
of Li, Si and O in the crystal atoms is red, yellow, and green, respectively. The color of Li, Si and O at the 
boundary atoms is blue, pink, and white, respectively; rLi >  rSi >  rO).

Figure 2.  (a) The mean grain size distribution of the 3D model of nanomaterial with 1000 grains at the 
beginning of the algorithm is represented by the histogram. (b) The calculated mean grain size distribution 
of the 3D model of nanomaterial with 1000 grains after 10000 steps of evolution is represented by the 
histogram. The red line indicates the desired log-normal size distribution with σ  =  0.35 and the fitted size-
distribution of the histogram has σ  =  0.34.
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calculated by Voro+ + which is a software library for carrying out three-dimensional computations of 
the Voronoi tessellation22.

In Fig. 2, it can be easily seen that the mean grain size distribution of the sample obey the log-normal 
grain size distribution almost perfectly after 10000 steps of evolution, which is better than the results in 
Refs15,16. In this study, we adopted a population size of 32, the same as the number of population in Ref16. 
The computation time per step was 3.7 s with 6 processors, which has a higher efficiency than that of 
3.9 s with 32 processors16. The mutation rate per center point is set at 0.1 for the first 500 generations, 
0.01 for 500 ~ 1000 generations, and 0.001 for the rest. By applying the new method, we can give prior-
ity to a certain part of the mean grain size distribution function which matches worst with the standard 
log-normal distribution. During the study, we use a new fitness function F instead of the original fitness 
function W2 (or 1/W2) to help to escape local optimal solution efficiently. F is defined as: 
F W MAX P d P d[ ]r i i

2 2λ= + ( ) − ( )⁎ ;(λ is an arbitrary constant and λ >  0). Thus, when the value of 
W2 has the same value, the result will give priority to the influence of the value of MAX P d P d[ ]r i i

2( ) − ( )
. The smaller the value of MAX P d P d[ ]r i i

2( ) − ( )  is, the better the value of F is. By utilizing the new 
fitness function F, we improve the quality of solutions and reduce execution time. Fig. 3 presents a 3D 
view of a polycrystalline structure with 1000 grains created by the new method.

Relaxed Atomic Structure.  Computer simulation is a powerful method to obtain the numerical 
approximation of microstructural changes taking place in nuclear materials. In fact, in the process of 
deleting the excess atoms on the polyhedron boundary, some artificial defects and torsions at the grain 
boundary is inevitably introduced, such as, the existence of the vacancy, the mismatch of ionic bonds, 
tilt boundary, and so on. For investigating the atomic position change and eliminate the influence of the 
artificial defects and torsions at the grain boundary of nanostructured Li4SiO4, the relaxation procedure 
was performed with the LAMMPS code23, based on the molecular-dynamics (MD) theory.

In this work, the primitive cell of Li4SiO4 has a monoclinic structure with space group of P21/m 
(No.11)24. The atomic potential of Li4SiO4 used in this work, which is the pair potential function, is from 
the studies of Takahashi et al.25. In physics, a pair potential is a function that describes the potential 
energy of two interacting objects. Hence, we have adopted the same pair potential within crystal and 
among crystals. The pair potential functions are assumed to consist of simplified coulombic and repulsive 
terms: U Z Z e r f b b a a r b bexpij i j i j i j ij i j

2
0 ( )= / + + 

( + − )/( + )
⁎

, where Zi and Z j represent ionic 
charges, respectively, r ij[Å] is the distance between the ions i and j, a and b are the parameters related to 
the radius and the compressibility of each ion, respectively, f 0 is an arbitrary constant (taken to be 
6.7472*10−11N). The parameters used in the calculation are given in Table 1.

To perform the simulations, the cutoff distance for the Takahashi’s potential rc was set to 10 Å. The 
coulombic term was evaluated using the Particle–Particle Particle-Mesh (PPPM) method27, while the 
repulsive term was described by a Buckingham potential. The Periodic Boundary Conditions (PBC) was 
employed. As the starting configuration, the simulation was run for 30,000 time steps (30 ps) in an NPT 

Figure 3.  A 3D view of a nanocrystalline structure with 1000 grains created by the improved algorithm.
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ensemble at zero external pressure to ensure that the system have adequate time to obtain a suitable equi-
librium structures after relaxed process. In the process of MD run, the orthogonal box was flexible. The 
system was thermalized at 300 K. A time step of 0.001 ps was used in the MD runs. Finally, the system 
reached the equilibrium state because the fluctuation range of its temperature or energy was not very 
intense. Although this work has focused on Li4SiO4, the technique described here is general and it can 
be applied equally to any nanomaterial for which its atomic potential is available.

