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Refugial isolation and range 
expansions drive the genetic 
structure of Oxyria sinensis 
(Polygonaceae) in the Himalaya-
Hengduan Mountains
Lihua Meng1, Gang Chen2, Zhonghu Li3, Yongping Yang4, Zhengkun Wang1 & Liuyang Wang5

The formation of the Mekong-Salween Divide and climatic oscillations in Pleistocene were the main 
drivers for the contemporary diversity and genetic structure of plants in the Himalaya-Hengduan 
Mountains (HHM). To identify the relative roles of the two historical events in shaping population 
history of plants in HHM, we investigated the phylogeographic pattern of Oxyria sinensis, a perennial 
plant endemic to the HHM. Sixteen chloroplast haplotypes were identified and were clustered into 
three phylogenetic clades. The age of the major clades was estimated to be in the Pleistocene, falling 
into several Pleistocene glacial stages and postdating the formation of the Mekong-Salween Divide. 
Range expansions occurred at least twice in the early and middle Pleistocene, but the spatial genetic 
distribution rarely changed since the Last Glacial Maximum. Our results suggest that temporary 
mountain glaciers may act as barriers in promoting the lineage divergence in O. sinensis and that 
subsequential range expansions and secondary contacts might reshape the genetic distribution in 
geography and blur the boundary of population differentiation created in the earlier glacial stages. 
This study demonstrates that Pleistocene climatic change and mountain glaciers, rather than the 
Mekong-Salween Divide, play the primary role in shaping the spatial genetic structure of O. sinensis.

Inferring the evolutionary causes that drive genetic diversity of a population over time and space has 
been one of the central topics in phylogeography1–3. Over the past two decades, DNA-based phylogeo-
graphic studies have greatly advanced our understanding of demographic dynamics and the evolutionary 
history of plants in response to historical events at a much finer time and spatial scale. These events 
include geological changes and climate changes, such as the formation of vicariance, the uplift of moun-
tains, and climatic oscillations associated with Pleistocene glaciers. However, how geological and climate 
changes affect demographic processes, genetic differentiation, and even speciation remains poorly under-
stood. It is of particular interest to study global biodiversity hotspot regions4, which feature exceptional 
concentrations of endemic species and habitat changes.

The Himalaya-Hengduan Mountains (HHM) have been recognized as one of the worldwide global bio-
diversity “hotspots”4, containing more than 12,000 plant species, more than 20% of which are endemic4–8. 
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Incredibly high inter-/intra-specific diversification rates of plants have been documented in this region 
and hypothetically attributed to the geological uplifts of Qinghai-Tibetan Plateau (QTP) and/or recurrent 
Pleistocene glacial-interglacial climate oscillation9–11. However, the relative roles of these two historical 
forces in generating genetic diversity in this region are inconsistent among previous studies, leading to 
two contrasting hypotheses: a geological hypothesis emphasizing a major role for geological impacts and 
a climatic hypothesis highlighting the role of Pleistocene climate changes10,12,13.

According to the geological hypothesis, a continuous population might have been broken into spa-
tially isolated subpopulations when new mountains formed during the uplifts of the QTP approximately 
40 million years ago (Mya). Those isolated subpopulations eventually evolved into genetically distinct 
lineages via the accumulation of genetic differences and via adaptation to the local environment. This 
hypothesis has been strongly supported by the geological, ecological and recent genetic evidence. The 
HHM serve as the southeast boundary of the QTP and include numerous northwest-southeast high 
mountains with deeply incised valleys and rivers resulting from the extensive uplift movement of the 
QTP starting 40 Mya14. This region has an altitude range of ca. 1,000 to 6,000 m a.s.l., creating abundant 
ecological heterogeneity and diverse niches for plants14. Moreover, the geological changes have been 
episodic rather than steady. For example, the latest uplifts of the QTP between the late Miocene and 
Pliocene have greatly modified the tectonic morphology of the HHM, thereby creating novel geological 
disjunctions and rearranging the river drainage system15. Patterns of phylogeographic disjunctions that 
are concordant with the geological barriers have been found for a number of different plants9,10,16. A 
classic case was the Mekong-Salween Divide, a geological barrier that arose ca. 4 Mya and has been rec-
ognized for nearly a century17. The Mekong-Salween Divide was believed to have driven the population 
divergence of two plant species, Sinopodophyllum hexandrum10 and Taxus wallichiana9. In the former, the 
estimated divergence time between genealogies from the west and east side of Mekong-Salween Divide 
fell into the late Miocene, agreeing with the formation of the Mekong-Salween Divide. In another case, 
the present genealogical distribution of the plant species Terminalia franchetii was believed to be geo-
graphically structured by the paleo-drainage re-arrangements rather than the modern drainage systems, 
highlighting the role of historical geologic events in shaping contemporary genetic distribution13,18. A 
second known geological line is the “Tanaka-Kaiyong Line” (TKL), separating floristic subkingdoms 
into the Sino-Himalayan Forest (west) and Sino-Japanese Forest19,20. Molecular dating in several studies 
found the phylogeographic disjunction coincided well with the formation of this line (ca. 3 Mya), pro-
viding genetic evidence that geological processes might contribute to evolutionary history in plants9,21,22. 
Based on that evidence, the extensive uplifts of the QTP until ca. 4 Mya have been hypothesized to be 
the important force accelerating speciation23–25 and generating high biodiversity at both the inter- and 
intra-specific levels in the HHM region9,10,26–28.

