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Scoring the correlation of genes 
by their shared properties using 
OScal, an improved overlap 
quantification model
Hui Liu1,*, Wei Liu1,*, Ying Lin1, Teng Liu1, Zhaowu Ma1, Mo Li1, Hong-Mei Zhang1, 
Qing Kenneth Wang2,3 & An-Yuan Guo1

Scoring the correlation between two genes by their shared properties is a common and basic work 
in biological study. A prospective way to score this correlation is to quantify the overlap between 
the two sets of homogeneous properties of the two genes. However the proper model has not been 
decided, here we focused on studying the quantification of overlap and proposed a more effective 
model after theoretically compared 7 existing models. We defined three characteristic parameters 
(d, R, r) of an overlap, which highlight essential differences among the 7 models and grouped them 
into two classes. Then the pros and cons of the two groups of model were fully examined by their 
solution space in the (d, R, r) coordinate system. Finally we proposed a new model called OScal 
(Overlap Score calculator), which was modified on Poisson distribution (one of 7 models) to avoid its 
disadvantages. Tested in assessing gene relation using different data, OScal performs better than 
existing models. In addition, OScal is a basic mathematic model, with very low computation cost and 
few restrictive conditions, so it can be used in a wide-range of research areas to measure the overlap 
or similarity of two entities.

Constructing kinds of gene networks is a common and important task in biological study, which focuses 
on assessing the relationships of all gene pairs. The networks serve as important approaches to a hotspot 
research, elucidating molecular mechanisms underlying complex phenotypes1–3, such as complex dis-
eases and traits. Since they are influenced by interaction of multiple genetic and environmental factors4–7, 
thus to study them two major questions need to be addressed: what are causative/risk factors and what 
kind of functional relationship lies between them8,9. Studies have shown that a gene network is helpful 
to such two problems via its capacity in predicting disease genes10,11 and discovering the functional 
module among genes. A gene network is a representative form of all gene relations, and the relation of 
two genes would be physical interaction, co-expression, or functional association assessed by integrating 
multiple kinds of curated data12. Functional association of genes could be assessed by many computa-
tional approaches, which are based on a common idea that genes associated with the same or related 
disease phenotypes tend to participate in a common functional module (such as protein complex or 
pathway)13–15.
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Three typical kinds of methods are based on semantic similarity16–19, set theory20, Bayesian21 or SVM22 
classification respectively. Among them using set theory is an intuitive and prospective one20, which 
generates a score vector for every pair of genes based on integration of multiple kinds of data. Fig.  1 
shows the general work flow of such scoring system, and it has many advantages. First, it is free of a 
pre-selected golden standard on which SVM or Bayesian method are based, since up to now there is 
no high-quality set of established functional associated gene pairs. Second, it is very basic and could be 
used to integrate many heterogeneous kinds of data. Third, the scores on different dimensions show the 
detailed associations of two genes at different aspects. In addition if golden positives are given, the score 
vector could be transformed into a digital overall score further. However this method depends on a 
proper model used to measure the overlap, in other words, it is an important and critical task to choose 
a proper function f as shown in Fig. 1. But we still don’t know which function is a proper one, thus this 
issue needs to be settled first.

There emerged many such functions over the past years since quantifying the overlap of two sets is an 
old and general question. Overlap coefficient (C) is used to measure the overlap between two sets. The 
Jaccard index (J)23 and the Ochiai coefficient (K)24 are popularly used to measure similarity of two sets. 
The Hypergeometric (H) and Binominal (B) distribution are commonly used to measure the enrichment 
significance between two gene lists25. Poisson distribution (P) is an approximation of model H and B26. 
Mutual information (I) is a measure of the variables’ mutual dependence27. As shown in Fig.  1(a) an 
overlap of two sets can be exclusively described by a triple (d, m, n) (we focused on comparing overlaps 
in the same background in this study, so N is constant) and its score is the function value (f-value). The 
letter in the bracket behind every model was used to represent the model and its function symbol, and 
the expressions of 7 models are Equations (1~8) in Method. Model H, B and P calculate the occurrence 
probability (p-value) of the overlap, and we used –log (p-value) as score in our study.

