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Pushing the limits of 
radiofrequency (RF) neuronal 
telemetry
Tara Yousefi & Rodolfo E. Diaz

In a previous report it was shown that the channel capacity of an in vivo communication link using 
microscopic antennas at radiofrequency is severely limited by the requirement not to damage 
the tissue surrounding the antennas. For dipole-like antennas the strong electric field dissipates 
too much power into body tissues. Loop-type antennas have a strong magnetic near field and so 
dissipate much less power into the surrounding tissues but they require such a large current that the 
antenna temperature is raised to the thermal damage threshold of the tissue. The only solution was 
increasing the antenna size into hundreds of microns, which makes reporting on an individual neuron 
impossible. However, recently demonstrated true magnetic antennas offer an alternative not covered 
in the previous report. The near field of these antennas is dominated by the magnetic field yet they 
don’t require large currents. Thus they combine the best characteristics of dipoles and loops. By 
calculating the coupling between identical magnetic antennas inside a model of the body medium we 
show an increase in the power transfer of up to 8 orders of magnitude higher than could be realized 
with the loops and dipoles, making the microscopic RF in-vivo transmitting antenna possible.

In a previous report the electromagnetic limits to radiofrequency (RF) telemetry from within the brain, 
have been discussed. By establishing a link budget consistent with picowatts of radiated power at the 
surface of the head, it was shown that to avoid thermal damage to tissue surrounding the transmitting 
embedded antenna, and still be able to communicate at 300 Kbps with a reasonable link margin from 
within the human brain, electric dipoles at least 680 μ m in length or magnetic dipoles at least 59 μ m 
in diameter would be required. For the rodent brain case these numbers become 250 μ m and 26 μ m 
respectively. In the rodent case, it was estimated that a 14.5 μ m diameter loop antenna with a magnetic 
core (that raised its dipole moment by a factor of 3) could communicate at the reduced rate of 3 Kbps. 
Making the antennas any smaller increases the power dissipated into the proximate tissues above the 
accepted safety limits1. Assuming that the desired size of a sufficiently unobtrusive embedded telemetry 
node (antenna plus on-board transmitter) is 10 μ m, these results rendered unfeasible the prospect of 
using such a microwave RF telemetry system to track neuronal activity in-vivo2–4.

The root of the problem is that small electric dipole antennas embedded in lossy dielectric media 
suffer very large near field loss in the process of radiating a signal and loop antennas suffer excess Ohmic 
loss in their metal elements. Therefore when these antennas are fed sufficient power to transmit through 
the brain, the electric dipole would damage the nearby tissue through specific absorption rate (SAR) 
deposition and the electric loop antenna through heat conduction. But this is not the end of the story.

In the reference paper1, the effect of a magnetic core for loop antennas was only modeled as an 
increase of the antenna’s dipole moment thus leading to a slight benefit in radiated gain. The reality, 
evident from recent work on magnetic conformal antennas5–7 is that the magnetic core of a loop antenna 
can dramatically alter its input impedance, changing its behavior from that of a metal loop to that of a 
permeable dipole. In the regime where the magnetic core dominates the behavior, the principal radiating 
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current is not the electric current in the loop but the magnetic polarization current in the core material. 
Because of the high efficiency properties of these magnetic dipoles, when located in a low impedance 
environment, have not been reported until recently5–7 we describe them below before proceeding with 
their application to the in vivo neuronal telemetry scenario.

True Magnetic Antennas
Although in the conventional practice of Antenna Theory and Design a distinction is made between 
electric dipole antennas (generally metal rods carrying an alternating electric current) and magnetic 
dipole antennas (generally metal loops carrying an alternating electric current,) in reality both of these 
antennas are electric current radiators. In the first, the electric current is linear and couples most effi-
ciently to the electric dipole modes of the spherical mode spectrum; in the second the electric current 
is circumferential and couples most effectively to the magnetic dipole modes of the spherical mode 
spectrum. Since the work of O. Heaviside8 in the late 1880’s it has been known that Maxwell’s equations 
also admit of the presence of magnetic currents. Therefore, behaviors equivalent to magnetic current 
radiators exist in principle.

Most antenna practitioners assume that the absence in nature of observed magnetic monopoles pre-
cludes the existence of true magnetic currents and therefore whenever the term magnetic dipole is used, 
a loop antenna is usually meant, and whenever the term magnetic current is used, a fictitious magnetic 
current is usually meant. The latter currents arise in Schelkunoff ’s Equivalence Theorem whenever it is 
desired to summarize all the sources on one side of a closed mathematical surface by using the tangential 
electromagnetic fields existing on that surface. Thus the surface fictitious magnetic current, Km (meas-
ured in Volts/meter) is defined as the cross product of the surface normal and the tangential Electric 
field on that surface.