In contrast to the geological hypothesis, the climatic hypothesis attributes population genetic diver-
sification and species diversity mainly to Pleistocene glacial cycling. Specifically, it is hypothesized that 
Pleistocene glaciers may have isolated populations into glacial refugia and promoted population dif-
ferentiation and intra-specific diversification without apparent geological breaks1. Fossil and moraine 
records show that the QTP and the adjacent HHM were subjected to a series of glaciations in the 
Pleistocene29,30. The ice sheet advanced and receded repeatedly during glacial-interglacial cycles, creating 
temporal physical barriers and dynamic heterogeneous niches. This process is believed to have facilitated 
genetic divergence1,3. Under this hypothesis, two different scenarios were proposed in recent molecular 
phylogeographic studies. The first scenario is high-altitude adaptation, in which some plant species sur-
vived the glacial stages at high altitude areas in situ26,31–33 and developed accompanying deep allopat-
ric lineages with the Pleistocene glaciers11,26,33, even without large unified ice-sheets existing in the late 
Pleistocene14,29. The second scenario is migratory colonization, in which some plants in refugia migrated 
to low-altitude ice-free areas (e.g., the east edge of the QTP and the Hengduan Mountains) and recol-
onized the inner QTP platform during interglacial or postglacial stages2,34–36. The Hengduan Mountain 
region were proposed as an important refugium to the QTP and neighboring areas10,36, and several case 
studies have suggested that mountain glaciers in the Pleistocene rather than geological breaks resulted in 
allopatric divergence and profoundly affected the intraspecific phylogeographic structure10,37.

The two contrasting hypotheses to explain the causes of the high biodiversity in the HHM region have 
each been supported by a number of studies. However, they are not necessarily incompatible with each 
other. The effects of both historical events (geological and Pleistocene climatic events) may be tracked 
through the genomic imprinting of extant species in phylogeographic studies. Interestingly, up to now, 
most phylogeographic studies have focused on plants with shallow lineages, and the evolutionary history 
of these lineages primarily reflects the effects of Pleistocene climate changes34,35,38. Plants originating 
before the Pleistocene could provide good opportunities to infer the evolutionary forces due to both 
geologic changes in the Miocene and subsequent Pleistocene climate changes that occurred after their 
speciation. In this study, we studied the phylogeography of an alpine plant, Oxyria sinensis Hemsley 
(Polygonaceae), which diverged from its sole sister species O. digyna in the genus Oxyria between 12 
and 14 Mya27. Because the TKL line runs primarily from ca. 33 ° N/102 ° E to 19 ° N/108 ° E in the 
Yunnan and Sichuan provinces19,20, it has seldom overlapped with the distribution of O. sinensis. Thus, 
in this study, we specifically aimed to test how the Mekong-Salween Divide formation and/or Pleistocene 
glacial-interglacial fluctuations affected the population history of O. sinensis.
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In contrast to the worldwide distribution of O. digyna, O. sinensis is endemic to southwest China, 
with a center in the Hengduan Mountains, westward extension to the southeast Himalaya, and east-
ward extension to the east edge of the QTP (east QTP). There is a clear break in the distribution at 
the Mekong-Salween Divide, where the Mekong-Salween Divide appears to segregate O. sinensis into 
west and east populations (Fig.  1). Typical habitats of O. sinensis include mountain slopes, valleys and 
riversides, all at altitudes ranging from 1600 to 3800 m a.s.l. Considering the early origination and vari-
ous ecological environments, O. sinensis must have experienced both of the above-mentioned historical 
events, making it an ideal species to test the evolutionary consequences of these events. In most angio-
sperms, nuclear DNA is biparentally transmitted and shows strong geographical homogenization because 
of extensive hybridization and/or introgression3. However, maternally inherited chloroplast DNA, which 
is dispersed through seeds without recombination, tends to be geographically structured. Chloroplast 
DNA has been demonstrated to be a powerful tool for tracing population history, founder effects, and 
demographic fluctuation3,39. In this study, we surveyed chloroplast (cp) DNA variations in O. sinen-
sis using the matK fragment from the HHM region. We first estimated the genetic diversity and the 
divergence times of the different lineages detected. We next examined the population structure among 
different geographical groups. Then, we attempted to determine the possible factors driving the intraspe-
cific divergence and the population structure. Finally, we used Bayesian inference methods and species 
distribution modeling to model the distribution changes of O. sinensis in response to Pleistocene climate 
changes. Thus, we had the following aims: 1) reveal the genetic diversity and geographic structure of 
contemporary O. sinensis populations; 2) reconstruct the demographic history of O. sinensis; 3) estimate 
the evolutionary consequences of the two historical events and assess their relative roles in shaping the 
contemporary genetic pattern of O. sinensis; and 4) infer the locations of the refugia in the Last Glacial 
Maximum (LGM) and regions of over-represented diversity that can help in the conservation and man-
agement of biodiversity in the HHM region.

Results
Phylogenetic history of O. sinensis and molecular dating. We identified 16 distinct matK 
haplotypes from 477 individuals in 38 populations (H1-H16; Supplementary Tables S1 & S2; Fig.  1). 
Among them, H3 was the most common, occurring in 22 of the 28 populations across the Himalaya, 

Figure 1. Sampling locations, geographical distribution of 16 matK haplotypes (H1 – H16) and three clades 
(A, B, C) identified by BEAST in Oxyria sinensis (population codes refer to Supplementary Table S1). The 
geographic groups for the Himalaya: population 1–3, and the Hengduan Mountains, population 4–28, and 
east QTP for population 29–38. Map was drawn using the R package “Rgooglemaps” and ArcGIS version 9.1 
and modified using CorelDRAW X6.
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the Hengduan Mountains, and east QTP. Haplotype H8 was the second most common, occurring in ten 
populations, one in the Hengduan Mountains and nine in the east QTP. Six haplotypes (H5, H12–16) 
were unique to individual populations, and the remaining haplotypes occurred in more than one pop-
ulation. Fourteen populations (37.8%) had a single haplotype, and other populations (63.2%) harbored 
two or more haplotypes (Supplementary Table S1; Fig. 1).