Different functions generate different scores for the same overlap. Fig.  1(a) shows some examples 
of overlaps, and their scores calculated by the 7 models were listed in Table 1. The p-value of case O2 
calculated by model H and B exceed the infimum (inf) of an ordinary computer and are taken as 0, 
and then their scores (–log (p-value)) are Inf. The score calculated by model P in this study is exactly 
calculated by its simplified form (see Method). All models are consistent with each other when com-
paring obviously different cases (case O2 vs. O6 in Fig.  1(a)), but sometimes they are contradictory 
(case O3 vs. O5). Then what are the differences among these functions (models)? Which one should 
be better in assessing functional association of genes? Rare studies focus on these questions except for 

Figure 1. Philosophy and workflow for scoring gene correlation by overlap. (a) Using one kinds of data 
(such as PPI) to score gene relation, every gene could be represented by a set of its properties (PPI partners). 
Then the association of two genes at this aspect could be denoted by the overlap of the two corresponding 
sets. One set has m elements and the other has n elements, and they share d elements. The overlap could 
be quantified by a certain function f, and its score is the function value, which is also the score of the gene 
relation. Different overlaps have different scores, showing different relation among different gene pairs. Using 
one data source, the background number is known and constant, and it is not a variable. (b) Using one data 
source, two genes could obtain a score at that aspect; when integrated multiple data sources, the relation 
of two genes could be denoted as a multi-dimension vector. Using different data source, the background 
number will be the fourth variable.
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those compared the performances of some similarity coefficient (including model J and K and so on) in 
certain specific application28.

Here we compared their expressions and solution spaces, aiming to theoretically investigate their 
difference. We discovered three characteristic parameters (d, R, r) of an overlap, which highlight some 
essential differences among these models, i.e. their different weights on d, R and r. Such difference sep-
arates them into two classes: model J, K and C are models in class I, model H, B, P and I are models 
in class II. Then we compared the performances of these two classes in assessing gene relationship, and 
hypothesized that gene pairs with high correlation scores have high probability to be functional related 
gene pairs. In other words, a good scoring model should generate scores that have good correlation 
with the precision. The pros and cons of the two groups of model were fully examined by their solution 
space in the (d, R, r) coordinate system. Based on these findings, we proposed a new model called OScal 
(Overlap Score calculator), which is designed to achieve a good balance between these two classes.

Result
The characteristic parameters highlight the essential difference among models. We defined 
three characteristic parameters (d, R, r) to determine three different features of an overlap (see Method). 
Every (d, m, n) triple could be transformed to a (d, R, r) triple. As shown in Table  1, the differences 
among the 6 overlaps in Fig. 1(a) are much clearer shown by the (d, R, r) triple than by (d, m, n) triple. 
In addition, the (d, R, r) coordinate system gives us an opportunity to classify the models, since five of 
the seven functions have less variables (see Equations (1~8) in Method). There is an apparent distinction 
between the expressions which separate them into two classes: expressions of models in class II ( models 
I, P, H, B) contain d but those in class I (models K, C, J) do not (Fig. 2(a)).

Case m n d R r K C J I P B H OS

O1 25 25 20 1.25 1.00 0.80 0.80 0.67 0.0166 50 54 59 50.16 

O2 250 250 200 1.25 1.00 0.80 0.80 0.67 0.1000 287 Inf Inf 287.39 

O3 250 250 100 2.50 1.00 0.40 0.40 0.25 0.0400 115 124 134 114.36 

O4 625 100 100 2.50 6.25 0.40 1.00 0.16 0.0400 115 118 159 114.44 

O5 520 520 200 2.60 1.00 0.38 0.38 0.24 0.0577 164 181 199 163.38 

O6 520 520 40 13.00 1.00 0.08 0.08 0.04 0.0023 10 10 11 1.66 

Table 1.  Parameters of the 6 overlaps in Fig. 1 and their scores using different models Except for the first 
column, the column names in bold and italic indicate the parameters and the left designate score calculated 
by corresponding model, for example K designates score calculated by model K (Ochiai coefficient). The 
score of case O2 calculated by model B or H is “Inf ”, because its occurrence probability calculated by model 
B and H are so small that exceed the infimum (inf) of an ordinary computer and are thought as 0.