However, in this paper we are talking about true (as opposed to fictitious) magnetic current radiators. 
That is, in the same way that electric current density, Je, (measured in A/m2) flows through a medium 
with electric conductivity, σ e (measured in Siemens/meter), as:

 J E 1e eσ= , ( )

Magnetic current density, Jm, (measured in V/m2) flows through a medium with magnetic conductiv-
ity, σ m (measured in Ohms/meter), as

 J H 2m mσ= . ( )

Even though magnetic conductivity does not exist at zero frequency (because of the absence of mag-
netic monopoles), as far as Maxwell’s equations are concerned, it exists at any frequency in which a 
material exhibits a magnetic loss tangent. This is because the imaginary part of the complex permittivity 
and complex permeability of materials, ε(ω) =  ε0(ε′  −  jε″ ), and μ(ω) =  μ0(μ′  −  jμ″ ), imply the existence 
of a corresponding conductivity through the relations:

3e 0σ ωε ε= ″ ( )

4m 0σ ωμ μ= ″ ( )

Thus in Maxwell’s curl equations; the terms involving the rate of change of the flux densities imply 
the existence of magnetic currents as well as electric currents as shown below:

ω ωε ω ωε ε ε ωε ε ωε ε ωε ε σ ωε ε= ( ) = ( ′ − ″) = ′ + = ′ + = ′ +j D j E j j E j E E j E E j E J“ e e0 0 0 0 0

ω ωμ ω ωμ μ μ ωμ μ ωμ μ ωμ μ σ ωμ μ= ( ) = ( ′ − ″) = ′ + ″ = ′ + = ′ + ( )j B j H j j H j H H j H H j H J 5m m0 0 0 0 0

Therefore, whenever a lossy permeable material is used to carry an alternating magnetic field, it 
behaves exactly as if it were carrying a magnetic current measured in Volts (whereas electric current is 
measured in Amps) as suggested in Fig. 1.

Figure 1 shows an electric dipole carrying an alternating electric current and its electromagnetic dual 
which is the magnetic dipole (in this case modeled as rods). Duality requires that since the electric dipole 
has Perfect Electric Conductor (PEC) feed lines and an electric voltage source load (Ve), the magnetic 
dipole should have Perfect Magnetic Conductor (PMC) feed lines and a magnetic voltage source (Vm). 
Since there is no access to PMC feed lines and magnetic voltage sources, a PEC feed loop is used instead 
to feed the magnetic dipole6.

Accordingly, throughout this paper the term electric loop refers to a metal loop with no core, electric 
dipole refers to our copper sphere model of a linear conventional electric dipole, and the true magnetic 
antennas just defined, will be referred to as magnetic dipoles.

The impact this difference makes in the results of the previous study1 can be understood in its simplest 
terms by comparing the two magnetic dipole radiators, one the conventional electric loop antenna, the 
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other, the same loop antenna wrapped around a sphere of dispersive ferromagnetic (or ferrimagnetic) 
material and comparing their input resistance and radiation efficiency at resonance.

Comparison of the true magnetic dipole to the conventional loop.  To highlight the difference 
in performance between the true magnetic dipole and a conventional loop antenna it suffices to com-
pare them in free space. The magnetic core will be assumed to be a laminated ferromagnetic material 
like those used in the magnetic read-head industry. The typical frequency dependent permeability of a 
single metal layer of such a material (CoZrNb, abbreviated CZN, thin film9) is shown Fig. 2. Heaviside’s 
magnetic conductivity is defined as σm =  ωμ0μ″ , where μ 0 is the permeability of free space and μ ” is the 
imaginary part of the relative permeability.

Assuming the electric loop antenna is a copper loop of conductivity σCu =  6 ⋅  107S/m, radius a =  10μ m 
and wire cross sectional radius ρ  =  0.5μ m. The relevant parameters for both antennas can be approxi-
mated as shown in Table 1.

Since the radiation efficiency of an antenna is the ratio of its radiation resistance to its total resistance, 
at 1.5 GHz (the resonance peak of the permeable core) we find that the efficiencies of the electric loop 
and the magnetic dipole are:

efficienc y and efficienc y1 44 10 9 69 10electric loop magnetic dipole
12 9= . ⋅ = . ⋅− −

As expected the efficiencies of these microscopic antennas are very small, but that of the magnetic 
dipole is over 6500 times greater than that of the electric loop antenna. At the same time, Zinput_L =  1.33Ω  
while Zinput_m =  174Ω . The magnetic dipole has a much higher input impedance than the electric loop. 
Therefore while the electric loop must draw a large current to radiate its signal (and thus gets very hot), 
this magnetic dipole instead develops a high voltage while radiating its signal (much like conventional 
electric dipoles).

Since we know from the previous study that near field SAR deposition into the surrounding tissue is 
not a concern for magnetic dipoles the only damage risk here comes from raising the antenna temper-
ature. But because the true magnetic dipole has a much higher impedance than the conventional loop 

Figure 1. Electric dipole carrying an alternating electric current and its electromagnetic dual which is 
the magnetic dipole (in this case modeled as rods). 
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antenna it follows that to radiate equivalent power it will draw a much lower current and thus dramati-
cally reduce the risk of damage through heat conduction.

The end result of these considerations is that the link budget calculation performed in the original 
report must be redone for this new type of antenna. However, that calculation will be left to a future 
third report in this series because there is a more important development that results from choosing 
microscopic magnetic dipoles as candidate in-vivo RF telemetry antennas. The benefits highlighted by 
the calculations above in free space pale in comparison to the benefits derived inside the dielectric lossy 
medium of the body, especially if we also assume that the receiving antenna is a magnetic dipole itself.

In the first report it was seen that the best case human subject scenario requires the receiving antenna 
to be located just outside the head. Of course any antenna in close proximity to the head will still be 
affected by the lossy properties of the brain, given the extent of penetration of the antenna’s near field. 
This point was not belabored in that report because accurate modeling of reasonable external antenna 
configurations would not have changed the essence of the pessimistic results obtained. However, in light 
of the potentially optimistic results that magnetic dipoles might bring, it is important to consider this 
effect. And we do so as the worst case scenario where the receiving antenna is itself assumed to be com-
pletely immersed in the same lossy dielectric medium as the transmitting antenna.