The distinct matK haplotypes differed at 18 variable sites within the 1173-bp sequence alignment. 
All variations were polymorphic nucleotide substitutions, and no insertions or deletions were found. 
The Bayesian phylogenetic analyses identified three well-supported clades (named A, B, and C). Clade 
A appeared to be a widely distributed clade, consisting of 8 unique haplotypes that were widespread 
throughout the region. Broadly, Clade B contained 5 haplotypes, including an unresolved haplotype H6 
(support value <  50%). After excluding the H6, Clade B was exclusively distributed in the east QTP. 
The H6 mainly occurred in the Hengduan Mountain region. Clade C contained three haplotypes, all of 
which occurred only in the Himalaya. The minimum-spanning network of these haplotypes produced a 
similar grouping pattern (Fig. 2).

The estimated divergence time between O. sinensis and O. digyna was approximately 13.79 Mya (95% 
HPD: 7.54–24.63 Mya) in the Miocene. This estimate is well consistent with an estimate based on the 
fossil record (12–14 Mya)27,40, suggesting that the substitution rates and models applied in this study 
were appropriate. Clades A and B diverged from C approximately 1.74 Mya (95% HPD: 0.72–3.46 Mya) 
in the early Pleistocene, and the recent divergence between clades A and B occurred approximately 0.86 
Mya (95% HPD: 0.34–1.73 Mya).

Genetic diversity. Genetic differentiation for the overall populations (GST =  0.611; NST =  0.662) was 
high. The high population differentiation was also supported by AMOVA and BARRIER analyses, as 
reflected by the distinct haplotype composition among the three geographic groups or the predicted 
phylogeographic groups. However, NST was not significantly higher than GST (P >  0.05), indicating a 
nonsignificant phylogeographic structure. This might be due to the discontinuous distribution of 
the shared dominant haplotypes (e.g., H3 and H8) across different geographic regions. Furthermore, 
BARRIER predicted that a major phylogeographic structure existed between the HHM and the east QTP 
(Supplementary Fig. S2). AMOVA analysis revealed that genetic differentiation across all populations 

Figure 2. The Bayesian phylogenetic tree and minimum-spanning network constructed from all matK 
haplotypes of Oxyria sinensis, with O. digyna as outgroup. Values above the tree branches represent the 
posterior probabilities from the BEAST Bayesian analysis and those at the tree nodes denote the divergence 
time in million-year units. The 95% HPD for is 13.79 Mya with 95% HPD from 7.54 to 24.63 Mya. The 
clades A and B diverged from clade C 1.74 Mya with 95% HPD from 0.72 to 3.46 Mya, and the divergence 
time between clades A and B occurred 0.86 Mya with 95% HPD from 0.34 to 1.73 Mya. In the haplotype 
network, filled circles represent unique haplotypes and their sizes correspond to their frequencies across 
all populations. Each crossed bar between two circles depicts one nucleotide difference between the two 
haplotypes. The map was generated from the BEAST program and modified using the CorelDRAW X6 
software.
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accounted for 66.82% of the total variation, whereas among three geographic groups (Himalaya, 
Hengduan Mountains and east QTP), the variance components accounted for a slightly higher proportion 
of variation (38.95%) compared with the within-population among groups and the within-population 
variation (Table 1). Theoverall genetic diversity was very high (HT =  0.791), contrasting the low degree 
of within-population diversity (HS =  0.308). The haplotype diversity (he) within populations varied from 
0.000 to 0.833 (Table 1; Supplementary Fig. S1). We also computed the average haplotype diversity for 
each group. The highest diversity (0.6297) was found in the Himalaya, with an intermediate value in the 
Hengduan Mountains (0.3522), and the lowest value in east QTP (0.1005).

Population demographic expansion. We investigated the population demographic history of 
O. sinensis for the three focal geographic regions: Himalaya, Hengduan Mountains and the east QTP. 
The Himalaya populations (1–3) showed a multimodal mismatch distribution (Fig.  3), suggesting that 
no historical expansions occurred in this region. By contrast, unimodal mismatch distributions were 
found from the Hengduan Mountains and east QTP (Fig. 3), which did not differ significantly from the 
expected distribution under a sudden population expansion model (P >  0.05, Table 2). In addition, the-
neutrality test for the Hengduan Mountains and east QTP groups showed negative Tajima’s D and Fu’s 
Fs values, though these were not statistically significant (except Fu’s Fs for east QTP, P <  0.001; Table 2), 
suggesting that the populations in these regions deviated from the neutral equilibrium population model. 
The expansion time estimated for the Hengduan Mountains and the east QTP based on mismatch analy-
sis was approximately 0.14 and 0.31 Mya, respectively (Table 2). A Bayesian skyline plots (BSPs) analysis 
of total populations indicated a slight decline in population size since 0.8 Mya and an approximately 
five-fold rapid increase since 0.3 Mya (Fig. 3), which is consistent with the mismatch analysis.

Species distribution modeling in the present and the past. We reconstructed the glaciers under 
present conditions and the LGM. Because there is still no consensus about the exact locations and range 
of glaciers at the LGM in the QTP, we used the annual mean temperature layer from both ecological 
conditions. It is believed that the ice sheet might have reached 2000 meters in thickness and covered 
the entire plateau regions at an altitude above 3000 meters41. In general, our reconstructed glaciers are 
congruent with those of Ehlers and Gibbard42, who use minimum-glaciations range reconstruction for 
glacial geology. Most glaciers run along the mountains ridges in the HHM, indicating that mountain 
glaciers may have played an important role in contributing to the population structure of O. sinensis.