Figure 2. Classification of models by their different weights on parameters. (a) Models were separated 
into two classes by containing d or not. Each class has three kinds of models: the basal model that assigns 
zero-weight on the minor factor r stays in the middle, the left two branch models at either end. (b) The 
impact of every parameter to the function value and their different weights (L: large, M: medium and S: 
small).
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We found that the three parameters of an overlap had different impacts to its score, which is the 
function value (f-value) of a selected model. Moreover different models assign different weights to the 
same parameter (Fig. 2(b)). Parameter R is the only one variable present in the expressions of all mod-
els, and increase of R will lead to large reduction of the f-value and all models assign large weight to it; 
parameter d is only present in the expressions of models in class II and has large weight. (More details 
in Supplementary Section 1). Parameter r has a complicated impact and its increase leads to three kinds 
of changes of the f-value, namely positive, negative and zero (Fig.  2). Except for model C, all models 
assign small or even zero weight on r, thus we call r as a minor factor for the score of overlap. Indeed, 
model C exaggerates the impact of r to a great extent, which could be shown by an extreme case (Set A 
has 10000 elements and set B has 1 element, and they share 1 overlapping element. Its score calculated 
by model C will be the highest, i.e. 1). Then as Fig. 2a shown we knew that the three parameters have 
different functions: R is a primary factor for all models and the common feature for all model; d is a 
primary factor for class II models and separates the models into two class; r is a minor factor and leads 
to the difference among the models within a class.

Difference among models within a class is small. Each class has three types of models, the basal model 
assigning zero weight on r, and two branch models assigning negative or positive weight on r. Because of 
the minor effect of r, the basal model is a good approximation of both of the two branch models, such 
as that Poisson is a good approximation of model H (Hypergeometric distribution) and B (Binominal 
distribution). In fact r essentially describes the difference of the two sets that form the overlap, and the 
weight on r distinguish the two close relations “similarity of two sets” and “overlap of two sets”. Taking 
cases O3 and O4 in Fig. 1(a) as an example, the two cases have the same R and d, only the r is different. 
Case O3 consists of two sets of equal size and its r is 1, while case O4 consists of two of different size 
and its r is 6.25. Using model J the score of case O3 is larger than that of O4, but the opposite if using 
model C, and the scores of them are equal if using model K. Then the three kinds of models in a class 
will be used in different applications. In case that the similarity of two sets is focused, model J should be 
used; but model C focuses on the overlap of two sets; and both of them could be estimated by model K. 
Because model C exaggerates the weight on r too much and does not take d into account, thus we took 
model H as the most suitable one for measuring overlap.

Next we focused on the difference between the two classes of models. We first compared the two basal 
models, model K (Ochiai) and P (Poisson), and the comparison was done in an R-d plane for they have 
no more than 2 variables. For both models, the isoline near the horizontal axis has the highest score, 
isolines of Ochiai are horizontal lines (Fig. 3(a)) and isolines of Poisson are curve lines (Fig. 3(b)) within 
the boundary line. We argued only cases within the boundary line should be focused (see Method). 
The orientations of isolines tell the weights of parameters, Ochiai assigns zero-weight on d (isolines are 
parallel to the d axis) and Poisson assigns large weights on both d and R (More details in Supplementary 
Section 1). Other models in class I have similar isolines as Ochiai and those in class II similar as Poisson 
(see Supplementary Fig. S3~S5), which allow us to take model K (Ochiai) and P (Poisson) as represent-
atives for class I and II respectively in the next analysis.

Propose OScal to avoid the drawbacks of two classes of models. The two classes of mod-
els assign different weights on d and R, which leads to different performance in application. We took 
TF-TF data (see Method) to analysis and show the difference between their performances. Every pair 

Figure 3. Isolines of different models in the d-R plane. (a) The isolines of Ochiai, which is a representative 
and basal model for models in class I. Its isolines are parallel to the d-axis since it assigns zero-weight on 
d (does not take d into account). (b) The isolines of Poisson, which is a representative and basal model for 
models in class II. Its isolines are curves since it takes both d and R into account. All its isolines are within 
the boundary line, case in which has the same d and λ.
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of TFs that share at least one common target is modeled by an overlap which is described by an (d, R, 
r) triple. The triples are called as cases and their scores are calculated by the two basal models, namely 
Ochiai and Poisson. We compared the performance of these two models by the correlation between the 
score and PPV. Better correlation means better performance, since generally higher-score pairs have 
higher probability to be functional related TF pairs (true positive). We took PPI pair as an indicator to 
the true positive and the proportion of PPI pairs in positive calls as an approximation of the positive 
predictive value (PPV). As shown in Fig. 4, the PPV is not monotone increasing as the increasing score 
calculated by Ochiai, but there is a well correlation between PPV and the score calculated by Poisson. 
In short Poisson outperforms Ochiai in sorting the positive calls. We know Ochiai assigns a zero weight 
on parameter d, so it loses the information of d. This implies that using both R and d will generate finer 
score than using only R.