Therefore, for the balance of this report we concentrate on calculating the signal received from a 
microscopic antenna by a second microscopic antenna of the same kind in the same medium. The 
calculation is simplified by assuming (as in the first report) reasonable simple models of the antennas 
that allow the derivation of a closed-form expression for the mutual coupling between the antennas. 
The efficiency of signal transmission is then simply expressed as the ratio of the current induced on the 
receiving antenna to the current driving the transmitting antenna. Since received power is proportional 
to the square of the antenna current, the gain in efficiency is proportional to the square of this ratio.

The case of the insulated Electric Dipole.  Before proceeding with this comparison it is worth men-
tioning the case of the insulated electric dipole, a case also not addressed in the original report1. Long 
linear electric dipoles are commonly used for communication under sea water, an extreme case of a low 
impedance medium. Because of the obvious conductivity of seawater medium, it is to be expected that 
these dipoles should be insulated from the medium to prevent the medium from shorting them out. And 
the question then arises, should not electric dipoles inside the body also be insulated? The answer can be 
found in in Kraichman’s monograph10. Although electric dipoles are insulated for most of their length 
under seawater, they only attain maximum gain if their ends are electrically connected to the conducting 
medium. If they are completely insulated, instead of an antenna we have a center fed coaxial cable, with 

Figure 2. Relative permeability (left, unitless) and corresponding Heaviside magnetic conductivity (right, in 
Ohms/meter) of a typical high frequency ferromagnetic material (μinitial =  450). 
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the antenna as the inner conductor and the seawater boundary as the outer conductor. The wave injected 
at the feed of the dipole remains trapped in this coaxial line, reflecting back and forth between its ends.

The same effect arises in the case of our model spherical antenna immersed in the lossy body dielec-
tric, except in our case the ends of the dipole are the conducting hemispheres and the insulated length is 
the assumption that the feed region itself is insulated from the medium. That is, our closed-form model 
of the electric dipole as a spherical antenna already behaves as if a narrow strip of insulator were wrapped 
around the equator where the voltage is applied to the hemispheres. If we were to insulate any portion 
of the hemispheres themselves, the result would be to add a shunt capacitance at the feed that diverts 
part of the feed current back to the source, thus reducing the amount of radiating current and therefore 
the gain. At the same time the loss resistance presented to the antenna by the outer medium, contacting 
through a smaller area of the hemispheres, would be increased.

If we suppose that the entire antenna were insulated by a very thin dielectric layer of thickness of tL, 
then it is true that we have removed a layer of thickness tL from the near field ohmic loss integration 
because now the integral does not extend from a to ∞ but instead from a +  tL to ∞. However, this would 
happen automatically if we had increased the radius of the dipole by the same thickness tL. So the change 
in near field loss due to a change in radius is not a relevant comparison.

Suppose we keep the outer radius constant and decrease the metal sphere’s radius by inserting the 
insulating layer. The biggest impact of the insulating layer is that we have effectively placed the dipole at 
the center of an insulating dielectric cavity inside the conducting body medium. Now the input imped-
ance of the small spherical dipole is given by putting in series with the external capacitance, the capaci-
tance of the insulating layer. This capacitance reduces the antenna’s total capacitance, therefore raising its 
capacitive reactance, and requiring now a larger inductor to resonate it. But that’s not the main problem. 
Some flux lines from the upper hemisphere do terminate on the cavity wall while some flux lines ter-
minate on the lower hemisphere. Only those flux lines terminating on the wall induce charges on the 
surface of the body boundary and it is only those oscillating charges that constitute the dipole moment 
radiating into the body. The field lines not terminating on the wall simply constitute a shunt capacitance. 
Thus for a given input voltage we end up reducing the radiated power and increasing the stored energy. 
The only thing this accomplishes is decreasing the bandwidth of the antenna, and all the near field loss 
from a to ∞ is still there.

Thus, the original conclusion from the first report1 still holds: antennas operating in the magnetic 
dipole mode have a decided advantage. We show in this contribution that two identical microscopic true 
magnetic dipole antennas can communicate inside the lossy dielectric body medium with an efficiency 
that is over 8 orders of magnitude greater than could be attained by conventional electric dipoles or 
electric loop antennas of the same size. It appears that microscopic RF telemetry inside the brain is now 
feasible.

Results
It is known that micron sized antennas store much more energy in their near field per cycle than the 
power they can radiate to the far field by a ratio called the Quality factor of the antenna. The Fano-Chu 
limit sets a lower limit11–15 for this ratio which can be approximated by Q ≈  1/(ka)3, where k is the prop-
agation constant of the medium and a the radius of the smallest sphere that can enclose the antenna. For 
example if the body were considered a lossless dielectric, a 20 micron antenna inside the body at 2 GHz, 
would have a minimum Q of 40 million and an 80 micron antenna at the same frequency would have 
a Q of the order of 600,000. Since the body is a lossy dielectric, these Q values are reduced in actuality 
but they still serve to gauge the amount of energy per cycle stored in the near field, energy that is then 
consumed as heat. Therefore to produce a reasonable radiated power outside the head (in the picowatts 
range) it was found in our previous analysis1 that microscopic antennas must be supplied with micro-
watts of power.