Species distribution models (SDM) were reconstructed for the present and the LGM (Fig.  4b–d). 
Model performance showed that all models met the threshold for inclusion in the ensemble, with all 
three statistical scores >  0.72, indicating good model performance. The realized present distribution of 
O. sinensis was generally well recovered by the consensus models (Fig.  4b). Projection to the environ-
mental niche of the LGM indicates suitable habitats essentially located within the mountain valley of the 
HHM, a low altitude area of south Hengduan Mountain and east QTP (Fig. 4c,d). A high concordance 
between the suitable climate areas under the modeled LGM and the present was found (Schoener’s 
I =  0.9585, D =  0.7936 for CCSM; Table  3), suggesting a stable distribution of O. sinensis over the last 
21,000 years. The SDM uncovered a dynamic history of geographic shifts in suitable areas for O. sinensis 
(Fig. 4b–d), with mountain valleys and low-altitude regions maintaining suitable habitats, possibly serv-
ing as refugia in the glacial periods throughout the glacial-interglacial cycles (Fig. 5).

Source of variation df
Sum of 
Squares

Variance 
Components

Variation 
(%) Fixation index

All

Among Populations 37 294.526 0.6196 Va 66.82 Fst =  0.6682***

Within Populations 439 135.047 0.3076 Vb 33.18

Himalaya (1–3) vs. Hengduan Mountains (4–28) vs. east QTP (29–38)

Among groups 2 123.615 0.4355 Va 38.95 Fsc =  0.5512***

Among populations 
within groups 35 170.911 0.3778 Vb 33.71 Fst =  0.7256***

Within populations 439 135.047 0.3076 Vc 27.44 Fct =  0.3885***

Table 1. Results of the analyses of molecular variance (AMOVA) for O. sinensis. Overall, genetic 
differentiation was examined for a total of 477 individuals from 38 geographic populations, as well as 
hierarchical geographic structures tests for three geographic groups: the Himalaya, the Hengduan Mountains 
and east QTP. All tests were based on both molecular distances and haplotype frequencies. Statistical 
significance: P <  0.001 (***) and P <  0.01 (**).
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Discussion
Recently, several studies in plants found that phylogeographic disjunction coincided with the formation 
of the Mekong-Salween Divide9,10,16. Our data do not conform to this scenario but indicate that the main 
chloroplast genetic divergence of O. sinensis coincided with several Pleistocene glacial stages. Much of the 
variation within the Himalaya and east QTP is likely due to isolation and population expansions induced 
by glacial–interglacial cycles. In the following sections, we first discuss Pleistocene climate changes rather 
than the formation of Mekong-Salween Divide as the possible primary evolutionary factors driving 
intraspecific divergence. We then highlight the impact of Pleistocene glacial-interglacial cycles and range 
expansions on the maternal evolutionary history of O. sinensis and further discuss the implications of 
our findings for conservation biology.

Figure 3. Mismatch distributions (A–D) and the Bayesian skyline plot (E) of matK sequence data from 
four different regions. Except for the populations in east Himalaya, all other regional populations showed 
unimodal mismatch distributions, a sign of population expansion. In the Bayesian skyline plot, the estimated 
effective population size (Ne) is depicted on the y-axis is on a log2 scale. The median estimate of Ne is 
shown by the thick black line, and the 95% highest probability density (HPD) of posterior distribution of Ne 
is marked in gray.

N τ Θ0 Θ1 SSD RAG (p) Tajima’s D Fu’sFs
Expansion 

Time (year)

Himalaya 26 7.2813 0.0000 3.6719 0.0919 0.1199 (0.2980) 1.5950 2.7058 − 

Hengduan Mountains 321 1.3457 2.0000 99999 0.0018 0.0585 (0.1480) − 0.4614 − 0.7633 143404

East QTP 130 3.0000 0.0000 0.0808 0.0024 0.7502 (0.7670) − 1.5444* − 5.2660** 319693

Total 477 2.0703 0.0211 11.7047 0.0207* 0.0744 (0.1230) − 0.7842 − 2.9243 220621

Table 2. Neutrality and mismatch analyses for the O. sinensis populations and four designated regional 
groups, Note: N, sample size; τ, time in generation unit since the population expansion happened; θ0 and 
θ1, nucleotide diversity measures prior to and posterior to expansion scaled with population size; RAG, the 
Harpending’s Raggedness index; a, H3 was excluded for the calculation; SSD, sum of squared deviations.



www.nature.com/scientificreports/

7Scientific RepoRts | 5:10396 | DOi: 10.1038/srep10396

Refugial isolation vs. geological isolation. In this study, we explored the phylogeography of O. 
sinensis. The estimated divergence time between O. sinensis and its closely related species O. digyna 
was approximately 13.8 Mya (Fig. 2). Although the time calibration must be interpreted cautiously, our 
estimated speciation timing of O. sinensis was well consistent with dating based on fossils from a recent 
study27. Since O. sinensis diverged from its sibling species O. digyna approximately 13.8 Mya (Fig.  2), 
it must have experienced both Pleistocene climate changes and the formation of the Mekong-Salween 
Divide. Both historical events presumably contributed to population isolation and thus to allopatric 
genetic differentiation between isolated populations. However, our phylogenetic analyses identified three 
major clades (Fig. 2), and those clades show spatial clustering into three primary geographic regions. In 
contrast to early origination, relatively shallow intraspecific lineages were found in our study (Fig.  2). 
The divergence time for the three major clades was approximately 1.74 to 0.86 Mya, which falls into the 
early or middle Pleistocene (Fig. 2). The age of the deepest lineages of O. sinensis clearly post-dates the 

Figure 4. Distribution records locations, and species potential distribution of O. sinensis under current and 
projected to past climate conditions. (a) The distribution records used for SDM were plotted from both this 
study and the CVH. We obtained the 30 arc-second resolution for altitude data from WorldClim (http://
www.worldclim.org/current). This map provides the information about the locations of mountains and the 
occurrences of O. sinensis. The predicted species occurrences were obtained with an ensemble-forecasting 
approach: (b) current climate, (c) the LGM climate for CCSM, and (d) the LGM climate for MIROC. The 
color gradient from white to green and red indicates the suitability levels from low to high. The blue points 
depict the sampling location in this study, and gray points represent specimen records from the CVH.