Then we further investigated the association of performance between the parameters d and R. We 
mapped all the cases of TF data into the d-R plane, and found that both the distribution of cases (Fig. 5(b)) 
and the PPV (Fig. 5(c)) in the d-R plane are uneven. Based on these discoveries, three meaningful areas 
were highlighted as shown in Fig.  5(d). The first one is the district beyond the boundary. We argued 
cases beyond the boundary should be dropped out and coincidentally all the cases seem to be restricted 
within it. The second is the low-quality district (LQD, red shadow in Fig. 5(d)), which is characterized 
by the high-density distribution of low-score cases and low PPV (2.1%, smaller than the average PPV). 
The LQD should be kept away from the positive area of a good model, since including little part of this 
district will bring about many false positives. The last is the high-quality district (HQD, light blue shadow 
in Fig. 5(d)), characterized by the low-density distribution of high-score cases and high PPV (Fig. 5(c)). 
The HQD mainly consist of the district I~IV and should be covered by the positive area of a good model. 
More details in Supplementary Section 2.3.

It is interesting that the HQD is very close to the positive area of Ochiai excluding the SR-BB district, 
implying that R is a primary factor and small R cases have high probability to be true positives. This is 
consistent to that R is the only one variable present in the expressions of all models. Indeed, Ochiai out-
performed Poisson in setting the cutoff which separates the HQD and LQD, which is called as selecting 
positive calls. It is reasonable to argue that the positive area of a good model should cover the HQD 
but avoid the LQD as much as possible in the d-R plane. Using the cutoff-line shown in Fig. 5(a) (0.2 
and 32.86 respectively), Ochiai and Poisson show comparable high PPV (about 12%) but their positive 
areas are different parts of the HQD. Using lower cutoff (0.141 (R =  7.1) and 2.92 respectively, Table 2) 
to cover the whole HQD, the average PPV of Ochiai and Poisson reduced. The average PPV of Ochiai 

Figure 4. Correlation between PPV and cutoff for different models. The three bars in each group indicate 
PPVs for the three models when they use different cutoff but select the same amount of positive calls (P 
calls). The embedded table listed the detailed information.
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reduces to 8.5%, but that of Poisson reduced much more greatly to 5.2%. In other words Poisson shows 
worse performance than Ochiai. We found at this lower cutoff level Poisson will cover part of the LR-Sd 
district (a LQD) and select too many false positive calls from it, since there is high density of cases as 
mentioned above. This drawback was called as “LR-Sd trap” in this study. Ochiai also covers part of the 
district beyond the boundary line, which is another LQD, but the selected false positive calls are very 
few. So it is not serious in this case, yet we still called this as “SR-BB trap”.

Since the performance mainly dependent on the isolines but regardless of the score for every isoline, 
so the pros and cons of Ochiai and Poisson showed by the above analysis are also those for other mod-
els in each class. In other words, models in class II perform better in sorting positive calls but worse in 
selecting positive calls, because of the “LR-Sd trap”; models in class I perform better in selecting positive 

Figure 5. Character of different districts in the d-R plane. (a) The positive area of Ochiai (district I, II, IV 
and V) and Poisson (district I and III), cases below the cutoff-line (green for Ochiai, and blue for Poisson) 
have larger score than the cutoff. (b) The uneven distribution of cases in the d-R plane. (c) The PPV of 
different districts (Ave_within and Ave_beyond: are the average PPV for the district within and beyond the 
boundary line respectively). (d) The three meaningful areas in the d-R plane, i.e. the district beyond the 
boundary, the low-quality district (red shadow) and the high-quality district (light blue shadow).

Model High cutoff Low cutoff Remark

Ochiai Poisson Oscal_B Ochiai Poisson Oscal_B Ochiai

Cutoff 0.2 32.86 32.26 0.141 2.92 2.75 0.1

PPV 0.12 0.12 0.12 0.088 0.052 0.075 0.075

#P calls 1669 1458 1462 3414 14721 6168 4826

Table 2. Performances of different models at different cutoffs # P calls: the number of positive calls using 
the respective cutoff.
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calls (although it will also fall into the “SR-BB trap”) but worse in sorting the positive calls. Here we 
proposed the OScal model free of such drawbacks, and it consists of three items, a basal model (OScal_B) 
and two other items (see Method).