The unrelaxed and relaxed atomic structures of nanostructured Li4SiO4 are illustrated in Fig.  4. As 
we can see, in Fig. 4(a), the atoms are arranged in an orderly state, while the arrangement of atoms is in 
the messy state in Fig. 4(b). Firstly, the phenomena may be caused by the change of the positions of the 
atoms which will move to the positions with minimum energy in order to achieve the steady state after 
the relaxation process. Secondly, the shape of the nanocrystal may also affect the simulation results as 
mentioned in Barnard et al.‘s work28,29.

In Fig. 4(a), the whole system is in a metastable state. With the development of the relax process, it 
will experience the transition from metastable state to steady-state. Finally, the whole system will reach 
the equilibrium state (see Fig. 4b). After relaxation process, the calculated bond distances of Li-Li, Li-O 
and Si-O of Li4SiO4 within the crystal are about 2.373–2.619 Å, 1.865–2.478 Å and1.589–1.712 Å, which 
are very close to 2.385–2.595 Å for Li-Li, 1.863–2.457 Å for Li-O and 1.597–1.696 Å for Si-O in the per-
fect crystal of Li4SiO4

30, respectively. However, the bond distances between atoms at the grain boundary 
are not with certain regularity properties. By and large, although the atomic positions of nanostructured 
Li4SiO4 change after relaxation process, the bond distances between atoms within the crystal have good 
consistency with the uniform distributed crystal system.

In addition, the sample reveals a reduction in the atomic densities after relaxation process. In Table 2, 
the structural information of 3D model of the sample after relaxation process is given by the AtomEye31. 
It’s easy to observe that the stoichiometry is conserved and the ratio of Li: Si: O is still 4:1:4 in the final 
nanocrystal (see Table 2). The results also show that the average mass density of the sample is slightly 
lower than the experimental data of the perfect crystal32, which is a normal phenomenon because of the 
presence of the grain boundary atoms. Similarly, the phenomenon was discovered by Herr et al.33. using 
nanocrystalline Fe as the sample material.

Boundary Component Proportion (BCP).  In order to illustrate the validity of the numerical simu-
lation and modeling, we calculate the boundary component proportion (BCP) of nanostructured Li4SiO4 
after relaxation process. (Where BCP= Nb/Nt, Nb is the number of boundary atoms, Nt is the total num-
ber of atoms in the nanostructured Li4SiO4.)

In Fig. 5, we observe that the values of the boundary component proportion are very high (0.51–0.78). 
All the BCP’s are higher than 0.5, which means more than 50% of the atoms are situated in the boundary 
region. Compared the results of our calculations with the theoretical calculation of Chen18, it is of interest 
to note that our results display very good agreement with the values of Chen who mainly focused on the 
model material for the Fe nanocrystal. On the experimental side, Wallner et al.34. also observed that the 
mean atomic density in the interfaces was about 0.52 of the lattice density by utilizing the small angle 
scattering of neutrons and X-rays.

Furthermore, we observe that the values of the BCP present a declining trend as the mean grain size is 
raised (see Fig. 5). The change of the BCP in our calculations for the sample may be induced by the low 
boundary density and the enlarged interatomic spacing at the boundary region as the mean grain size 
of the sample is increased. The atomic structure of an interface depends on the orientation relationship 
between adjacent crystals and the boundary inclination18. With the elevation of the mean grain size of 
the sample, the interatomic spacing at the boundary region will enlarge due to the considerable misfit 
between adjacent crystals. A low boundary density and a high interatomic spacing will naturally lead to 
the decrease of the BCP in the nanostructured Li4SiO4.