D\I Present
LGM 

(CCSM)
LGM 

(MIROC)

Present − 0.9585 0.9405

LGM (CCSM) 0.7936 − 0.9627

LGM (MIROC) 0.7447 0.8063 − 

Table 3. Degree of niche overlap based on Schoener’s I and D statistics. The lower triangles represent the D 
value and the upper represent the I value. The statistics indicate high identity among suitable habitats among 
all pairwise comparisons.

http://www.worldclim.org/current
http://www.worldclim.org/current
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formation of a known geological break, the Mekong-Salween Divide, which arose in the late Miocene 
and early Pliocene9,10. In addition, BARRIER analysis found that a major phylogeographic disjunction 
occurred between the HHM and east QTP, not following the Mekong-Salween Divide. Taken together, 
these findings suggest that geological isolation might not be the main physical factor driving lineage 
divergence in O. sinensis.

By contrast, the estimated divergence times for intraspecific lineages are in concordant with two 
glacial events: the Eburonian glacial stage (1.2–1.7 Mya) and the Maximum glacial stage (0.6–0.8 Mya) 
in the early and/or middle Pleistocene43. On the QTP, the Pleistocene glaciers reached a maximum alti-
tude during the maximum glacial stage30,44,45. Ice covered five to seven times more area than at present, 
and extensive mountain glaciers developed in the eastern Himalaya and Hengduan Mountains30,45–47. 
Therefore, we suppose that these mountains may harbor individuals of O. sinensis that survived in situ 
for a long time and that the temporary mountain glaciers might have acted as physical barriers of gene 
flow and promoted fragmentation and genetic differentiation. Given a sufficiently long time, population 
fragmentation and genetic differentiation eventually arose. Although a number of sequential glaciers 
occurred after the maximum glacial stage, they had minor impacts on the extant spatial genetic distribu-
tion of O. sinensis14. Bearing this in mind, we propose that the development of mountain glaciers during 
early/middle Pleistocene glacial stages mostly likely served as the main factor causing lineage divergence 
of O. sinensis due to its relatively low intensity. In agreement with this study, Fan et. al.37 also found 
that climate changes (monsoon) associated with the formation of TKL rather than TKL rising drove 
the spatial genetic structure of Sophora davidii. Deep lineages and similar diversification patterns due to 
Pleistocene climate changes were also found in other plants in the QTP region10,26,31,33.

Multiple glacial refugia and demographic history. Glacial refugia were recognized as harboring 
high intraspecific diversity and major lineages1. The identification of three phylogenetic lineages suggests 
that at least three historical refugia existed in the followed recurrent cycles of Pleistocene cooling and 
warming since the origination of O. sinensis. The Himalaya harbored three haplotypes on the basal clade, 
representing the eldest refugium. A number of populations which harbor high genetic diversity and 
abundant unique haplotypes were potential refugia during the cooling stages (Fig. 1; Supplementary Fig. 
S1); for example, the Himalaya populations, the central Hengduan Mountains (e.g., populations 10, 13 
and 28), the southern Hengduan Mountains (e.g., populations 21–23), and the eastern QTP (e.g., pop-
ulation 31, 34). Given the early and middle Pleistocene origination of these unique haplotypes (Fig. 2), 
it is reasonable that these populations have served as glacial refugia in the cooling stages since their 
origination and expanded their range rapidly during the following interglacial stages. The SDM also 
predicted suitable habitats of O. sinensis sundered by high mountains resulting in multiple centers of 
genetic diversity, reflecting the geographic isolates (Fig. 4b–d). Therefore, O. sinensis likely survived in 
those multiple locations in situ during the LGM. The SDM predicted that the most suitable habitats 
under present conditions were highly concordant but slightly larger than during the LGM (Fig. 4b,c) and 
that the present mountain glaciers were highly similar to those in the LGM but slightly smaller at present 
(Fig. 5). These results suggest that O. sinensis seldom changed its distribution since the LGM. This also 
indicates that mountain glaciers in this region have not greatly expanded but have slightly shrunk since 
the LGM. Overall, our findings suggest that the mountain glaciers and range expansions in early and 
middle Pleistocene had a predominant effect on the spatial genetic structure of O. sinensis. The fact that 
suitable areas have changed relatively little between the LGM and the present indicates that O. sinensis 

Figure 5. Glacier locations for current and the LGM. (a) The glaciers in present conditions and (b) the 
glaciers in LGM. Because there is no consensus about the exact locations and range of glaciers at LGM on 
the QTP, we reconstructed the glaciers for both LGM and the present using the Annual Mean Temperature. 
The sampled O. sinensis between latitude 29° and 32° were surrounded by mountain glaciers, indicating that 
mountain glaciers played an important role in shaping the population structure.
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has only been slightly affected by ice-sheets and/or mountain glaciers since the LGM48–50. This finding 
supports the theory that no large ice sheet/mountain glacier developed in the Hengduan Mountains 
region during this period.