The OScal_B was a modification of Poisson, and it is a basal model for OScal. Since Poisson won’t 
fall into the “SR-BB trap” and have good sorting performance, then only the “LR-Sd trap” is needed 
to modify. The “LR-Sd trap” is because of the large weight on d, since in the isoline (Poisson-2.92 in 
Fig.  6(a)) there is a sharp increase on R when d increases from 1 to 25. We found the difference of d 
and λ (including d/ λ and d- λ, see Method) was the decider for score in Poisson. So we introduced a 
coefficient to enlarge λ. The coefficient is a function of d and R. It will be large when d is small and R 
is large, so the weight on d is reduced; it will be near 1 when d is large, i.e. λ does not change (More 
details in Supplementary Section 3.2).

As shown in Fig. 4 OScal_B shows comparative performance as Poisson in sorting positive calls. In 
selecting positive call, using lower cutoff (2.76) to cover the HQD, OScal_B succeeded in avoiding the 
“LR-Sd trap” and achieve a high PPV (7.5%). At such small cutoff level, OScal_B only selected 6168 cases 
(Table  2), much fewer than the 14721 cases selected by Poisson. The reason is that OScal_B assigned 
lower weight on d compared to Poisson. The difference between OScal_B and Poisson (Fig. 6(a)) is the 
district IV-2, which is in the small d area. PPV of district IV-2 is as low as the average PPV (Fig. 6(b)), 
but there are high density cases (8553) in district IV-2 , which is part of the “LR-Sd trap”. Then covering 
it will introduce many false positive calls, as Poisson does. After taking off the HQD from the positive 
area of OScal_B at 2.76, district IV-1 is the extra district and its PPV is still relatively high. In other words 
OScal_B retained the high-quality cases of Poisson but dropped the low-quality cases.

These performances of OScal_B showed it succeeded in giving proper (i.e. medium, Fig. 2(b)) weight 
on d. Heavy weight on d lead to the LR-Sd trap as the case in class II (models B, P, H and I) and too small 
weight on d lead to the bad sorting performance as the case in class I (models J, K and C), and OScal_B 
achieved a good balance between them. In addition we added two items which take minor factor r into 
account. In all OScal takes all the three parameters into account and has similar performance of model 
H but avoids its drawbacks except for the LR-Sd trap. More details in Supplementary file Section 3.3. 
When scoring the 6 cases in Fig. 1, OScal is consistent with model H (Table 1).

OScal shows better performance than existing models in multiple applications. OScal was 
designed to retain the advantages of the two classes of model and avoid their disadvantages, and its basal 
model (OScal_B) performed better in scoring TF-TF relation. In this section we examined the perfor-
mance of OScal which takes r into account. To avoid the bias of data source, we further added two other 
applications, i.e. using PPI and GO-BP data to score the gene-gene relation. Two genes sharing many 
common PPI partners or GO-BP terms would be functional related gene pairs. The score of gene-gene 
relation were calculated by OScal as well as Ochiai and Poisson, which is used for comparison. The three 
applications are denoted by “TF-TF”, “GGI-GOBP” and “GGI-PPI” in Fig. 7.

As shown in Fig. 7, OScal always achieve better performance than the other two in all three appli-
cations. Figure 7(a) shows it is better than Ochiai and Fig. 7(b) shows better than Poisson. Using OScal 

Figure 6. Reasons for different performances. (a) The positive area of different models. Using lower cutoff 
to cover the HQD, the positive area of model P will cover part of LQD, but that of OScal_B will not. (b) The 
average PPV of different models and that of different districts in the d-R plane.
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there is a good correlation between the PPV and cutoff, which is a major feature of a good model as 
mentioned above. But the correlation for Ochiai is not very well (bad sorting performance) and further 
it changes greatly in different applications. Especially, the horizontal correlation curve in GGI-PPI shows 
that Ochiai generated meaningless scores for the gene correlation using PPI data. Poisson also shows 
good sorting performance, which is an advantage of it. The plots of OScal are very similar to those of 
Poisson, showing OScal retained the advantage of Poisson. Indeed OScal is modified from Poisson.

However, there is a clear difference at scores near 0. We zoomed in the area near 0 (indicating by the 
circle) and the magnified result is shown in Fig. 7(b). The PPV of OScal is larger than that of Poisson at 
low scores, and the number of positive calls is much smaller than that of Poisson (Bar chart in Fig. 7(b)), 
implying OScal succeeded in avoiding the “LR-Sd trap” and had few false positive calls. The bar chart 
shows the number of positive calls for OScal and Poisson at cutoff =  2. The score calculated by Poisson 
equals 2 means that the occurrence probability of the case is 0.01 by random.