The baseline assumption made in the analysis of reference 1 is that one isolated antenna tries to com-
municate to the outside world by direct radiation of its signal. Furthermore, in that analysis the effect of 
adding a magnetically permeable core to a loop antenna was only modeled as an increase in the dipole 
moment of the loop by at most a factor of 3. The effect on the input impedance of the loop antenna and 
the possibility that the main radiating current could be the polarization current of the core, and not the 
electric current of the loop, were not considered. Yet, recent developments in the theory and practice 
of magnetically permeable antennas15–17 have shown that such antennas exhibit unprecedented gain and 
efficiency in the presence of a low impedance environment. The result is that a conformal magnetic 
antenna (constructed from a lossy ferrite) only 1.5 inches thick, lying directly on the conducting roof 
of a High Mobility Multipurpose Wheeled Vehicle (HUMVEE), was shown to outperform an eight foot 
tall conventional metal monopole antenna on the same vehicle5. Since complete immersion in a lossy 
dielectric also presents a low impedance medium to an antenna, it can be expected that microscopic 
magnetic antennas inside the body dielectric will also show unprecedented gain and efficiency. This is 
demonstrated by calculating the mutual coupling between two identical electric dipole antennas, mag-
netic dipole antennas and electric loop antennas immersed in the body dielectric.

From the impedance point of view, electric loops and electric dipoles are the two fundamental types 
of antennas. According to Schelkunoff16, although in order to calculate the impedance of an antenna 
we might have to solve Maxwell’s equation subject to the specific boundary conditions of the antenna, 
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we can obtain some of the important general properties of the impedance from much more basic con-
siderations. An interesting fact is that these properties are not limited to antennas or electrical systems. 
They are common to all dynamic systems (for example mechanical and acoustical) and they don’t even 
depend on the form of the dynamical equations as long as those equations are linear. A brief consider-
ation of these general properties of impedance will help to understand the reason for the difference in 
the antennas’ behavior.

For any transmitting antenna the voltage and current at the input terminals can be written as a func-
tion of a complex variable which can be called “p” where p =  jω and ω is the frequency of oscillation. The 
ratio of the functions V(p) and I(p) is called the input impedance Z(p) of the antenna and the inverse 
is called the input admittance Y(p).

The schematic in Fig.  3 shows a network with two accessible terminals and in order to introduce 
the two fundamental antenna types we can write the impedance and admittance as stated in the figure 
without being interested in their interior structure.

The roots of the equation Z(p) =  0 are called the zeros16 of the input impedance, which are the cases 
for which the voltage across the input impedance vanishes while the current does not. The poles of the 
impedance are the zeros of the admittance and are roots of the equation (p) =  0, and it is obvious that 
in this case the input current goes to zero while the voltage does not, which means that the terminals of 
the antenna are floating or the antenna is an open circuit.

If the terminals of an antenna are open circuited conductors, we can place opposite charges on these 
conductors and create a voltage across the input impedance and the current will be zero, therefore having 
p =  0 as a pole of its input impedance. These antennas are called dipole antennas. On the other hand an 
antenna consisting of a single perfect conductor having a steady current flowing in it would not have 
loss. These antennas are called electric loops and p =  0 is a zero of the impedance of a perfectly con-
ducting electric loop. Figure 4, shows the electric dipole and the electric loop as the two general types 
of antennas.

This fundamental difference between electric dipole antennas and electric loop antennas is carried 
through to the case of realistic imperfect environments and materials. The open circuit nature of an 
electric dipole immersed in a lossy conducting dielectric means that the large voltage developed between 
its opposite terminals drives a current directly in the medium surrounding it, following the field lines of 
its near electric field and depositing power into the medium. The short circuit nature of the electric loop 
means that it cannot drive a current directly in the surrounding medium. Instead currents are induced 
via electromagnetic induction of eddy currents by its magnetic near field. As shown in reference 1 this 
results in the loop dissipating much less power into the surrounding medium; but the fact that Copper is 
not a perfect conductor means that the current in the electric loop will cause it to heat up and dissipate 
power into its own materials. Given these two different behaviors we could ask if there is another kind 
of antenna that can combine the best features of these, one whose near field is dominated by a magnetic 

Figure 3. A schematic of a network with two accessible terminals. 

Figure 4. Two general types of antennas. (a) dipole antenna (b)loop antenna
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field and yet does not behave as a short circuit to draw large currents. This is precisely what permeable 
magnetic dipoles do.

For the sake of the computational examples we assume spherical antennas 10 μm in radius5. (The 
derivations are included in the Methods section to enable the reader to replicate these results.) Fig. 5 is a 
sketch of the idealized antenna models represented by these dipoles. We have chosen the sphere geome-
try as a convenient form for the dipole antennas for many reasons. The spherical geometry of the dipoles 
makes the radiated field and the mutual coupling calculations straight forward because they can be writ-
ten in a self-consistent closed form. As we will see later, by using spherical dipoles, we can normalize the 
radiated field to the field on the surface of the spheres and we can also normalize the induced current 
to the source current, thus enabling us to compare electric and magnetic antennas on equal footing.

The electric dipole can be imagined as a hollow sphere cut in half and fed by a distributed electric volt-
age source, VE, at the equator such that the total electric current flowing depends on the self-impedance 
of the antenna (measured in Ohms) according to equation 6.

I
V

Z
current moment I a; 8

3 6
E

E

E self
E= =

( )

The magnetic dipole can be imagined as a solid permeable sphere with a conducting belt around its 
equator, said belt fed by a current source5–7. The current flowing through the belt in Amps is the mag-
netic Voltage, VM, and the total magnetic current flowing depends on the magnetic self-impedance of 
the antenna (measured in Siemens) according to equation 7.

I
V

Z
current moment I a; 8

3 7
M

M

M self
M= =

( )

The complete duality in Maxwell’s equations that is evident once magnetic currents were introduced 
by O. Heaviside8, allow the engineer to translate conventional results of electrically conducting antennas 
driven by an electric voltage at a gap into the results for magnetically conducting antennas driven by a 
current flowing in a metal feed loop surrounding the permeable material.