The duration of mountain glaciers plays an important role in lineage and population divergence. 
However, rare gene exchanges most likely occurred among neighboring regions during the retreat of the 
glaciers. The Himalaya group harbored three haplotypes, all of which located on basal clade C and may 
represent the earliest diversification center. The presence of haplotype H3 in the Himalaya region could 
be due to occasional gene flow from the Hengduan Mountains and might have been achieved through 
dispersion along the Salween River valley. Such long-distance dispersion might also occur between the 
Yunnan and Sichuan ranges, leading to unclear boundaries between the Hengduan Mountains and east 
QTP (Fig. 1). Those long-distance migration patterns were also found in Sinopodophyllum hexandrum10, 
an alpine herb distributed sympatrically with O. sinensis. An alternative scenario is that those shared 
haplotypes might be relics and/or close derivatives of ancient haplotypes due to an ancient common 
ancestry and incomplete lineage sorting. In the network topology, we observed a couple of intermediate 
states, which may represent those missing ancestral haplotypes and/or unsampled haplotypes.

The estimates of Gst and Nst (GST  =  0.6110; NST  =  0.6620) indicate high population differentiation 
across the entire distribution of O. sinensis, but no significant phylogeographic structure was found 
based on a comparison of GST and NST (P >  0.05). The high geographic genetic differentiation primarily 
reflects the composition of the distinct haplotypes among the three geographic groups or the phyloge-
ographic disjunction between the HHM and east QTP identified from BARRIER. The nonsignificant 
phylogeographic signal most likely occurred because of the discontinuous distribution of the common 
haplotypes (e.g., H3 and H8) across different geographic regions. We detected the signatures of repeated 
regional expansions based on a combination of multiple statistical analyses, including Fu’s Fs and Tajima’s 
D statistics, BSPs, and hierarchical mismatch distribution. BSPs indicated that the population size had 
increased dramatically since 0.5 Mya (Fig. 3f). Further hierarchical mismatch analyses suggested at least 
two independent population expansions occurred, and the expansion times were dated to before LGM. 
The first expansion led by haplotype H8 occurred mainly in the east QTP approximately 0.3 Mya and 
fell into the interglacial period after the Maximum glaciations on the QTP29,46,51. The second expansion 
occurred approximately 0.14 Mya during the Last Interglacial period (LIG, 0.12–0.14 Mya)14,29,44,45, dur-
ing which the populations recolonized either westward to Himalaya or eastward to the east QTP. These 
multiple expansions may have reshuffled the genetic distribution in geography, which, together with 
genetic drift, led to homogeneity within geographic groups. For example, in east QTP, more than half of 
the populations were fixed with H8, and more than ten populations (> 50%) had H3. The repeated range 
expansions led to the homogeneity within geographic groups, and subsequent secondary contacts may 
further blur the boundaries among geographic groups, resulting in inconsistency of two major phyloge-
ographic groups (predicted by BARRIER) and three geographic groups. Taken together, these multiple 
lines of evidence provide a good understanding of the population history of O. sinensis; however, more 
comprehensive knowledge should be gained through the use of multiple markers, such as nuclear DNA 
markers. Similar pre-LGM demographic expansions were reported for other plants in the QTP, such as 
Pedicularis longiflora36, Potentilla glabra31 and Hippophae tibetana52.

Implications for management of biodiversity conservation. The understanding of the geograph-
ical distribution of cpDNA variations may be used for practical applications, such as preventing the loss 
of genetic resources, conservation management and breeding strategy. More than 12,000 plant species 
inhabit in the HHM, and a large proportion is endemic. Efforts to identify localities harboring distinct 
genetic genealogies and regions rich in biodiversity will provide valuable resources for conservation man-
agement in this worldwide biodiversity “hotspot” region. Our genetic survey has at least two important 
implications. First, the three geographic regions (the Himalaya, Hengduan Mountains and east QTP) 
could be recognized as distinct genetic units, and merit further conservation recognition from a manage-
ment perspective. Secondly, we found that the Himalaya harbor the highest genetic diversity, whereas the 
Hengduan Mountains harbor moderate diversity. This poses an urgent need that is of the highest priority 
for the conservation management. These locations include the Himalaya (populations 1–3), the central 
Hengduan Mountains (e.g., 10, 13 and 28), the south Hengduan Mountains (e.g., 21–23), and the east 
QTP (e.g., population 31, 34). In addition, we should note that only a few field samples were obtained in 
the Himalaya, implying a rather small natural population and a potential loss of genetic diversity of O. 
sinensis. The future conservation policy for O. sinensis should focus on protection of regions of distinct 
lineages and high diversity. The most effective conservation strategy may combine sampling populations 
containing different genealogies and field protection of those rich biodiversity regions in situ. Overall, 
our findings revealed the genetic structure of O. sinensis and tentatively indicated geographic regions 
with excess genetic diversity. These findings could facilitate short-term and long-term conservation in 
this worldwide biodiversity “hotspot” region.

Conclusions
For plants originated in the Miocene on the QTP, their genetic structure could have been affected by the 
geological changes due to uplifts of QTP and glacial-interglacial oscillations during the Pleistocene since 
their speciation. Our phylogeographic analysis of O. sinensis suggests that Pleistocene refugial isolation 
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may have driven lineage divergence at spatio-temporal timescales and that later interglacial range expan-
sions blurred the phylogeographic boundaries created in the early Pleistocene. Our results provide one of 
the few detailed maternal evolutionary histories of endemic plants with deep lineages and give important 
insight into the origin and maintenance of genetic diversity in a global biodiversity “hotspot” region.