More over OScal avoided another small drawback of Poisson. Poisson can not obtain scores of large 
overlaps and using it to calculate the scores is very time-consuming. Indeed except for model I all the 
left three models in class II have such drawback. Because they need to calculate the probability (p-value) 
first and the p-value of a large overlap calculated by them will be beyond the infimum (see Table  1). 
This drawback will hinder them to be used widely, especially when scoring the relation of genes using 
multiple kinds of data, scores of billions of gene pairs need to be calculated. The three p-value-calculating 
models will fail to obtain scores larger than 300 and it is a heavy load to calculate all the scores using 
them. For example, when calculating 1 billion cases in a Dell server, Hypergeometric or Binominal dis-
tribution needs 10 days, while, OScal just needs 20 minutes. Further the score for any large overlap could 
be obtained. The expression of OScal is a simple algebraic equation like that of models in class I (e.g. 
Jaccard index) and it directly calculated the –log (p-value) (see Method). When deal with a few pairs, 
the calculation could be even manually done in Excel.

Discussion
Measuring the overlap of two sets is a general and old question29,30, and many models have been devel-
oped. In this study we theoretically compared 7 existing models and proposed our OScal model with 
better performance in assessing gene relationship.

Our analysis showed there is still space for improvement and new model for measuring overlap is 
needed. In our study, we selected 7 most representative models to cover a full range of ideas adopted to 
quantify overlaps. Based on their original purpose they belong to four types: 1) model J and K measure 
the similarity of two sets; 2) model C measures the overlap; 3) model I measures the mutual information; 

Figure 7. Performances of OScal in different applications. (a) Correlation between PPV and cutoff 
for OScal in three different applications, and those of Ochiai and Poisson are shown for comparing. (b) 
Comparison between OScal and Poisson at low cutoff. The correlation plots are the magnified result in the 
corresponding area indicating by red circle. The bar chart shows the different number of positive calls for 
OScal and Poisson taking 2 as cutoff.
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4) model P, H and B measure the significance of the overlap. However after redefined by three newly 
defined (d, R, r), they are grouped to only 2 classes by their different weights on d, which is an important 
factor in class II models but not considered by class I models. Difference among models in a class is 
much smaller than expected and is from the weight on the minor factor r. All models take the primary 
factor R into account. Based on such classification, all of the 8 models compared in the study28 belong 
to class I and there is little difference among them. Indeed their performances are very similar based on 
their result.

The classification distinguished between two types of relationships of two sets: 1) two sets are similar; 
2) two sets harbor large overlap. One focuses on the similarity of two sets, and the other focuses on the 
overlap of two sets. They are two tightly related but different relationships which had been discussed by 
other studies31. Our study identified new contrast between them. We don’t know which relationship of 
two sets is better for imitating the relationship of real entities. Yet at least this study showed “two sets 
harbor large overlap” is more suitable for imitating the functional association of genes, and the score 
using OScal is the best. Of course OScal might be not suitable in the following two cases. The first is 
that similarity of two entities is concerned very much, and in this case model J in class I would be better. 
The other is that the overlaps of two sets are very small, and then model H in class II would be better 
since it is the most sensitive.

In addition, this study showed setting proper weight on parameter d is a key task when proposing 
new model for measuring the overlap. Small weights on d, featured by Class I models, will result in bad 
performance in sorting positive calls and lead the models into the “SR-BB trap”. This told us that d con-
tains useful information and should be taken into account. However, models with a heavy weight on d, 
such as Class II models, will fall into the “LR-Sd trap” and fail to properly select positive. Essentially a 
scoring process contains two related steps: step 1 is selecting positive calls using a proper cutoff and step 
2 is sorting the positive calls32. Step 1 distinguishes between yes and no, and step 2 distinguishes between 
good and bad. A good scoring system should have good performances not only at step 1 but also step 2.

Furthermore OScal has not strict restrictive conditions and could be used in a wide range of research 
areas. The relationship of any pair of entities as long as they share common properties could be measured 
by OScal. In addition to the applications in this study, OScal could also be used to score the relation-
ship of two miRNAs by their common targets, a TF and a miRNA by their common targets, two gene 
sets by their overlapping genes, two persons by their common friends and so on. It is noteworthy that 
gene set enrichment analysis is a very common work in biological study. In essence it is measuring the 
overlap between two gene sets, one is the query gene list and the other is the GO terms. Fisher exact test 
or hypergeometric distribution is popularly used to compute the occurrence probability of the overlap 
assuming it occurs in random. A common problem is that too many GO terms, especially high-level GO 
terms each of which contains large number of genes, are reported to be enriched terms for a gene list. 
OScal could be used to measure the overlap and get rid of the drawbacks.