Conventional metal antennas have an impedance given by the ratio of the applied voltage, V, to the 
current that flows in the metal, Ze measured in Ohms. The current, I, can be measured by performing 
the circulation integral of Ampere’s law around the metal wire, that is

= ⋅ ( )∮ I H dl 8

In the same way, permeable antennas have a dual magnetic impedance, Zm, measured in Siemens, 
given by the ratio of the applied Current, I, in the feed loop to the electromotive force around the per-
meable rod

 V E dl 9= ⋅ ( )∮

Figure 5. Sketch of the idealized antennas considered in this analysis. (a)electric dipole antenna (b)
magnetic dipole antenna



www.nature.com/scientificreports/

8Scientific RepoRts | 5:10588 | DOi: 10.1038/srep10588

This is why Zm has the inverse units of Ze. In the referenced dissertation6, it is shown that Zm is 
nothing but the electric admittance, Ye in Siemens, measured by the source driving the current in the 
permeable antenna’s feed loop.

In an ensemble of spheres, the mutual coupling between spheres is represented by the mutual imped-
ance. For electric and magnetic dipoles located on the same x-y plane, all polarized along the z-axis, these 
are given by equations 10 and 11.

Z
a e
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1 1
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Zmn is the mutual impedance between the mth and nth sphere. Setting r =  a (the radius of the sphere) 
yields Zmm, the self -impedance. (See the Methods section for the details.) With this formulation it is 
straight-forward to solve self-consistently the problem of the excitation of an ensemble of spheres by any 
incident field, or in particular, by one member of the ensemble. Focusing on the simplest case of two 
spheres, the Voltage at the feed of each antenna depends on the currents on itself and the other antenna, 
satisfying an equation of the form:

V I Z I Z 121 1 11 2 12= + ( )

Thus, under the assumption that the two spheres share the same equatorial plane, the problem of an 
array of two spheres is represented by a matrix equation of equation 13, where all the terms of the 
Impedance matrix, Z, are known from equations 10 and 11.
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To maximize the power transfer from the source to the antenna (and from the antenna to its receiver) 
we assume that the antennas have been tuned to resonance at the operating frequency either by aid of 
a matching circuit or the natural resonance of its constitutive materials. This simply means that the 
self-reactance has been cancelled.

= → ( ) ( )_Z Z ZRe 14sel tuned mm mmf

To illustrate how the materials of construction can be used to tune the antenna requires a brief digres-
sion. In reference [5] it is shown that, to first order, the input impedance of an electrically small material 
antenna (as opposed to the idealized perfectly conducting antenna) can be obtained by simply adding in 
series with the conventional antenna model, the internal Impedance of the material. R. W. P. King and 
T. T. Wu use a similar argument18 to analyze the imperfectly conducting antenna.

In the simplest case of a small metal dipole (our spherical dipole antenna) we can approximate its 
external impedance by the capacitance of its external near field in series with its radiation resistance. 
In a lossy dielectric medium the near field capacitance is complex and thus adds extra resistance to the 
antenna. To resonate (that is to tune) such an antenna the common practice is to add a series inductor 
such that the series sum of the added inductive reactance and the external capacitive reactance equals zero.

In the same sense a small spherical permeable antenna of radius a, has an external impedance domi-
nated by the magnetic capacitance of its near field. Thus its dual magnetic input impedance is approximately
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Where Rm is the magnetic dipole’s (dual) radiation resistance. Now, assuming the flux inside the per-
meable sphere is uniform, the internal capacitance can be roughly approximated by a term of the form:
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In this last equation we see that the internal and external capacitances add in series and it is clear 
that when the real part of the relative permeability of the material, μr(ω), gets close to the value -3, the 
reactance is cancelled and the antenna is resonant. At resonance the input impedance of the antenna 
is purely resistive, consisting of the radiation resistance, the loss resistance of the antenna metal com-
ponents and the body dielectric, and the loss contributed by the permeable material’s imaginary part 
of the permeability. Because a ferromagnetic material having a strong Lorentz-like resonance exhibits 
negative permeability values just past that resonance it is clear that choosing using such a material for 
the magnetic dipole’s permeable core can result in an antenna that is automatically tuned by its materials 
of construction.

Returning now to the calculation of mutual coupling between antennas, in the most general case 
where the mth sphere of an array is excited and the rest are passive, the currents on all antennas are 
obtained by setting Vm =  1, all other Vn≠m =  0 and inverting the matrix:

Y Z I YV 181
= ∴ = ( )−

The case of the electric loops is solved similarly and the details of the derivation can be found in 
the methods section. The final step before solving the case of interest is to define the medium in which 
the antennas are immersed. As in reference 1, a good approximation below 3 GHz to the FCC accepted 
model for the human head is a medium of unity relative permeability and relative permittivity given by 
the following multi-Debye relaxation model including a DC conductivity of 0.68 S/m (with the frequency 
written in GHz):
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The propagation constant and medium impedance appearing in equations 10 and 11 become:
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These closed form equations are easy to use and have the pleasing feature that to get the self-impedance 
we simply set r =  a. However, as explained above, for the magnetic dipole case the self-impedance has an 
additional series term6 due to the material properties of the core.

Z
j

1

1 24
m internal a

a0 2

2
ωμ μ ω

≅
( ( ) − ) ( )

π

So that for the magnetic dipoles the total self-impedance at resonance is given by equation 25.
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The first term on the left, the real part of the internal impedance, represents the loss inside the per-
meable core. This turns out to be inversely proportional to the Heaviside magnetic conductivity of the 
material Rlossm

a
a

2

m
2( )=

σ π
 and thus is minimized when the material has a very large initial permeability 

(500 in our example) and when the operating frequency is chosen as the resonant frequency of the 
material. This choice also maximizes the input impedance.