Materials and Methods
Plant material. Oxyria sinensis is a dioecious perennial herb endemic to the Himalaya-Hengdua 
Mountains (HHM) that can reproduce sexually via seeds and asexually via rhizomes53. This plant is char-
acterized by tiny flowers, densely branched panicles, and winged achenes that favor potential dispersal by 
wind. Samples of O. sinensis were collected from 38 populations across its entire range between 2008 and 
2011 (Fig. 1 and Supplementary Table S1), representing three broad geographical groups: the Himalaya, 
the Hengduan Mountains and the east Qinghai-Tibetan Plateau (QTP). A total of 477 individuals were 
sampled, with an average of 12 individuals per location (Supplementary Table S1). By comparing records 
from the Chinese Virtual Herbarium (CVH; http://www.cvh.ac.cn/), our sampling generally reflects the 
overall distribution of O. sinensis (Fig. 4a; Supplementary Table S3). All samples were stored at -20 °C in 
the herbarium of the School of Life Science, Yunnan Normal University, P. R. China.

DNA extraction, amplification and sequencing. Genomic DNA was extracted from 20 mg of 
dried leaf tissue from each O. sinensis individual, using a QIAGEN DNeasy Tissue Kit (Qiagen, BOSITE 
Biology Co. Ltd., Shanghai, China) following the manufacturer’s protocol. We amplified the chloro-
plast Muturase K (matK) gene using polymerase chain reactions (PCR), with a primer pair of matKAF 
(Forward, 5’-CTA TAT CCA CTT ATC TTT CAG GAG-3’) and matK8R (Reverse, 5’-AAA GTT CTA 
GCA CAA GAA AGT CGA-3’). The PCR reactions were performed in a 25 μ L reaction volume, contain-
ing 1.5 μ L genomic DNA, 50 mM Tris-HCL, 1.5 mM MgCl2, 250 μ g/mL bovine serum albumin (BSA), 
0.5 mM dNTPs, 0.2 μ M of each primer, and 0.75 units of Taq polymerase. Programmed amplification 
parameters were as follows: 4 min denaturation at 94 °C, then 35 cycles of 50 sec denaturation at 94 °C, 
50 sec annealing at 53 °C, and 1 min 30 sec extension at 72 °C, and a final extension of 7 min at 72 °C. PCR 
products were purified before sequencing to remove excess primers and deoxynucleotide triphosphates 
using a TIAN quick Midi Purification Kit (Tiangen Biotechnology Co. Ltd., Beijing, China). Sequencing 
reactions were performed using ABI Prism Sequencing Ready Reaction Kit with the same primers as 
PCRs, and analyzed on the ABI 3730 genetic analyzer (Applied Biosystems).

Phylogenetic analysis and molecular dating. DNA sequences were aligned using CLUSTAL X54 
with default parameters and checked manually. To root a phylogenetic tree, we additionally sequenced 
the matK gene from a closely related Oxyria species (O. digyna)40,55 and used this sequence as the out-
group for all the O. sinensis sequences. All sequences generated in this study have been deposited in 
GenBank under accession numbers KJ159010–KJ159025.

The genealogical relationships among matK haplotypes and divergence times were jointly estimated 
through a Bayesian Markov Chain Monte Carlo approach implemented in BEAST v.1.7.256. Because the 
substitution rate of chloroplast DNA (cpDNA) for Oxyria is unknown, we used a range of mutation 
rates from 1.01 ×  10−9 to 2.9 ×  10−9 substitution/site/year (s/s/y) that are believed valid for chloroplast 
DNA of angiosperms overall57–59. The divergence time of each bifurcating event was estimated under the 
strict molecular clock model, assuming no rate variation across the tree branches. We used jModeltest 
v2.1.460,61 to determine the best-fitting DNA substitution model of sequence evolution using the Akaike 
Information Criterion (AIC) and comparing –ln likelihood scores. The GTR +  I model was chosen and 
applied to all Bayesian inferences. Three independent Markov Chain Monte Carlo (MCMC) runs were 
performed, with each run starting a random tree for 200,000,000 generations, and sampled for every 
1000 generations. Convergence of three independent runs was evaluated using Tracer v.1.5 (http://evolve.
zoo.ox.ac.uk/), with an effective sample size (ESS) for all parameters larger than 100. The results in log 
files of multiple runs were combined using LogCombiner v.1.5.462 and analyzed collectively. The first 20% 
of the generations were discarded as burn-in, and the rest were retained as valid samples for further anal-
ysis. A maximum clade credibility tree and node-specific parameters were computed from the sampled 
data using TreeAnnotator (http://beast.bio.ed.ac.uk/TreeAnnotator/). The tree was plotted using FigTree 
v.1.31 (http://tree.bio.ed.ac.uk/software/figtree/) and further graphically modified for publication using 
graphic design software CorelDRAW X6 (Corel Corp., Ottawa, Canada).

To explore the genealogical relationships and their phylogeographic pattern, we also constructed the 
parsimonious networks for all matK haplotypes of O. sinensis using TCS 1.2163, under a 95% criterion 
of statistical parsimony64.

Phylogeographic and population genetic analyses. The average haplotype diversity within pop-
ulations (HS) and among populations (HT), and two population differentiation parameters, GST and NST, 
were computed using the program PERMUT with 1000 permutations65 (http://www.pierroton.inra.fr/
genetics/labo/Software/PermutCpSSR). Geographic structure and genetic differentiation within and 
between geographical regions were statistically tested through analyses of molecular variance (AMOVA)66 
in ARELQUIN v3.1.167. The haplotype diversity (HE) and nucleotide diversity (π ) for geographic popula-
tions were also calculated using ARLEQUIN.

http://evolve.zoo.ox.ac.uk/
http://evolve.zoo.ox.ac.uk/
http://beast.bio.ed.ac.uk/TreeAnnotator/
http://tree.bio.ed.ac.uk/software/figtree/
http://www.pierroton.inra.fr/genetics/labo/Software/PermutCpSSR
http://www.pierroton.inra.fr/genetics/labo/Software/PermutCpSSR
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Demographic dynamics through time were inferred using Bayesian skyline plots (BSPs) in BEAST. 
The BSPs employ a coalescent approach to estimate the effective population size and its changes over 
piecewise coalescent intervals68. The BSPs estimates were obtained through MCMC runs in BEAST, using 
the same running parameters for phylogenetic and clock time inference described above, including a 
DNA substitution model, starting tree, running length, and burn-in length.