Indeed there are limitations in this study. The first, the ROC curve for OScal is absent for the lack 
of golden positive and negative standards. Whether for measuring the relation of two sets or two genes, 
widely-accept high-quality golden standards are in urgent need. Second, OScal is just a practicable model 
so far, since it is manually constructed with much subjectivity.

In conclusion, this study discovered three characteristic parameters of an overlap and their different 
weights to its score, and then a more effective model was proposed. This study increased some new 
knowledge (including new conceptions, new methods and new model) to an old question and deepened 
our knowledge on overlap or similarity measurement.

Methods
Definition of the characteristic parameters (d, R, r) for an overlap. Overlap of two sets is deter-
mined by the triple data (d, m, n). Among them m and n are the number of elements of the two sets, and 
d is the number of their overlap elements. Except for d, the other two are not characteristic parameters 
of an overlap, but parameters of the original sets. Here we defined three characteristic parameters (d, R, 
r) for an overlap. Their meanings are as the following:

(1) d: the size of an overlap, i.e. the number of elements of the intersect;
(2) R: average expansion ratio, i.e.

= × = , = , =×R R R R R ;a b
m n

d a
m
d b

n
d

(3) r: the difference of the two sets, i.e. r =  Max(m, n)/min(m, n).

The three parameters describe three different features of an overlap. A larger overlap not only needs 
the larger d but also the smaller R. As shown in Fig. 1, it is clear that the overlap of the two sets in case 
C is relatively larger than that in case A, although their numbers of overlap are 200.

Then the expressions of the 7 existing functions were re-written with (d, R, r), as equation (1~8). 
Equation 1~8 are expressions of Jaccard index (J), Ochiai coefficient (K), Overlap coefficient (C), 
Mutual information (I), Poisson (P), Hypergeometric (H) and Binominal (B) distribution respectively. 
Expressions using (d, m, n) are known before, and those using (d, R, r) are newly proposed by us.
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Construction of OScal. OScal is a modification of Poisson. The overlap score by OScal is the sum of 
three items: OS =  Ps + MJ-Mr. We first use Stirling’s approximation33 (eq. (9)) to simplify the expression 
of Poisson (equation (6)). Stirling’s formula is a powerful approximation for factorials (d!), leading to 
accurate results even for small values of d. The approximation of Poisson is as equation (10). The score 
calculated by Poisson in this study is exactly calculated by equation (10).
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Equation (10) shows that difference between d and λ (including the ratio and the subtraction) is 
a decider to the function value. It is known that λ is the mathematical expectation of the number of 
the overlapping elements by random, in other words d has the highest probability to be λ. When the 
difference between d and λ increases, the probability P reduces (Pa increases, since Pa =  –log P). Only 
the cases d >  λ are thought as “real overlap” in this study. For example, two sets share 1000 overlapping 
elements, and each of them has 5000 elements, the number of all the background elements (BG number) 
is N =  10000. It is high probability that they have 2500 overlapping by random. But the real number of 
overlapping is just 1000, so the overlapping elements are too few. In this study, we mainly focus on the 
cases d >  λ, which are within the boundary line (d =  λ). In the d-R plane it is the line d =  NR−2.

We found the score in cases with small d was overestimated by Poisson. Because when d is small, λ 
will be very small, then the difference will be overestimated (appear very large). To modify the overesti-
mation we developed a coefficient to enlarge the λ (Supplementary Section 3.2).
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Then the new score Ps using enlarged λ is calculated by equation (12).
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We call Ps as OScal_B, which is an approximation of OScal. The expression does not contain r. The 
item MJ is used to detect the impact of r, and Mr is used to detect the hyper-large set (Supplementary 
Section 3.3).
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Simulated data and the three spaces. Since the number of elements is integral, m, n and d must 
be integer, d ≤  m and d  ≤  n. Further, any set is a subset of the universal set, so m ≤  N and n ≤  N. Here we 
set N as 22507 (the background number in TF-TF dataset and is the approximate number of genes in 
human genome). All triple data (m, n, d) meet the above criteria were used as simulated data, and their 
scores were calculated using every function mentioned above. The (m, n, d) triple could be changed to 
(d, R, r) triple or (d, Ra, Rb) triple, each form using corresponding set of coordinates. Then we could 
know the definition domain for every variable: R ≥ 1, 1≤ r ≤  R2, Ra ≥  1, Rb ≥ 1. Each simulated triple data 
could be mapped to a point in a 3 dimensions space. And the three spaces could be transformed to  
each other.