Having defined all the relevant parameters we can calculate the current induced on a second antenna 
as a function of the current in the source antenna and the separation between them. For example, 
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assuming there are two spheres (or loops) each of radius a =  10μm, separated from each other by a 
distance d, we let the distance d range from 5 mm to 4 cm in steps of 5 mms. The results, plotted as the 
ratio of the induced current to the source current, are shown as the symbols in Fig. 6. The advantage of 
the magnetic dipole antenna by about 4 orders of magnitude is startling. This corresponds to an 8 order 
of magnitude increase in power transmission, that is, + 80 dB gain over the conventional alternatives.

To emphasize that the nature of the receiving antenna is as important as that of the transmitting 
antenna, we have also plotted in Fig. 6, as curves, the ratio of the principal field at the distance r =  d to 
the maximum value of that field at the surface of the antenna r =  a.
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By examining this graph we again see the significant difference in the behavior of the mutually cou-
pled magnetic dipoles. All the normalized fields lie on top of each other and 4 centimeters away the 
normalized field has dropped down by a factor of 3 ×  10−10 compared to the field at the surface: − 190 dB 
down. Electric dipole to electric dipole mutual coupling follows this same trend being slightly larger by a 

Figure 6. The fields of the electric dipole antenna, magnetic dipole antenna and the loop antenna 
normalized to the fields on their surface is plotted in the same figure as the induced current in each of 
these antennas normalized to the source current. The distance between the antennas has been change from 
5 mm to 40 mm with 5 mm steps. The normalized fields of the three different antennas are the same but 
using a pair of magnetic dipole antennas results in a four order of magnitude improvement in the mutual 
coupling, eight order of magnitude improvement on power transfer, when compared to the conventional 
electric dipoles and loops.
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factor of 3, while the electric loop to electric loop coupling follows the same trend but stronger by about 
a factor of 10. The magnetic dipole coupling exceeds the field ratio by almost 5 orders of magnitude.

The efficiency of the magnetic dipole antennas are much higher than the other two alternatives (the 
electric dipole antenna and the electric loop antenna) because the magnetic material used for these 
antennas contributes to both the dipole moment and the input impedance. The material used for the 
magnetic dipole antenna calculations was assumed to have the permeability shown in Fig. 2. These mag-
netic materials already exist, and having a high μinitial is an important factor which will result in having 
a strong magnetic conductivity. To illustrate the importance and role of the high permeability material, 
we have added two more data points at the distance of 4 cms showing that for μinitial =  50 and μinitial =  200 
(with the same assumed resonant frequency) the advantage is not as significant as the μinitial =  450.

An additional lesson from these calculations is that only looking at the rate of drop of a field com-
ponent does not tell us the whole story because the field distribution in this space is dominated by the 
spherical spreading of the source field and the attenuation due to the medium whereas the way a receiv-
ing antenna can harvest energy out of this field is dominated by its self and mutual impedance properties.

Discussion
In reference 1 the best antenna considered was the electric loop. The Fig. 6 plot of the induced current 
in the electric loop shows that the normalized induced current in the electric loop at 4 cm (far enough to 
get to the surface of the head from almost everywhere inside the brain) is stronger than the normalized 
induced current in the electric dipole and, at 3 ×  10−9, it is about an order of magnitude stronger than 
the normalized field. But the current induced in the magnetic dipole is 2 ×  10−5, almost five orders of 
magnitude larger than the field ratio. Why is this so?

The time domain response of an antenna to an ambient driving field depends on the quality or the “Q” 
of its resonance. Since the Q is inversely proportional to the damping, a very low Q antenna is strongly 
damped. This means that when driven by an ambient field such an antenna will respond, one to one, in 
direct proportion to the field strength it receives from the very beginning. However, a high Q antenna 
under the same ambient field will experience an ever increasing amplitude of oscillation until it reaches 
a steady state where the power dissipated matches the power input by the field.

The Electric dipoles at the considered size are strongly damped because of the near field direct loss 
in the body, and similarly, at this size, electric copper loops are also very much damped because of the 
required large current that dissipates a large amount of energy into their own conductivity. Therefore the 
response of electric dipoles and electric loops follow the field without any resonant amplification. But 
since true magnetic dipoles induce low body currents and require low metal currents to radiate they are 
much less damped and therefore develop a much higher current at resonance in response to the applied 
field.

Alternatively we can say that the excess loss of the metal antennas results in reduced receiving and 
transmitting cross sections when compared to the more efficient magnetic dipoles.

In summary, although the magnetic dipole antenna is fed by a loop, the effect of the permeable core 
is to change the character of the antenna from the short circuit of the electric loop, which has a high 
current, to an antenna that tends to an open circuit at resonance which as mentioned before is typical of 
dipoles, since dipoles are open circuits. Therefore its damping is dominated not by the copper loss but 
by the constitutive properties of its core. The ferromagnetic metals developed for the magnetic read-head 
industry on purpose combine high permeability with low damping and this is evidenced in the Lorentz 
line shape of their frequency dependent permeability; they are by design high Q materials.

As a “verification check” we performed an additional set of calculations in which we set the surround-
ing medium to free space. This change must remove the advantage of the magnetic dipoles. Indeed in 
that case we find that all of the antennas showed the exact same induced current.