Historical population expansions were tested using mismatch distribution analysis implemented in 
ARLEQUIN. The mismatch analysis compares the observed frequency distribution of pairwise differences 
among haplotypes with the expected from those under the parametric demographic expansion model. 
A uni-modal distribution of pairwise haplotypes difference is expected if a population has undergone a 
recent expansion, whereas a multimodal distribution suggests a population in equilibrium69. Evidence 
of recent demographic expansion was also examined using Harpending’s Raggedness index70, Tajima’s 
D71 and Fu’s FS test72. For a population fitting a sudden expansion model, expansion time (t, in years) 
was estimated from the mutation rate (u) and number of generations since expansion (τ ), using Rogers 
and Harpending’s70 approach, τ  =  2ut. The mutation rate u was calculated from the DNA substitution 
rate (μ), sequence length (k) and the generation time (g) of O. sinensis using the formula u = 2μkg. A 
generation time of 2 years and an average cpDNA mutation rate of 2 ×  10−9 s/s/y were assumed57–59.

BARRIER v2.273 was used to predict the potential phylogeographic boundaries exhibiting the largest 
genetic discontinuities among all population pairs. The program uses a genetic matrix of pairwise Fst val-
ues from all of the geographic population pairs to construct a geometric network of populations. Putative 
genetic boundaries were further identified based on Monmonier’s maximum difference algorithm73.

Species distribution modeling. Species niche modeligng (SDM) was conducted to examine the 
influence of Pleistocene climate changes on the geographic distribution of O. sinensis. Environmental 
conditions including 19 bioclimate variables were downloaded from the WorldClim database (http://
www.worldclim.org). Bioclimate layers were obtained in the 2.5 arc-minute resolution for the present 
and the LGM (ca. 21,000 years ago). Climate data from two general circulation model (GCM) sim-
ulations from the Community Climate System Model (CCSM)74,75 and the Palaeoclimate Modeling 
Intercomparison Project (MIROC)76, were used in this study.

Distribution records of O. sinensis were compiled from our field study and the Chinese Virtual 
Herbarium (CVH; http://www.cvh.ac.cn/). We obtained 205 hits by searching “Oxyria Sinensis” in the 
CVH (last visit on 10/10/2014), representing historical collections from 1906 to present. Exact geographic 
information was obtained from 81 records, i.e., the longitude and latitude coordinates were recorded by 
collectors. For those without geographical coordinates, we mapped their locations to the nearest county. 
After removing duplicates, we obtained 64 additional unique records from CVH. After merging the CVH 
and this study, a total of 102 records were included and subjected to the SDM.

We applied three algorithms to build the SDM – one regression methods: generalized linear models 
(GLM) and two machine learning methods: random forests (RF) and maximum entropy (MAXENT). 
Models were created for each algorithm to predict the effects of topography on species distribution. 
All three algorithms were implemented in “Biomod2” (http://cran.r-project.org/web/packages/biomod2/
index.html) packages in R v. 3.0 (http://www.R-project.org/). For the MAXENT method, Maxent v 
3.3.3k77 was downloaded from http://www.cs.princeton.edu/~schapire/maxent/. Because all three meth-
ods require presence-absence data and O. sinensis lacks true absences records, we randomly generated 
10,000 background pseudo-absence points. All three SDM modeling approaches were combined to con-
struct the realized distribution model using an ensemble forecasting (EM) techniques to account for 
prediction uncertainty among different algorithms and outperform single models78,79.

To evaluate model predictive performance, we randomly split the original dataset into two subsets, 
using 70% (training dataset) to calibrate each model and 30% (testing dataset) for model evaluation. 
We repeated the processes 30 times to obtain robust estimates of the SDM. The accuracy of the model 
performance was evaluated using three indices: the receiver operational characteristic (ROC), the True 
Skill Statistic (TSS) and Cohen’s Kappa (KAPPA). The ROC curve plots with true positive rate of model 
simulation as a function of the false positive rate71. The measure of the area under the ROC curve (AUC) 
measures the area under the curve, providing a threshold independent accuracy index. The AUC values 
vary from 0 to 1, with a higher value indicating a more fitting performance. An AUC of greater than 
0.5 suggests that the given model has non-random discrimination abilities. The TSS statistic measures 
the agreement between the expected and observed distribution and is not influenced by prevalence. TSS 
ranges from –1 (perfect disagreement) to 1 (perfect agreement), and a TSS value less than 0 generally 
indicates the model’s predictive performance is no better than random. The KAPPA statistic is closely 
related to TSS, taking into account agreement between the observed and the expected distribution by 
chance.

We obtained the projections for the LGM by applying the realized models fitted to the present con-
ditions of O. sinensis. To compare the similarity of niches (or niche overlap) between the two ecological 
layers, we computed Schoener’s D80 and I statistics81 using the ENMTOOLS82,83. The values of the two 
parameters vary between 0 (no overlaps at all) and 1 (complete overlapping), with a fraction number 
indicating a certain level of similarity in ecological niches. Finally, we visualized the predicted species 
distribution using DIVA-GIS v.7.5 (http://www.diva-gis.org/) and R 3.0.

http://www.worldclim.org
http://www.worldclim.org
http://www.cvh.ac.cn/
http://cran.r-project.org/web/packages/biomod2/index.html
http://cran.r-project.org/web/packages/biomod2/index.html
http://www.R-project.org/
http://www.cs.princeton.edu/~schapire/maxent/
http://www.diva-gis.org/
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