Real data used to compare the performance of models. The data of regulation relation between 
TF and their targets were downloaded from databases UCSC34, TRED35 and ChEA36. Then we combined 
them into a whole regulation network containing 300 TFs. The network was used as source data to assess 
the TF-TF relation. The PPI data were downloaded from HPRD37 and BioGRID38. The PPI pairs will be 
used as golden positive standard and also as source data to assess the gene-gene relation at the aspect of 
PPI (GGI_PPI). The annotated GO Biological Process data of human genes were downloaded from NCBI 
gene2go to assess the gene-gene relation at the aspect of GO-BP (GGI_GOBP).

Isoline (or isosurface) and positive area for a model. Overlap of 2 sets is denoted by a triple data 
(d, R, r). Every triple data is a point in the space and each point has a score using one function. Then we 
can connect all the points with the same score to form an isoline or an isosurface as shown in Fig. 8. In 
the application, every model will set a cutoff, so there must be an isoline or an isosurface with the score 
equal to the cutoff score. Such an isoline or isosurface could be defined as cutoff-line or surface, which 
divides the space into two parts. One part includes points with higher scores, which is called as positive 
area. The other part includes all the points with lower scores.

Determine the impact of parameter by simulation and isolines. Impact of every parameter to 
the function value was analyzed using simulation method, and when one parameter is analyzed, the other 
two were kept constant. Impact has two properties, i.e. direction and intensity. In this study, the direction 
of impact would be designated as positive, zero or negative, and the intensity of impact designated by 
qualitative term such as “large, medium, small or zero”. The intensity of impact is also called as “weight”. 
Isolines could visually show the direction and weight of the impact of every parameter. Large weight on 

Figure 8. Diagram for isoline or isosurface and the positive area. (A) The isoline and positive area for 
two models in d-R plane. (B) The isosurface and positive area for two models in the three-dimension space.
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a parameter x will lead the isoline to be perpendicular to the x-axis (here x would be R, d or r). More 
detailed information see Supplementary Section 1.

Compare models by positive area in the space. Models could not be compared directly by the score, 
since the scores calculated by different models differ greatly, but models could be compared indirectly by 
their positive area. For example as shown in Fig. 8(a), the blue line is Poisson’s cutoff-line and the green 
line is Ochiai’s cutoff-line in the d-R plane. The area below the blue line is the positive area of Poisson, and 
that below the green line is the positive area of Ochiai. The difference between Poisson and Ochiai is clearly 
shown. We call the crosser point of the two cutoff-lines as a reference point, as shown in Fig. 8(a), the pur-
ple point is a reference point. Figure 8(b) shows the comparison in three-dimension space, the reference 
point locates in the cutoff surface. The lower front right corner is the point (the blue point) that has the 
largest score, the back left corner is the point (the gray point) that has the smallest score.

Compare models by positive predictive value. Measured by different models, an overlap will get 
different scores so it is very important to determine which score is appropriate and find out the proper 
model. Up to now there are no golden standard for similar sets or entities, here we took advantage of 
the gene-gene relation to compare the scores by different models. There is common idea that functional 
related genes share similar properties, thus we hypothesize that gene pairs with high similarity scores 
have high probability to be functional related gene pairs. For the lack of true positive for functional 
related gene pairs, we take PPI as an indicator to the true positive (TP) based on the hypothesis that PPI 
pairs have high probability to be functional related gene pairs. If there is high proportion of PPI among 
the pairs with higher scores calculated by one model, we think this model generates effective scores. 
Then we take the proportion of PPI as a measure to evaluate the performance of models, and we call it 
as PPV (positive predictive value) in this study, since the PPV is the ratio of the TP to the positive calls 
(PC), i.e. PPV =  TP/PC, which is very similar to the proportion of PPI.

We compared the models in three different applications, including scoring the TF-TF correlation 
by their shared targets, the gene-gene correlation by their shared GO biological process terms, and 
gene-gene correlation by their PPI partners. PPI were thought as the functional related gene pairs in the 
three applications. If two TFs have many common targets, they would physically interact with each other 
at a high probability. Two proteins interacting with each other will share many common PPI partners 
or GO BP terms. Then the cutoff and its corresponding PPV are plotted as the cutoff-PPV correlation 
curve as shown in Fig. 7.
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