Although the materials needed for the magnetic antennas already exist, the results obtained points out 
the importance of developing magnetic materials with high permeability and high resonant frequency. 
Given the small size of the antennas involved and the level of maturity of the magnetic read-head indus-
try it can be anticipated that the development and production cost of these materials would not be an 
obstacle to their use. Magnetic read-head industry materials include multi-layers of “Permalloy” or other 
alloys with transition metals that have permeabilities in the hundreds and resonance frequencies as high 
as a few GHz. The magnetic properties of these materials can further be controlled by patterning their 
layers to control the formation of domains and alter the magnetic anisotropy19. Typical dimensions for 
these design features are in the 0.2 μ m range20 fully compatible with an antenna structure in the assumed 
10 μ m size.

We have come to the conclusion that using coupled magnetic dipole antennas as microscopic links in 
an in-vivo telemetry system is a solution to the tissue damage problem caused by electric dipole anten-
nas through SAR deposition and the electric loop antennas through heat conduction21–23. If we model 
the head as a sphere of approximately 5 cm radius, communication between a transmitting microscopic 
antenna anywhere inside the brain and an identical one used as a repeater node located just under the 
skull would derive the + 80 dB in gain seen in Fig. 6 as compared to conventional antenna alternatives. 
Although full re-evaluation of the link budget for a telemetry system exploiting these antennas is yet to 
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be performed we can state that microscopic neuron-by-neuron RF telemetry from within the brain is 
feasible to the extent that the antennas are no longer the bottleneck.

Methods
Throughout this derivation we exploit the principle of duality inherent in Maxwell’s equations where to 
every conventional electric measurable (Voltage, Current) there is a dual magnetic measurable related 
through the transformations E → H, H → −E, μ ́  ε, Zm = Ze/η2 The principal polarization fields radiated 
by electric and magnetic spherical dipoles of radius a, at a distance r, in terms of the current at the feed 
are respectively:

E
I a

r
e jk

r jkr
sin

H
I a

r
e jk

r jkr
sin

4
1 1

4
1 1

29

r

e jkr

r m jkr

0
8
3

2

0

8
3

2

η

ε ω π
θ

ε ω

η π
θ

=
( )





+ +






=
( ) 



+ +




 ( )

θ

θ

−

−

The quantity a 8 3/  is known as the antenna height, h, for the spherical dipole that defines the volt-
age impressed across its feed by an incident electric field as Vfeed =  Einch (and it is also the moment arm 
of its dipole moment.) For the electric dipole the current Ie is in Amps and is the conventional total 
current that would be crossing the equator of the sphere. For the magnetic dipole the current Im is in 
Volts and is equal to the total polarization current crossing the equator of the sphere
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For simplicity we assume that the input impedance of the spherical antennas is closely modelled by 
the modal impedance of the first spherical wave mode (TM10 for the electric dipole and TE10 for the 
magnetic dipole.) For the small electric dipole this is given by equation 31.
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And for the magnetic dipole by its dual
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Then a self-consistent definition of the mutual Impedance is given by equation 33 where the numera-
tor is the Reaction Integral between the two currents, that is, the inner product of the current in antenna 
1 times the field antenna 2 produces on it. By the reciprocity of the Reaction Integral Z12 =  Z21.
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Where J e1 is the volumetric current and K e1 is the surface current and the numerator is showing 
both the volumetric current version and the surface current version of the reaction theorem.

Again, by duality:
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Assuming the spheres are small and far from each other the Reaction Integral simplifies by assuming 
a uniform field over the uniform current of the dipole and we get:
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In practice, when the second sphere is farther than one diameter from the surface of the first sphere, 
the field is uniform enough that it can be extracted from the reaction integral as previously mentioned. 
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Even though by definition the field wouldn’t be uniform closer than the mentioned distance, using this 
mutual impedance equation and coming exactly to the surface of the source antenna gives an answer that 
converges on the correct self-impedance. This convenient behavior is a result of the variational properties 
of the Reaction Integral in equation 33.

The mutual impedance of the electric loop has been obtained using two different methods. The first 
method is finding the mutual inductance and the second method which also serves as a verification 
check is calculating the reaction integral ( E J dl∫ ⋅ ) by replacing the loop with a curvilinear square of 
equal area to make the calculation of the integral very easy.

The mutual inductance found from the first method and the mutual impedance are as follows, where 
‘r’ is the distance between the antennas. (As alluded to above, the mutual impdance tends to the self 
impedance at r =  a.)
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For the second method we will perform the reaction integral of Eϕ times the circulating current in 
the loop and that would give us the mutual impedance. A good approximation is to replace the the loop 
with a curvilinear square of equal area. Now the reaction integral is trivial.
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And the final result is as follows:
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The results obtained from the two different methods are very close.

Finite difference time domain (FDTD) simulation approach.  The results shown in Fig. 6, show a 
dramatic advantage in the case of true magnetic antennas. Even though the closed-form expressions for 
analyzing this problem have been derived following classic approaches in antenna theory, the results are 
almost “too good to be true.” Therefore it is appropriate to spot check the result by an alternate method. 
The alternative to the analytic formulation is a numerical simulation approach. Such an approach is not 
without its own difficulties.

In many ways the problem addressed here resembles the problem of the scattering of light from plas-
mon resonant sub-wavelength particles. In that case, for particles of the order of 10 nm in diameter the 
scatterer is of the order of two hundredths of a wavelength. In our case an antenna 20 microns across at 
2 GHz in the body dielectric is less than one thousandth of a wavelength. To faithfully model such small 
particles and correctly simulate the resonant behavior with frequency domain Volume Integral Equation 
methods or Finite Element methods requires an extremely fine mesh and the inversion of a matrix that at 
resonance has a nearly zero determinant. Special methods for dealing with this sub-wavelength problem 
have been devised, but are not usually implemented in the commercially available software.