Density Reduction Proportion (DRP).  For the purpose of studying the changes of the Li4SiO4 nano-
crystal which is induced by a low boundary density, the reduced density proportion (RDP) of the Li4SiO4 
nanocrystal are computed (Where RDP= Nt / Nb, Nb is the number of atoms in a perfect crystal with the 
same size as the nanostructured Li4SiO4).

As can be seen from the formula, the larger the value of DRP is, the higher the actual density of the 
sample is. Fig. 6 displays that the values of RDP vary between 0.65 and 0.87. We compare our calculated 

Parameters Atoms

Li Si O

aa 0.930 1.012 1.629

ba 0.080 0.080 0.085

Zb + 1 + 4 -2

Table 1.  Potential parameters used in the MD calculations. a Ref 25 bRef 26
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results with the recent theoretical and experimental data available, we find that our results is consistent 
with the calculated values by Chen (0.61–0.81)18 and the experimental results (0.6–0.9) under the dif-
ferent materials and experimental conditions35. That is to say, our method in this work is reliable and 
reasonable.

The above results may be attributed to the following reasons: On one hand, with the mean grain size 
increasing, the number of grains (N) in the same volume will decline. So the degree of misfit between 
the different grains will also decrease. On the other hand, an important effect is also worthy of our con-
sideration that the results may be affected by the number of random displacement atoms at the grain 

Figure 4.  (a) The unrelaxed initial structure of a Li4SiO4 nanocrystal. (b) The relaxed atomic structure of a 
Li4SiO4 nanocrystal. (Mean grain size D= 6.61 nm, BDV= 0.5r0, where r0 is the radius of the Li atom).
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boundary in the simulation. With increasing of the mean grain size, the number of the allowed random 
displacement atoms at the grain boundary will become small. Finally, when increasing the mean grain 
size of the sample, these factors will result in a lower value of BCP but a higher value of DRP as shown 
in Fig. 5 and Fig. 6, respectively.

By comparing our nanostructured 3D models as well as the nanocrystalline structures directly from 
experimental observations, such as electron backscatter diffraction (EBSD)17 or synchrotron radia-
tion tomography36, our method is much more cost-effective and takes less time, which also proves its 
great potential value in applications for the development of nanocrystalline materials. The simulation 

Type Mass(aum) Count Abundance Wt.pct.
Avg. mass 

density(g/cm3)
Exp. mass 

density(g/cm3)a

Li 6.941 29408 44.44% 23.17% 2.29 2.42

O 16.000 29408 44.44% 53.40%

Si 28.088 7352 11.11% 23.44%

Table 2.   The AtomEye shows the structural information of 3D model of a Li4SiO4 nanocrystal after 
relaxation process. aRef 31

Figure 5.  Boundary component proportion (BCP) of nanostructured Li4SiO4. The black and red line 
corresponds to the variable of BDV= 0.5r0 and BDV= 1.0r0, respectively.

Figure 6.  Reduced density proportion (RDP) of nanostructured Li4SiO4. The black and red line corresponds 
to the variable of BDV= 0.5r0 and BDV= 1.0r0, respectively.
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demonstrates that the initial microstructure is very important because it depends sensitively on the 
methods used. Moreover, one innovative feature of the program developed is the possibility to gener-
ate 3D microstructures for the large-scale atomistic simulations and complex nanostructured modeling. 
Currently, the numerical modeling constructed using the new method is under way for heat transmis-
sion, mechanical properties, defect researches, surface microstructures, and transport properties of nano-
structured Li4SiO4. The extension of the evolutional approach is capable of improving the efficiency of 
numerical computations largely. Hence, we hope that the method we developed here may potentially 
open a new path way for guiding the further theoretical researches and experimental explorations of 
nanocrystalline materials.

Methods
A simplified overview of the actual process is shown in the diagram below.

BEGIN (GA and LS)
Create initial population (p1) randomly
Calculate the value of W2 of each individual in p1

While Min(W2) >  10−6, DO
BEGIN
Produce new population (p2) from initial population (p1) (The two types of mutations are considered: 
a new center point is selected completely randomly; and it randomly shifts a short distance)
Determine dynamically the fitness function F by individuals in p1 and p2
Select survival individuals from p1 and p2 by the new fitness function F
Merge survival individuals in p2 and p1 as p1
Calculate the value of W2 of each individual in p1
END

Output the individual
END
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