Because all we want to do is spot check the result, a reliable brute force approach is to solve the 
problem using the Finite Difference Time Domain (FDTD) method. By recognizing that the advantage 
of the magnetic antenna occurs for every separation distance considered, we can choose a case where 
two antennas are relatively close and thus examine the case of strong near field coupling. A best case for 
the electric dipole antenna is chosen where the average body dielectric is more heavily biased towards 
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fat, thus assuming a dielectric constant near 2 GHz of 56 and an equivalent conductivity of 1.07 S/m. The 
antennas are 10 μm in radius, 56 μm center to center apart. The closed form expressions for this case 
yield the induced magnetic current on the second particle to be of the order of 0.67 (− 3.47 dB) that of 
the first whereas for electric dipoles it is 0.06 (− 24 dB) of the first.

We choose an FDTD domain discretized uniformly with dx =  dy =  dz =  ds =  4 μm, and dimension 
70 ds by 70 ds by 70 ds. This domain is small enough to run 2.5 million time steps in 2 hours on a 16 
core CPU. Such a small domain (λ/100 on the side) could not be used to calculate far field radiation 
from these antennas. However since it is 14 antenna diameters across it is large enough to accommodate 
the quasi-static near field that dominates the behavior of these antennas. Even at this small size, the 
discretization is coarse as illustrated in Fig. 7 where the two antennas are shown as seen from above.

A closed flux path formulation has been employed to maximize symmetry; as in the PEC blocks 
mentioned in the work done by Z. Zhang and R. E. Diaz24. Because of the coarse discretization, even 
though the antennas are spheres 2.5 ds in radius their actual physical size may appear to be larger by one 
discretization cell (24 microns rather than 20 Microns). Similarly, it is evident that since the conducting 
bands have been made thick for the same reason, the actual equivalent separation between the antennas 
for near field coupling may be one cell shorter, or 52 microns instead of 56 microns. Such deviations of 
up to 20% in linear dimension are considered to be slight for the purpose of this computation because 
the difference in coupling between these antennas according to the closed form model is of the order of 
20 dB, that is, a factor of ten in induced current. Since we have mentioned that the actual physical sizes 
may appear to vary by one discretization cell we have found the closed form expressions for different 
sizes and distances and the results are very close ranging from − 3.75 dB to − 3.29 dB for the magnetic 
dipoles and − 23.1 dB to − 24.6 dB for the electric dipoles, showing that the deviations in size are in fact 
too small to make a significant difference in the coupling.

Since the principal loss mechanism for the case of the magnetic antennas is the permeable material, 
the spherical core is assumed to have a relative permeability of 300-j300. That would be the equivalent 
of using a laminate of 0.75μm CZN ferromagnetic alloy layers alternating with 0.5μm layers of insulator 
(SiO2). In the case of the electric antennas the principal loss mechanism is the current induced in the 
body medium; thus the core for that case was assumed to be a perfect electric conductor. The core is 
shown as the pink region in the center of each sphere.

The antennas are made to resonate by wrapping them around the equator with a perfectly conducting 
“belt” (electrically conducting for the magnetic dipole, magnetically conducting for the electric) that 
has a gap of one discretization cell on one side of the antenna (the white region surrounding the core). 
The gap (orange squares in the figure) is filled with a low loss material of high permittivity (magnetic 
antenna) or permeability (electric antenna) such as to induce resonance close to 2 GHz. Although this 
construction is less realistic than that assumed in the paper it ensures that the comparison between elec-
tric antennas and magnetic antennas is as fair as possible by minimizing their differences.

The antenna on the left is excited by driving a time domain field impulse from one end of the gap 
in the belt to the other. In the case of the magnetic antenna this is an electric field impulse. In the case 
of the electric antenna this is a magnetic field impulse. Using a magnetic field impulse on a perfectly 

Figure 7. Top view of the FDTD domain used to analyze two coupled micro-antennas 
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magnetically conducting belt as the source for the electric antenna also eliminates any question about 
whether or not the electric antenna source at its feed could be short circuited by the body dielectric. 
Figure 8 shows the results of the time domain simulation.

The field produced just above the pole of the antennas is measured as a function of time. Because 
of the continuity of the total Maxwell current density this field value is a direct measure of the current 
“flowing” through the antenna. The upper figure shows the current in the source antenna while the 
lower figure shows the current in the second antenna. The difference between a magnetic antenna and 
an electric antenna in the body medium is evident. The source antenna current dies off exponentially for 
the electric antenna (blue in the figures) whereas for the magnetic antenna (red in the figures) the drop 

Figure 8. Time domain history of the interaction between the antennas when the first one is excited 
by an impulse. 8(a) current in the source antennas where blue shows the electric dipole and red shows the 
magnetic dipole. 8(b) current in the second antennas where blue shows the electric dipole and red shows the 
magnetic dipole.

Figure 9. Frequency domain induced current on the second antenna 
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at the source is a combination of a weak exponential attenuation and attenuation due to the transfer of 
energy to the second antenna.

That this is what is happening, is evident from the second antenna current where we see that for the 
magnetic antenna the oscillation is still going strong after 2.5 million time steps (only 17 ns of real time 
has been simulated). Taking the Fourier Transform of these currents and expressing the current in the 
second antenna relative to the first we obtain the result shown in Fig.  9. The current induced on the 
magnetic antenna is − 3 dB down from the source whereas the current induced on the electric antenna 
is − 21 dB down which shows results similar to those obtained from the closed form calculations.
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